搜档网
当前位置:搜档网 › 氨吸收式制冷机.

氨吸收式制冷机.

氨吸收式制冷机.
氨吸收式制冷机.

第六章氨吸收式制冷机

教学目的、要求:

1.了解吸收式制冷机与单级蒸汽压缩式制冷机的制冷循环的区别;

2.了解氨水溶液的性质;

3.掌握氨吸收式制冷循环的原理、流程和特点。

教学重点及难点:

氨吸收式制冷循环的原理、流程和特点。

课时安排:4学时

授课方式:本章的教学方法与手段是以讲授为主,课堂讨论和提问相结合。利用多媒体课件辅助课堂教学。

教学基本内容:

第一节概述

氨水吸收式制冷机与压缩式制冷机不同之处是:(1)消耗热能进行补偿。(2)利用吸收器、液泵、发生器、节流阀将低压蒸气变为高压蒸气(如压缩机)。

制冷工质为二元溶液,低沸点组分为制冷剂(氨),高沸点组分为吸收剂(水)。吸收器能强烈吸收氨蒸气,发生器能析出氨气。

对吸收剂的要求(1)~(5)

第二节氨水溶液的性质

6.2.1氨在水中的溶解

质量分数:ξ=0~1氨的质量/溶液总质量

6.2.2氨对有色金属的腐蚀作用

对有色金属有腐蚀作用,不能用铜及铜合金材料。

6.2.3密度、比热容、导热率、粘度及表面张力

①密度:ρ=1-0.35ξ随ξ↑,ρ↓。

②比热容:随ξ↑,c↑。

③导热率:随ξ↑,λ↓。

①粘度:先随ξ↑,μ↑;后随ξ↑,μ↓。

②表面张力:随ξ↑,表面张力↓。

第三节单级氨水吸收式制冷机循环过程及其在h-ξ图上的表示

6.3.1系统中的压力和温度

系统由低压侧和高压侧组成。

低压侧:蒸发器(P0,t0)和吸收器(P0/)P0/

高压侧:冷凝器(P k,t k)和发生器(P k/)P k/ >P k

讨论时忽略上述压差。吸收器和冷凝器的温度由冷却水温决定,发生器的温度由加热介质温度决定。

6.3.2单级氨水吸收式制冷机的循环过程

设精馏塔提高氨蒸气的浓度。含提馏段、精馏段、发生器、回流冷凝器。

流程图:1a(ξ/r,f) 过冷Pk→发生器得蒸气3//→提馏段1//(ξd//,1+R)→精馏段

和回流冷凝器得①高浓度氨蒸气(ξ

Ra //,1)5//→冷凝器冷凝液体P

k

6→节流阀节

流7P

→蒸发器8

②稀溶液(ξa/,f-1)2→溶液热交换器降温P

k

2a→节流阀节

流3P

→吸收器(ξ/r,f)

4→液泵升压P

k

过冷4a→溶液热交换器加热1a

6.3.3循环过程在h-ξ图上的表示

说明

1)溶液的蒸发和冷凝在定压下进行,但不是定温,因为在冷凝时随着溶液中低沸点组分的增多,溶液的饱和温度降低;在蒸发时随着溶液中低沸点组分的减少,溶液的饱和温度提高。湿蒸气的干度越大,蒸发温度越高。

2)溶液热交换器:提高进入发生器的浓溶液(流量f)的温度,减少加热蒸气的消耗量;降低进入吸收器的稀溶液(流量f-1)的温度,减少冷却水的消耗量。

3)气-液热交换器:用蒸发器的湿蒸气使冷凝器液体过冷。但增加了吸收器的冷却水量。

4)系统制取的最低温度与加热热源的温度和冷却水温度有关。t

≧-25℃。

第四节氨水吸收式制冷机与蒸气压缩式制冷机的性能比较

6.4.1性能比较

蒸气压缩式制冷机消耗功;吸收式制冷机消耗热量,其热力系数低于前者。存在更多的不可逆过程。

吸收式制冷机在较低温下运行费用较低。

6.4.2氨水吸收式制冷机的特点

第五节吸收-扩散式制冷机

6.5.1概述

家用或医疗用冰箱采用三组分循环工质的吸收式制冷机,制冷量0.1kW,冰箱容积为25升~250升。

特点:

1)制冷剂为NH

3

,吸收剂为氨水,氢气为平衡气体。

2)无溶液泵,流动靠密度差(对发生器加热),高度差(发生器与吸收器),管路倾斜(冷凝器、蒸发器)。

3)无膨胀阀,蒸发器与冷凝器液体压力相同,为了使蒸发器中的氨液蒸发,通入氢气吸收溶液中的氨。

6.5.2工作过程

(1)氨水溶液的循环

贮液器的浓溶液→溶液热交换器→发生器→①氨蒸气→精馏器分离水→冷凝器

②稀溶液→发生器外套→溶液热交

换器内管→吸收器(稀溶液)(2)氨、氢气循环

发生器的氨蒸气→精馏器分离水→冷凝器(液氨)→蒸发器(与氢气混和,氨蒸发)

→下部气体热交换器(H

2、NH

3

混合气)→贮液器(上行)→吸收器

①NH

3

被吸收成浓溶液→返回贮液器

②H

2

上行→下部气体热交换器(另管降温)→蒸发器

设计要点

1)合理设计结构

2)加热器加热量适中:过多使蒸气中水分增多;过少使氨蒸气量少。

3)蒸发器与气体热交换器可设计为双管结构

4)强化吸收器的散热效果。

电加热吸收式冰箱热力系数低0.2~0.4,但可利用其它能源,如太阳能。

思考题:

1.氨吸收式制冷机的系统图,组成系统的设备名称,h-ξ图。

2.氨水吸收-扩散式制冷机中工质的流动及蒸发器中液氨能在低温下沸腾的原因。

课后小结:

本章讲述了氨水溶液的性质;氨吸收式制冷循环的原理、流程和特点。

溴化锂吸收式制冷机的工作原理最详细的讲解

溴化锂吸收式制冷机的工作原理是: https://www.sodocs.net/doc/ab5483906.html,/showProduct.asp?f_id=737 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理

吸收式制冷分析

第七章 吸收式制冷 吸收式制冷是液体气化制冷的另一种形式,它和蒸气压缩式制冷一样,是利用液态制冷剂在低温低压下气化以达到制冷目的的。所不同的是:蒸气压缩式制冷是靠消耗机械功(或电能)使热量从低温物体向高温物体转移,而吸收式制冷则依靠消耗热能来完成这种非自发过程。 第一节 吸收式制冷的基本原理 一、基本原理 对于吸收剂循环而言,可以将吸收器、发生器和溶液泵看作是一个“热力压缩机”,吸收器相当于压缩机的吸入侧,发生器相当于压缩机的压出侧。吸收剂可视为将已产生制冷效应的制冷剂蒸气从循环的低压侧输送到高压侧的运载液体。 二、吸收式制冷机的热力系数 蒸气压缩式制冷机用制冷系数ε评价其经济性,由于吸收式制冷机所消耗的能量主要是热能,故常以“热力系数”作为其经济性评价指标。热力系数ζ是吸收式制冷机所获得的制冷量0φ与消耗的热量g φ之比。 g φζφ= (7-1) 图7-1 吸收式与蒸气压缩式制冷循环的比较 (a )蒸气压缩式制冷循环 (b )吸收式制冷循环 (b ) (a )

0g a k e P φφφφφ++=+= (7-2) 00g e S S S S ?=?+?+?≥ (7-3) 0g e g e S T T T φφφ?=- - + ≥ (7-4) g e e g g T T T T P T T φφ--≥- (7-5) ) () (000T T T T T T e g e g g --≤ =φφζ (7-6) 最大热力系数ζmax 为 c c 0 max εηζ=--= T T T T T T e g e g (7-6a) 热力系数ζ与最大热力系数ζmax 之比称为热力完善度ηa ,即 max a ζηζ= (7-7) 第二节 二元溶液的特性 一、二元溶液的基本特性 B A v v V )1(1ξξ-+= (7-8) 两种液体混合前的比焓 k 蒸发器冷媒 环境 发生器热媒 图7-2 吸收式制冷系统与外界 的能量交换 图7-3 可逆吸收式制冷循环

溴化锂吸收式制冷机参数

溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理:溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。 溴化锂吸收式制冷机的特点 一、优点 (一)以热能为动力,电能耗用较少,且对热源要求不高。能利用各种低势热能和废汽、废热,如高于20kPa(0.2kgf/cm2)表压饱和蒸汽、高干75℃的热水以及地热、太阳能等,有利于热源的综合利 用。具有很好的节电、节能效果,经济性好。 (二)整个机组除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低、运行比较安静。 (三)以溴化锂溶液为工质,机器在真空状态下运转,无臭、无毒、无爆炸危险、安全可靠、 无公害、有利于满足环境保护的要求。 (四)冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量的无级调 节。即使低负荷运行,热效率几乎不下降,性能稳定,能很好适应负荷变化的要求。 (五)对外界条件变化的适应性强。如标准外界条件为:蒸汽压力5.88 X 105Pa(6kgf/cm2)表压,冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84) X 105Pa(2.0~8.0kgf/cm2)表压,冷却水进口温度25~40℃,冷媒水出口温度5~15C的宽阔 范围内稳定运转。 (六)安装简便,对安装基础要求低。机器运转时振动小,无需特殊基础,只考虑静负荷即可。 可安装在室内、室外、底层、楼层或屋顶。安装时只需作一般校平,按要求连接汽、水、电即可。 (七)制造简单,操作、维修保养方便。机组中除屏蔽泵、真空泵和真空间等附属设备外,几乎都是换热设备,制造比较容易。由于机组性能稳定,对外界条件变化适应性强,因而操作比较简单。机 组的维修保养工作,主要在于保持其气密性。 二、缺点 (一)在有空气的情况下,溴化锂溶液对普通碳钢具有强烈的腐蚀性。这不仅影响机组的寿命, 而且影响机组的性能和正常运转。

直燃型溴化锂吸收式冷热水机组

直燃型溴化锂吸收式冷热水机组 (l)直燃型溴化锂吸收式冷热水机组的组成。直燃型溴化锂吸收式冷热水机组和蒸气型溴冷机一样,也是由各种换热器组成,包括:高压发生器,低压发生器,冷凝器.蒸发器,吸收器.高、低温热交换器和热水器。 (2)直燃型溴化锂吸收式冷热水机组的工作原理。直燃型机组依靠燃油和燃气直接燃烧发热作为热源,省去了锅炉等设备,能够提供冷水和热水,是溴化锂吸收式制冷机的一种新型产品,近几年来发展很快,广泛地用于宾馆、会堂、商场、体育场馆、办公大楼、影剧院等无余热、废热可利用的中央空调系统。如图2一9 所示为直燃型溴化锂吸收式冷热水机组的流程图。 其内部结构和双效溴化锂吸收式制冷机有相似之处。主要区别是高压发生器是单独设置,内部装有燃烧器,直接用火焰加热稀溶液。其机组是冷热水机组,其上有切换阀门,用来改变机组的工作状态,实现提供冷热水的目的。其主体为双筒型,上部为冷凝器和低压发生器组合筒体.下部为蒸发器和吸收器组合筒体,另外设有高温热交换器、低温热交换器和预热器,同样也设有发生器泵、吸收器泵和蒸发器泵。 图2一9中(a)为夏季空调提供冷媒水的制冷循环。SA、B、C阀门关闭,吸收器底部的稀溶液经发生器泵加压后经低温、高温热交换器进放高压发生器,在高压发生器5中,燃烧器燃烧燃料加热稀溶液,产生冷剂水蒸气;蒸气进人低压发生器4。加热来自低温热交换器8中的稀溶液,蒸气凝结成冷剂水进入冷凝器,同时,发生的冷剂水蒸气经挡水板进人冷凝器3;冷凝器中,蒸气凝结成液体冷剂水积聚在水盘中。高压的冷剂水经U形管降压后进入蒸发器l的液囊中,由蒸发器泵加压后在蒸发器中喷淋,在汽化过程中吸收冷媒水的热量而使之降温.冷媒水被冷却。蒸发产生的低温冷剂蒸气在吸收器2中被浓溶液吸收,浓溶液稀释成稀溶液。吸收器底部的稀溶液被发生器泵加压再被送人高压发生器。上述过程循环不断。冷却水先进入吸收器带走吸收 热,再进人冷凝器带走高温冷剂水蒸气的冷凝热。 图2一9中(b)为冬季空调提供热水的采暖循环。八、B、C阀门开启,不通冷却水。高压发生器产生的高温冷剂水蒸气直接进入蒸发器,加热蒸发器内流经传热管的热水,达到提供热水的目的。凝结的冷剂水通过阀门流到吸收器底部;高压发生器中浓缩的浓溶液直接进人吸收器.在其中浓溶液与冷剂水混合成稀溶液。机组进行采暖循环运行时,低压发生器、冷凝器、吸收器均不工作。 这种冷热水机组采用一套冷媒水管路系统,夏季供冷,冬季采暖,一机两用,使得整个中央空调的设备和系统大为简化,可减少初投资,特别适用于用电紧张、燃料价格合理的地区。 2.3.1.6热水型溴化锂吸收式冷水机组 (l)热水型溴化锂吸收式冷水机组的特点和组成。热水型溴化锂吸收式冷水机组是以工作热水为热源,利用吸收式制冷原理,制取低温冷水的制冷机组。热水溴冷机除具有耗电少、无环境污染、运行范围宽、振动小、噪声低等一般溴化禅冷水机的特点外.还具有下列显着的特点:可利用余热、废热、地热能及太阳能低品位热能,节能效果极大,因而运行费用大为降低;热水采暖比蒸气采暖其有明显的优越性,热水型溴化锂冷水机与之配套可使其优越性得到进一步发挥,且可提高设备的利用效率;可减少废热排放对环境造成的热污染.为能源的综合利用创造条件;当采用低温热源时,由于不像压力能转换为动能时会产生较大的能量转换损失,故即使在温度小幅下降及输出功率较小的情况下,其效率不仅不降低反而会增加:冷最调节简单方便.变工况范围大,可利用20℃左右的海水或河水作为冷却水,除可作为房间空调降温和工艺过程降温外,还可以作为船 用空调。

吸收式制冷机组

溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。 为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。 从吸收器出来的溴化锂稀溶液,由溶液泵(即发生器泵),升压经溶液热交换器,被发生器出来的高温浓溶液加热温度提高后,进入发生器。在发生器中受到传热管内热源蒸汽加热,溶液温度提高直至沸腾,溶液中的水份逐渐蒸发出来,而溶液浓度不断增大。 单效溴化锂吸收式制冷机的热源蒸汽压力一般为0.098MPa(表压)。发生器中蒸发出来的冷剂水蒸气向上经挡液板进入冷凝器,挡液板起汽液分离作用,防止液滴随蒸汽进入冷凝器。冷凝器的传热管内通入冷却水,所以管外冷剂水蒸气被冷却水冷却,冷凝成水,此即冷剂水。 积聚在冷凝器下部的冷剂水经节流后流入蒸发器内,因为冷凝器中的压力比蒸发器中的压力要高。如:当冷凝器温度为45℃时,冷凝压力为9580Pa(71.9mmHg);蒸发温度为5℃时,蒸发压力872Pa(6.45mmHg)。 U 冷剂水进入蒸发器后,由于压力降低首先闪蒸出部分冷剂水蒸气。因蒸发器为喷淋式热交换器,喷淋量要比蒸发量大许多倍,故大部分冷剂水是聚集在蒸发器的水盘内的,然后由冷剂水泵升压后送入蒸发器的喷淋管中,经喷嘴喷淋到管簇外表面上,在吸取了流过管内的冷媒水的热量后,蒸发成低压的冷剂水蒸气。由于蒸发器内压力较低,故可以得到生产工艺过程或空调系统所需要的低温冷媒水,达到制冷的目的。例如蒸发器压力为872Pa时,冷剂水的蒸发温度为5℃,这时可以得到7℃的冷媒水。 蒸发出来的冷剂蒸汽经挡液板将其夹杂的液滴分离后进入吸收器,被由吸收器泵送来并均匀喷淋在吸收管簇外表的中间溶液所吸收,溶液重新变稀。中间溶液是由来自溶液热交换器放热降温后的浓溶液和吸收器液囊中的稀溶液混合得到的。为保证吸收过程的不断进行,需将吸收过程所放出的热量由传热管内的冷却水及时带走。中间溶液吸收了一定量的水蒸气后成为稀溶液,聚集在吸收器 由上述循环工作过程可见,吸收式制冷机与压缩式制冷机在获取冷量的原理上是相同的,都是利用高压液体制冷剂经节流阀(或U型管)节流降压后,在低压下蒸发来制取冷量,它们都有起同样作用的冷凝、蒸发和节流装置。而主要区别在于由低压冷剂蒸汽如何变成高压蒸汽所采用的方法不同,压缩式制冷机是通过原动机驱动压缩机来实现的,而吸收式制冷机是通过吸收器,溶液泵和发生器等设备来实现的。 从吸收器出来的稀溶液温度较低,而稀溶液温度越低,则在发生器中需要更多热量。自发生器出来的浓溶液温度较高,而浓溶液温度越高,在吸收器中则要求更多的冷却水量。因此设置溶液

吸收式制冷机的现状与发展

合肥通用职业技术学院毕业设计论文 题目:吸收式制冷机的现状与发展 系别:机械工程系 专业:制冷与冷藏技术 学制:三年制 姓名: 学号: 指导教师:管梦瑶 二O一五年四月五日

摘要 简单回顾了吸收式制冷技术的发展背景;较详细地介绍了国内外吸收式制冷技术的研究热点,主要包括对新工质对、吸收循环、传热与传质、智能化控制方式等几方面的研究。目前,溴化锂吸收式机组已经被广泛地应用于空调系统,本文对其在国内外的应用现状进行了详细介绍,主要包括热电冷联产、直燃型吸收式冷热水机组、蒸汽型吸收式冷水机组、热水型吸收式冷水机组、太阳能吸收式机组等。最后对吸收式制冷技术的前景进行了展望。 关键词:吸收式制冷技术;溴化锂;节约能源;保护环境

目录 前言 (5) 第1章吸收式制冷技术的主要种类 (6) 1.1氨水吸收式制冷机 (6) 1.2溴化锂吸收式制冷机 (7) 第2章吸收式制冷技术的研究 (9) 2.1 新工质对的研究 (9) 2.2 吸收循环的研究 (9) 2.3 传热与传质的研究 (10) 2.4 智能化控制方式的研究 (11) 第3章吸收式制冷技术的应用 (12) 3.1 热电冷联产 (12) 3.2直燃型吸收式冷热水机组 (13) 3.3蒸汽型吸收式冷水机组 (13) 3.4 热水型吸收式冷水机组 (13) 3.5太阳能吸收式机组 (13) 结语 (15) 参考文献 (16)

前言 能源与环境是现代经济与技术发展的基础与推动力。吸收式技术也是在能源与环境问题日益突出的情况下得以迅速发展。吸收式制冷机组,因为能够利用廉价能源和低品位热能解决电力供应不足、不含 CFC类对臭氧层有破坏的物质,而得到广泛的推广应用。 1973 年的中东石油危机,推动了能源利用技术的发展,使利用低品位热能的吸收式热泵技术、热电冷联产技术等吸收式冷热源设备的研究,进入了实用化的开发阶段。1987 年蒙特利尔协议签订后,由于吸收式制冷技术可采用对环境无破坏作用的天然制冷剂,它作为一种现实可行的替代制冷技术得到了进一步的发展。氨-水工质对也随之得到了科学界的重新认识和推广应用。在 20 世纪 90 年代,随着吸收式制冷机性能的显著提高,直燃型多效溴化锂吸收式制冷机、高效氨-水GAX 循环吸收式制冷机,以及小型氨-水吸收式制冷机进入了商业化开发阶段。各种吸收式机组在余热利用、总能系统和区域集中供热(冷)方面得到了进一步推广应用。

溴化锂吸收式机组介绍

溴化锂吸收式机组介绍 一、制冷基础知识 电制冷与溴化锂吸收式制冷的不同 二、溴化锂吸收式制冷机的特点 在当前制冷、空调设备突飞猛进的发展过程中,溴化锂吸收式制冷机组。以其显著的优点,成为发展速度最快的一种主机设备。它具备以下的几种优缺点。 1、优点 1)耗电量小。用热能作为动力,只需极小的电能就能正常工作。

2)对大气无污染,符合环保要求。制冷工质为溴化锂溶液,制冷机在真空状态下运行,无臭、无毒、无爆炸危险、不破坏大气层,安全可靠。 3)噪音低、振动小、运行平稳。整个制冷机除屏蔽泵外,没有别的运动部件,特别适合用于医院、写字楼、宾馆等场所。 4)调节范围宽。在外界条件发生变化时,可在10%-100%范围内进行冷量的无级调节。 5)机组安装要求低。因机组运行时振动极小,故不需要特殊的基础,可安装在中间楼层或屋顶,也可安装在室外。 6)维护保养方便。由于机组主要由换热器组成,维护保养的主要工作就是维持机组内的真空度。 7)直燃机可实现一机多用。更加适合城市对烟气排放的要求 2、缺点 1)腐蚀性强。在有空气的情况下,溴化锂溶液对金属具有较强的腐蚀性。这不仅影响机组的寿命,而且直接影响机组的性能和正常运行。 2)冷却水耗量大。由于溴化锂溶液吸收冷剂蒸汽是放热过程,冷剂蒸汽的冷凝和吸收都需要冷却,因此冷却负荷较大。 3)体积较大。溴冷机基本上是由多个换热器组成,所以占据空间较多。 4)不能制取低温。由于用水做制冷剂,不能制取0℃以下的低温。 三、溴化锂吸收式机组工作原理 3.1溴冷机组型式 溴化锂吸收式制冷按使用能源可分为: 1、蒸汽型使用蒸汽作为能源。根据做工蒸汽品味高低,还可以分为:单效和双效; 单效的工作压力范围为0.03~0.15MPa(表压) 双效的工作压力范围为0.4MPa,0.6MPa,0.8MPa(表压) 2、直燃型一般以油、气等可燃物质为燃料或空气源热泵。不仅夏天能制冷,而且冬天可以供热及提供生活用卫生热水。 3、热水型使用热水为热源的溴化锂机组。通常以工业余热、废热、地热

直燃型溴化锂吸收式冷热水机组

直燃型溴化锂吸收式冷热水机组 (l) 直燃型溴化锂吸收式冷热水机组的组成。直燃型溴化锂吸收式冷热水机组和蒸气型溴冷机一样,也是由各种换热器组成,包括: 高压发生器,低压发生器,冷凝器.蒸发器,吸收器. 高、低温热交换器和热水器。 (2) 直燃型溴化锂吸收式冷热水机组的工作原理。直燃型机组依靠燃油和燃气直接燃烧发热作为热源,省去了锅炉等设备,能够提供冷水和热水,是溴化锂吸收式制冷机的一种新型产品,近几年来发展很快,广泛地用于宾馆、会堂、商场、体育场馆、办公大楼、影剧院等无余热、废热可利用的中央空调系统。如图2 一9 所示为直燃型溴化锂吸收式冷热水机组的流程图。 其内部结构和双效溴化锂吸收式制冷机有相似之处。主要区别是高压发生器是单独设置,内部装有燃烧器,直接用火焰加热稀溶液。其机组是冷热水机组,其上有切换阀门,用来改变机组的工作状态,实现提供冷热水的目的。其主体为双筒型,上部为冷凝器和低压发生器组合筒体. 下部为蒸发器和吸收器组合筒体,另外设有高温热交换器、低温热交换器和预热器,同样也设有发生器泵、吸收器泵和蒸发器泵。 图2 一9中(a)为夏季空调提供冷媒水的制冷循环。SA、B、C阀门关闭,吸收器底部的稀溶液 经发生器泵加压后经低温、高温热交换器进放高压发生器,在高压发生器 5 中,燃烧器燃烧燃料加热稀溶液,产生冷剂水蒸气;蒸气进人低压发生器4。加热来自低温热交换器8 中的稀溶液,蒸气凝结成冷剂水进入冷凝器,同时,发生的冷剂水蒸气经挡水板进人冷凝器3; 冷凝器中,蒸气凝结成液体冷剂水积聚在水盘中。高压的冷剂水经U形管降压后进入蒸发器I的液囊中,由蒸发器 泵加压后在蒸发器中喷淋,在汽化过程中吸收冷媒水的热量而使之降温.冷媒水被冷却。蒸发产生 的低温冷剂蒸气在吸收器 2 中被浓溶液吸收,浓溶液稀释成稀溶液。吸收器底部的稀溶液被发生器泵加压再被送人高压发生器。上述过程循环不断。冷却水先进入吸收器带走吸收热,再进人冷凝器带走高温冷剂水蒸气的冷凝热。 图2 一9中(b)为冬季空调提供热水的采暖循环。八、B、C阀门开启,不通冷却水。高压发生器 产生的高温冷剂水蒸气直接进入蒸发器,加热蒸发器内流经传热管的热水,达到提供热水的目的。凝结的冷剂水通过阀门流到吸收器底部; 高压发生器中浓缩的浓溶液直接进人吸收器.在其中浓溶液与冷剂水混合成稀溶液。机组进行采暖循环运行时,低压发生器、冷凝器、吸收器均不工作。 这种冷热水机组采用一套冷媒水管路系统,夏季供冷,冬季采暖,一机两用,使得整个中央空调的设备和系统大为简化,可减少初投资,特别适用于用电紧张、燃料价格合理的地区。 2.3.1.6 热水型溴化锂吸收式冷水机组 (I) 热水型溴化锂吸收式冷水机组的特点和组成。热水型溴化锂吸收式冷水机组是以工作热水为热源,利用吸收式制冷原理,制取低温冷水的制冷机组。热水溴冷机除具有耗电少、无环境污染、运行范围宽、振动小、噪声低等一般溴化禅冷水机的特点外.还具有下列显著的特点: 可利用余热、 废热、地热能及太阳能低品位热能,节能效果极大,因而运行费用大为降低; 热水采暖比蒸气采暖其有明显的优越性,热水型溴化锂冷水机与之配套可使其优越性得到进一步发挥,且可提高设备的利用效率;可减少废热排放对环境造成的热污染.为能源的综合利用创造条件;当采用低温热源时,由于不像压力能转换为动能时会产生较大的能量转换损失,故即使在温度小幅下降及输出功率较小的情况下,其效率不仅不降低反而会增加:冷最调节简单方便.变工况范围大,可利用20 C 左右的海水或河水作为冷却水,除可作

吸收式制冷机介绍

吸收式制冷机在氮肥行业节能降耗方面的应用 1 氮肥行业能耗现状 中国是世界上最大的化肥生产和消费国,到2004年年底,我国合成氨年产能达到42220kt,但吨氨能耗却与国际先进水平相差了600~700kg标煤。国内化工行业的五大高耗能产业中,合成氨耗能占总量的40%,单位能耗比国际先进水平高31.2%。 2005年,国家发改委颁布的《国家节能中长期规划》,已将合成氨列为节能降耗的重点领域和重点工程。根据规划要求,未来15年,国家一方面将加快推进以洁净煤或天然气替代石油合成氨的工业改造,以节约宝贵的石油资源;另一方面将大力推动节能降耗技术的开发和推广应用,将大型合成氨单位能耗由目前的1372 kg标准煤/t降低到1000kt标准煤/t。到2010年,合成氨行业节能目标是:能源利用效率由目前的42%提高到45.5%,实现节能5700~5850kt标煤,减少排放二氧化碳13770~14130kt。因此,进一步加快合成氨装置的节能改造,已成为众多大化肥生产企业节能降耗的必经之路。 2 吸收式制冷机在氮肥行业节能降耗方面的可行性 余热是在一定生产工艺条件下,系统中没有被利用的能源,也就是多余、废弃的能源。它包括高温废气余热,冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余压等。 合成氨及尿素合成过程都是放热反应,都会生产大量的废(余)热,目前行业内已采用余热锅炉,热交换器热回收等方式利用了部分高温废热源。而部分低温热源由于品位较低没有有效利用。 合成氨和尿素生产过程中,氨分离、半水煤气降温、碳丙液冷却等工艺都需要大量低温冷水,有些企业采用氨压缩制冷机或冰机提供冷水,消耗了大量的电能,增加了企业生产成本,而如果不采用冰机提供冷水,生产效率低,尤其在夏季会严重影响产能,同样也造成生产能耗高,生产成本高。 而溴化锂吸收式制冷机可以利用低品位的热能,通过机组制取5℃以上的低温冷水。将溴化锂吸收式制冷机车合成氨和尿素生产工艺中使用,一方面可以充分利用生产过程的大量废热,另一方面则可以提供生产工艺需要的冷水,减少冰机电耗,提高产量。因此在氮肥行业利用溴化锂吸收式制冷机进行节能降耗是完全可行的。 3 吸收式制冷机在氮肥行业节能降耗中的应用 由于溴化锂吸收式制冷可利用废热制取低温冷水,国内部分企业已在实际生产工艺中进行了应用。 3.1 河南心连心化工有限公司利用热水两段型吸收式制冷机进行节能降耗

溴化锂吸收式制冷机特点及相关比较

溴化锂吸收式制冷机特点及相关比较 溴化锂吸收式制冷机工作原理:溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。 溴化锂吸收式制冷机的特点 一、优点 (一)以热能为动力,电能耗用较少,且对热源要求不高。能利用各种低势热能和废汽、废热,如高于20kPa(0.2kgf/cm2)表压饱和蒸汽、高干75℃的热水以及地热、太阳能等,有利于热源的综合利用。具有很好的节电、节能效果,经济性好。 (二)整个机组除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低、运行比较安静。 (三)以溴化锂溶液为工质,机器在真空状态下运转,无臭、无毒、无爆炸危险、安全可靠、无公害、有利于满足环境保护的要求。 (四)冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量的无级调节。即使低负荷运行,热效率几乎不下降,性能稳定,能很好适应负荷变化的要求。 (五)对外界条件变化的适应性强。如标准外界条件为:蒸汽压力 5.88 X 105Pa(6kgf/cm2)表压,冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84)X 105Pa(2.0~8.0kgf /cm2)表压,冷却水进口温度25~40℃,冷媒水出口温度5~15℃的宽阔范围内稳定运转。

溴化锂吸收式制冷机的工作原理及设计计算

溴化锂吸收式制冷机的工作原理是: 令狐采学 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水

蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为 0.85kPa的溴化锂溶液与具有1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如: 0.87kPa)为止。 图1 吸收制冷的原理 0.87kPa和0.85kPa之间的压差用于克服连接管道中的流动阻力以及由于过程偏离平衡状态而产生的压差,如图1所示。水

氨吸收式制冷循环

1.1.4.4.2 氨吸收式制冷循环 系统中的压力和温度 吸收式制冷系统也被分为高压侧和低压侧两部分。蒸发器和吸收器属于低压侧。蒸发器内的压力由所希望的蒸发温度确定,该温度必须稍低于被冷却介质的温度;吸收器内压力稍低于蒸发压力,一方面是因为在它们之间存在着管道等的流动阻力,另一方面也是溶液吸收蒸气所必须具有的推动力。冷凝器和发生器属于高压侧,冷凝器内的压力是根据冷凝温度而定的,该温度必须稍高于冷却介质的温度;发生器内的压力由于要克服管道阻力等的影响而应稍高于冷凝器的压力。在进行下面的讨论时将忽略这些压差,然而在实际情况下,这种压差(尤其是蒸发器和吸收器之间的压差)必须加以考虑,特别是在低温装置中,蒸发器和吸收器之间的较小压差就能引起浓度的较大差别。 由于冷凝器和吸收器是用相同的介质(通常为水)来冷却的,如果冷却水平行地通过吸收器和冷凝器,它们的温度可近似地认为是一致的;如果冷却水选通过吸收器,再通过冷凝器时,冷凝器内的温度将高于吸收器内的温度。发生器内溶液的温度取决于加热介质的温度,该温度稍低于加热介质温度。 单级氨水吸收式制冷机的循环过程 在氨水吸收式制冷机中,由于氨和水在相同压力下的气化温度比较接近(例如在一个标准大气压力,氨与水的沸点分别为 -33.4℃和100℃,两者仅相差133.4℃),因而对氨水溶液加热时,产生的蒸气中也含有较多的水分。氨蒸气浓度的高低直接影响到整个装置的经济性和设备的使用寿命。为了提高氨蒸气的浓度,必须进行精馏。精馏原理已在前面"吸收式制冷机的溶液热力学基础"章节中作了介绍。实际上,精馏程是在精馏塔设备内进行的。精馏塔进料口以下发生热、质交换的区域叫提馏段,进料口以上发生热、质交换的区域叫精馏段。精馏塔还有一个发生器(又称再沸器)和回流冷凝器,前者用来加热氨水浓溶液,产生氨和水蒸气,供进一步精馏用;后者用来产生回流液,也供精馏过程使用。 图1为单级氨水吸收式制冷机的流程图 浓度为 的浓溶液(点1a)进入精馏塔,在精馏塔内的发生器中被加 热,吸收热量 后,部分溶液蒸发,产生的蒸气经过提馏段,得到浓度为 的氨蒸气(1+R)kg,随后经过精馏段和回流冷凝器,使上升的蒸气得到进一步的精 馏和分凝,浓度提高到 (点5'' ),由塔顶排出,排出的蒸气质量为1kg。回 流冷凝器中,因冷凝Rkg回流液所放出的热量 被冷却水排走。在发生器底部 得到浓度为 的稀溶液(f-1)kg,用点2表示。

氨吸收式制冷机.

第六章氨吸收式制冷机 教学目的、要求: 1.了解吸收式制冷机与单级蒸汽压缩式制冷机的制冷循环的区别; 2.了解氨水溶液的性质; 3.掌握氨吸收式制冷循环的原理、流程和特点。 教学重点及难点: 氨吸收式制冷循环的原理、流程和特点。 课时安排:4学时 授课方式:本章的教学方法与手段是以讲授为主,课堂讨论和提问相结合。利用多媒体课件辅助课堂教学。 教学基本内容: 第一节概述 氨水吸收式制冷机与压缩式制冷机不同之处是:(1)消耗热能进行补偿。(2)利用吸收器、液泵、发生器、节流阀将低压蒸气变为高压蒸气(如压缩机)。 制冷工质为二元溶液,低沸点组分为制冷剂(氨),高沸点组分为吸收剂(水)。吸收器能强烈吸收氨蒸气,发生器能析出氨气。 对吸收剂的要求(1)~(5) 第二节氨水溶液的性质 6.2.1氨在水中的溶解 质量分数:ξ=0~1氨的质量/溶液总质量 6.2.2氨对有色金属的腐蚀作用 对有色金属有腐蚀作用,不能用铜及铜合金材料。 6.2.3密度、比热容、导热率、粘度及表面张力 ①密度:ρ=1-0.35ξ随ξ↑,ρ↓。 ②比热容:随ξ↑,c↑。 ③导热率:随ξ↑,λ↓。 ①粘度:先随ξ↑,μ↑;后随ξ↑,μ↓。 ②表面张力:随ξ↑,表面张力↓。 第三节单级氨水吸收式制冷机循环过程及其在h-ξ图上的表示 6.3.1系统中的压力和温度 系统由低压侧和高压侧组成。 低压侧:蒸发器(P0,t0)和吸收器(P0/)P0/ P k 讨论时忽略上述压差。吸收器和冷凝器的温度由冷却水温决定,发生器的温度由加热介质温度决定。 6.3.2单级氨水吸收式制冷机的循环过程 设精馏塔提高氨蒸气的浓度。含提馏段、精馏段、发生器、回流冷凝器。 流程图:1a(ξ/r,f) 过冷Pk→发生器得蒸气3//→提馏段1//(ξd//,1+R)→精馏段

氨水吸收式制冷循环的分析与改进

1996年7月Journal of Dalian University of Technology Jul.1996氨水吸收式制冷循环的分析与改进 徐士鸣 (大连理工大学动力工程系 116024) 袁 一 (大连理工大学化工学院 116024) 摘要 通过对影响氨水吸收式制冷循环因素的定性和定量分析,了解这些因 素变化如何影响制冷循环的COP值,以及如何控制这些因素的变化使制冷循 环的COP值达到最大;并指出完全回收制冷循环的精馏热可使循环的COP 值有较大幅度的提高.其分析结果可为今后制冷系统的优化设计提供帮助. 关键词:氨水;吸收制冷;循环 分类号:TB616 0 引 言 为了保护大气的臭氧层,目前一些常用的氟利昂系列制冷剂的使用已开始受到控制,并逐渐地被禁止使用,或由其他物质的制冷剂替代.因此,在当前的世界制冷业中,一方面正在积极研究C FC的替代物质;另一方面也把注意力转到其他方式的制冷循环上.节约能源、保护环境已越来越受人们的重视,研究如何利用直接排放到大气环境中去的余热和废热,采用吸收式制冷循环进行制冷,提高吸收式制冷循环的性能系数(CO P),减小制冷设备的体积,对加快CFC代用进程、节约能源具有重要的现实意义. 许多生产行业(如炼油、石油化工、化肥、食品加工、轻工纺织等)在其生产过程中,不仅需要一定的冷量,而且还有大量的低品位余热排出.如果能利用这部分排向环境中去的余热,采用吸收式制冷来满足这类企业生产时所需的冷量,就能节约大量的能源,降低生产成本. 目前最为常用的吸收式制冷系统为溴化锂吸收式制冷系统和氨水吸收式制冷系统.前者制冷温度由于受到制冷剂的限制,不能低于5℃,一般仅用于空调;后者的制冷温度范围非常大(+10~-50℃),不仅可用于空调,而且更重要的是可用于0℃以下的普通制冷场合.因此,在工业余热制冷系统中,氨水吸收式制冷系统明显地优于溴化锂吸收式制冷系统.但传统的氨水吸收式制冷系统,因其系统中的设备多,体积大,钢材消耗量大,制冷循环的COP值较低,而在我国应用得不多.如何克服氨水吸收式制冷系统的缺点,提高氨水吸收式制冷系统的COP值,是在我国推广应用氨水吸收式制冷系统进行余热制冷的关键所在. 国家自然科学基金资助项目  收稿日期:1995-10-31;修订日期:1996-05-10  徐士鸣:男,1957年生,副教授

相关主题