搜档网
当前位置:搜档网 › 粘接机理

粘接机理

粘接机理
粘接机理

粘接方案

粘接是一项比较复杂的技术,需要深入的学习。首先对粘接的机理进行说明。

粘接就是指同质或异质物体表面用胶粘剂连接在一起的技术。粘接力的产生包括胶粘剂与被粘物之间的物理作用、化学作用和机械作用。物理作用指分子间力即范德华力、氢键力,它们广泛存在于粘接中。化学作用指胶粘剂与被粘物之间的形成牢固的化学键结合,即离子键力、共价键力、金属键力、配位键力。机械作用指由于被粘物表面存在大量细小的孔隙,胶粘剂分子由于扩散、渗透作用而进入被粘物内部,形成了机械的“钩键”、“锚键”,即所谓机械力。粘合技术现在的理论主要有:机械理论、吸附理论、扩散理论、静电理论、弱边界理论、化学键理论等,每种理论都只能解释一部分,各个理论的定义为:

1、机械理论:胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。胶粘剂粘接表面打磨的骨架效果要比表面光滑骨架好,这是因为(1)机械镶嵌、(2)形成清洁表面、(3)生成反应性表面、(4)表面积增加。常用的金属表面处理法有:物理机械法、化学处理法。物理机械方法有①车削加工②喷砂③超声波处理④机械打磨;化学处理方法有①酸洗

②碱洗③氧化还原④磷化处理。

2、吸附理论:粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿。如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。在粘附力和内聚力中所包含的化学键有四种类型:离子键、共价键、金属键、范德华力。

3、扩散理论:粘接是通过胶粘剂与被粘物界面上分子扩散产生的。当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。

4、静电理论:由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理

论有力的证实。

5、弱边界层理论:当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏。弱边界层来自胶粘剂、被粘物、环境。如果杂质集中在粘接界面附近,并与被粘物结合不牢,在胶粘剂和被粘物内部都可出现弱边界层。当发生破坏时,尽管多数发生在胶粘剂和被粘物界面,但实际上是弱边界层的破坏。

为了更好了解粘接知识,只对理论的学习远远不够,还需要了解粘接的工艺。常规的粘接工艺主要存在以下过程。

1、表面处理。通过对表面的处理能形成良好粘接的条件,增加粘合力。

2、清洗脱脂。对聚氨酯胶粘剂来讲,金属表面的油脂与聚氨酯相容性差,而存在的水分会与胶粘剂中的一NCO基团反应产生气泡,使胶与基材接触表面积降低,且使胶粘层内聚力降低,因而粘接前必须进行表面清洗。

3、糙化处理。对光滑表面一般须进行糙化处理,以增加胶与基材的接触面积,胶粘剂渗入基材表面凹隙中,可牢固地把基材粘在一起,常用的方法有喷砂。

4、上底涂剂。为了改善粘接性能,可在已处理好的基材表面涂一层很薄的底涂剂(底胶),底涂还可保护刚处理的被粘物表面免受腐蚀和污染,延长存放时间。

5、涂胶。涂胶就是将胶粘剂以适当的方式涂布于被粘物表面的操作。对于不同胶粘剂有不同的涂胶工艺,其中以涂刷最普遍。刷胶法就是用刷子蘸取胶液涂到被粘物表面上,对于表面粗糙的骨架,需要往复涂刷,表面光滑的骨架可顺着一个方向涂敷,速度要慢,防止带入气泡,尽可能均匀一些,中间多一些。平均厚度为0.015-0.020mm(单涂层)。在保证不缺胶情况下,尽可能薄一些。

6、晾置。涂胶后,适当晾置,有利于排除空气、流匀胶层、增加粘性。溶剂型胶粘剂必须晾置以挥发溶剂,否则固化后的胶层结构松散,会有气孔,使粘结强度下降。每种胶粘剂晾置时间不同,晾置过度,则粘性大失,无法粘接。

7、胶粘剂的固化。大多数聚氨酯胶粘剂在粘接时不立即具有较高的粘接强度,还需进行固化。固化的加热方式有烘箱。固化工艺三个重要参数为温度、压力、时间。其中温度影响最大。而影响粘接的主要因素为胶粘剂、被粘材料、粘接工艺技术。

影响产品粘接的因素很多,主要有化学因素和有物理因素。下面就对这两方面的影响进行说明。

化学因素对于粘接强度的影响:影响粘接强度的化学因素主要指分子的极性、分子量、分子形状(侧基多少及大小)、分子量分布、分子的结晶性、分子对环境的稳定性以及胶粘剂和被粘体中其它组份性质、PH值等。

1.极性。一般说来胶粘剂和被粘体分子的极性影响着粘接强度,但并不意味着这些分子极性的增加就一定会提高粘接强度。

2.分子量。聚合物的分子量(或聚合度)直接影响聚合物分子间的作用力,一般说来,分子量和粘接强度的关系仅限于无支链线型聚合物的情况,包括两种类型。第一种类型在分子量全范围内均发生胶粘剂的内聚破坏,这时粘接强度随分子量的增加而增加,但当分子量达到某一数值后则保持不变。第二种类型由于分子量不同破坏部分亦不同。

3.侧链。长链分子上的侧基是决定聚合物性质的重要因素,从分子间作用力考虑,聚合物支链的影响是,当支链小时,增加支链长度,降低分子间作用力。当支链达到一定长度后,开始结晶,增加支链长度,提高分子间作用力,这应当是降低或提高粘接强度的原因。

4.交联。聚合物的内聚强度随交联密度的增加面增大,而当交联密度过大时聚合物则变硬变脆,因而使聚合物耐冲击强度降低。交联聚合物的强度与交联点数目和交联分子的长度密切相关。

5.溶剂和增塑剂。溶剂型胶粘剂的粘接强度当然要受胶层内残留溶剂量的影响。溶剂量多时,虽浸润性好,但由于胶粘剂内聚力变小,而使内聚强度降低。增塑剂和溶剂的作用类似,有时即便在粘不上的情况下,加入适当的增塑剂也可粘上。

物理因素对于粘接强度的影响主要表现在以下几个方面:

1.表面处理。其目的是能获得牢固耐久的胶粘层。

2.渗透。已粘接的骨架,受环境气氛的作用,常常被渗进一些其他低分子。使胶层强度降低,从而导致粘接的破坏。

3.迁移。含有增塑剂被粘材料,由于这些小分子物与聚合物大分子的相容性较差,容易从聚合物表层或界面上迁移出来。迁移出的小分子若聚集在界面上就会妨碍胶粘剂与被粘材料的粘接,造成粘接失效。

4.压力。在粘接时,向粘接面施以压力,使胶粘剂更容易充满被粘体表面上

4 增塑剂。在橡胶配方中通常都会使用到增塑剂,使用增塑剂可以使得橡胶分子间作用力降低,从而降低橡胶的玻璃化温度,增加橡胶的可塑性、流动性。便于压延、压出等成型操作,同时还能改善硫化胶的物理机械性能。

《胶粘剂》参考答案

参考答案 一、选择题 1-5 CBDDC 6-10 BCCDA 11-15 ACBBB 16-20 CDBAD 21-25 BBDDB-30 BDDCA 31-35 CDCBA 36-40 DADCB 41-45DDBBC 46-50DDCCC 51-55BCADC 56-60CDACB 二、填空题 1.胶粘剂的组成:胶料、固化剂、增塑剂和增韧剂、稀释剂、偶联剂及填料 2.胶粘剂按固化形式分类:冷却冷凝型、溶剂挥发型、化学反应型 3.要形成良好的胶接,首先胶粘剂要润湿被交接材料的表面,再通过扩撒作用,形成胶结键。 4.热塑性酚醛树脂合成的条件:酸性介质中、酚必须过量 5.热熔胶中增黏剂的主要作用是:降低热熔胶的熔融温度、提高胶结面的湿润性和初黏性。 增黏剂的使用要求:与聚合物有良好的相容性、对被胶结物有良好的黏附性和热稳定性。 6.耐老化性能最好的PF(酚醛树脂),耐老化性能最差的是UF(脲醛树脂) 7.聚氨酯胶粘剂分子链上有异氰酸酯基和聚氨基甲酸酯,因而具有高度的极性和活泼性,能 胶结多种材料。 8.酚醛树脂最长用的碱性催化剂是氢氧化钠,除了氢氧化钠还有氢氧化钙、氢氧化钡、氢氧 化钾、氨水等。 9.脲醛树脂的合成分为两个阶段,第一阶段是在中性或弱碱性条件下进行加成反应,第二阶 段是在酸性条件下进行缩聚反应。 10.判断胶粘剂湿润性指标有:接触角、铺展系数、胶结功 11.降低热熔胶的熔融温度可加入:增粘剂、蜡类及增塑剂成分。 12.氯丁橡胶胶粘剂常用的硫化剂有:氧化锌和氧化镁

13.脲醛树脂胶合制品释放的甲醛主要来自:游离甲醛释放和固化后树脂分解产生的甲醛 14.环氧树脂胶的特性是:胶结强、机械强度高、收缩性小、稳定性好 15.胶结工艺过程主要包括:胶头设计、选胶或配胶、表面处理、涂胶、固化、质量检测。 16.机械加固是最普通最常见最有效的强化措施,包括嵌波浪键、金属扣、钢板加固。 17.胶结接头在外力作用下胶层所受到的力可归纳为:正拉、剥离、不均匀扯离、剪切。 18.环氧树脂又被称为万能胶 19.用于制备丙烯酸压敏胶的单体可分为三类:黏附成分(主单体)、内聚成分(共聚单体)、 改性成分(功能单体) 作用:主单体:增加润湿性和黏附性;内聚单体:提高内聚性能;功能单体:促进反应速度和提高聚合稳定性。 20.聚氨酯的化学基础是:异氰酸酯基和羟基化合物的反应。 21.聚氨酯的湿固化是利用:异氰酸酯基和水的反应 22.天然淀粉含有直链淀粉和支链淀粉,而糯米只含有支链淀粉,易溶于冷水。 23.无机胶粘剂按化学成分可分为:硅酸盐、磷酸盐、硫酸盐、硼酸盐及氧化物 24.脲醛树脂的主要缺陷是:游离甲醛释放、耐水性、耐老化性能差。 25.白乳胶是以乙酸乙烯酯作为单体常用过硫酸铵作为引发剂通过乳液聚合合成的热塑性胶 粘剂,但其耐水性、耐热性较差。 26.氯丁橡胶胶粘剂是橡胶胶粘剂中产量最大、使用最广泛的胶粘剂。 27.热熔胶的增粘树脂主要类别有:松香及其衍生物、石油树脂、萜烯树脂及其改性树脂。 28.200g E-50 EP树脂固化需要加入乙二胺固化剂15.025g M=60.10 乙二胺活泼氢4个活泼氢当量 60.10/4=15.025 100g E-50 需要乙二胺固化剂的量为:15.025x0.5=7.5125g

粘合剂介绍

胶粘剂的定义和历史 定义:胶粘剂又称粘合剂,简称胶(bonding agent, adhesive),是使物体与另一物体紧密连接为一体的非金属媒介材料。在两个被粘物面之间胶粘剂只占很薄的一层体积,但使用胶粘剂完成胶接施工之后,所得胶接件在机械性能和物理化学性能方面,能满足实际需要的各项要求。能有效的将物料粘结在一起。 历史:考古学证据显示粘合剂的应用历史已经超过6000多年,我们可以看到在博物馆里展出的许多物体在经 过3000多年后依然由粘合剂固定在一起。进入20世纪,人类发明了应用高分子化学和石油化学制造的“合成粘结剂”,其种类繁多,粘结力强。产量也有了飞跃发展。 胶粘剂的应用和分类 应用:电子,汽车,工业,化工,建筑业等各个领域都有用到胶粘剂。 分类:胶粘剂种类繁多,组分各异,有不同的分类方法。 1 按化学类型分类 无机胶粘剂(sauereisen的高温水泥) 有机胶粘剂:分为天然胶粘剂和合成胶粘剂 合成胶粘剂按化学成分主要分为:Epoxy, PU, Silicone, Acrylic, etc. 2 按物理形态分类 水基型:基料分散于水中形成水溶液或乳液,水挥发而固化。 溶液型:基料在可挥发溶剂中配成一定黏度的溶液,靠溶剂挥发而固化。 膏状和糊状:基料在可挥发溶剂中配成高黏度的胶粘剂,用于密封和嵌缝。 固体型:把热塑性合成树脂制成粒状或块状,加热熔融,冷却时固化。 膜状:将胶粘剂涂于基材上,呈薄膜状胶带 3 按固化方式分类 热固化:通过加热的方式使粘合剂发生聚合反应而固化,温度和时间根据不同的产品有很大区别。 湿气固化:与空气中的水汽发生聚合反应达到固化。 UV固化:光引发剂紫外光照射下,形成自由基或阳离子从而引发粘合剂的聚合反应而固化。 厌氧固化:在隔绝空气的条件下,发生自由基聚合反应,空气存在会阻碍聚合反应。 催化固化:在催化剂作用下使粘合剂发生聚合反应达到固化。 4 按工艺分类 粘合剂(Adhesive):特殊有导电胶,导热胶,芯片的粘结。 密封剂(Sealant) 灌封胶(Potting & Encapsulation) 敷形涂敷(Conformal Coating) 底部填充胶(Underfill) 顶部包封(Glob Top) 5 按受力情况 (1)结构胶(2)非结构胶 常见胶粘剂的固化机理 1 环氧树脂(Epoxy)

胶粘剂粘接原理(终审稿)

胶粘剂粘接原理 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

粘接原理 1、机械理论机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素。胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为(1)机械镶嵌;(2)形成清洁表面;(3)生成反应性表面;(4)表面积增加。由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。 2、吸附理论吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张 力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿(γ SV =γ SL +γ LV cosθ。γ SV , γ SL ,γ LV 各代表了固气接触,固液接触和液气接触。θ为0o表示完全浸润)。如果 胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了 接头的粘接强度。 许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低 (即γ SV 要大),这就是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和氟塑料很难粘接。 通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。在粘附力和内聚力中所包含的化学键有四种类型: 1)离子键 2)共价键 3)金属键

常见的胶黏剂及其粘结机理

一、胶黏剂的定义: 通过界面的黏附和内聚等作用, 能使两种或两种以上的制件或材料连接在一起的天然的 或合成的、有机的或无机的一类物质,统称为胶黏剂,又叫黏合剂,习惯上简称为胶。简而言之,胶黏剂就是通过黏合作用,能使被黏物结合在一起的物质。 二、胶黏剂的分类: 胶黏剂的分类方法很多,按应用方法可分为热固型、热熔型、室温固化型、压敏型等;按应用对象分为结构型、非构型或特种胶;按形态可分为水溶型、水乳型、 溶剂型以及各种固态型等;从胶黏剂的应用领域来分,则胶黏剂主要分为土木建筑、纸张与植物、汽车、飞机和船舶、电子和电气以及医疗卫生用胶黏剂等种类。所以用途不同的胶黏剂的作用机理也是大不一样的,下面就各种材料:木材、玻璃、金属、纸张和塑料的粘结机理做以简单的介绍。 三、六大胶粘理论 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。

1、吸附理论: 人们把固体对胶黏剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶黏剂分子与被粘物表面分子的作用过程有两个过程: 第一阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利 于布朗运动的加强。第二阶段是吸附力的产生。当胶黏剂与被粘物分子间的距离达到10-5Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。胶黏剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 2、化学键形成理论: 化学键理论认为胶黏剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用、异氰酸酯对金属与橡胶的胶接界面等的研究,均证明有化学键的生成。化学键的强度比范德化作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普通,要形成化学键必须满足一定的量子化`件,所以不可能做到使胶黏剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要比分子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。 3、弱界层理论:

胶水的种类及性能

1.什么叫胶水: 胶水就是能够粘接二个物体的物质。胶水不是独立存在的,它必须涂在二个物体之间才能发挥粘接作用。 2.胶水的粘度(cps): 胶水的粘度用布氏粘度计测出,单位是"cps厘泊"。胶水的粘度的读数一般在300~30000cps之间。在水溶性的粘合剂中,固体含量并不决定胶的粘度,而在于胶水的配方内的增塑剂、增粘剂等等,影响胶水的粘度值。一般情况下周围的环境温度越高"粘度↓","温度↓粘度↑"。水在27℃时的粘度为"1"。 3.胶水的流动性(流变性): 利用低及高转动力以测其粘度值然后取其比率。一般胶水的流动性为1.5~3较好。胶水的粘度同它的流变性有很大的关系。对胶水"搅动↑稀度↓"。尤其是水溶性胶水,越搅越稀。胶水的涂布特性跟流变性的关系:小于1最难涂布;0~1.5浊流现象;1.5~3良好的涂布性(流变性也最好);大于3过稀; 4.最低成膜温度(MFT): 在某个温度下,粘合剂里的水份全部挥发后,由液态转变为固态的临界状态下它的成膜温度。这时,干涸的胶层很脆且不具有内聚力。 5.成膜速度: 从涂胶到在两个基材中形成胶膜的有效结合时间。它受以下因素影响; ☆粘合剂内的水份散发时间(时间短成膜快) ☆高基材孔积率(孔积率大有效结合时间快)。 ☆粘合剂的涂布量(量大,结合时间慢)。 ☆粘合剂的配方、固含、等等都会影响成膜速度。 6.胶的养生期: 胶水在两个基材中形成膜后,随着时间的延续而形成了结合力。在这段时间内,最低的结合力形成的时间是最重要的。在最低结合力形成后,我们就可以做其它的工作了,它不会影响胶水最终用品的表现。随着时间的增加,在一段时间后胶的结合力的形成是最完全的,结合力是平稳的,这就是最高结合力。由最低结合力到最高结合力的时间就是胶水的养生期。一般胶水的最低结合力是24小时。养生期1-7天。使用中的环境温度、不同的粘接材料都将影响胶水的养生期7.胶水的防水等级: 胶水的防水等级分为四级,地板用胶水的防水等级应在3级以上。 1级:一般的防水; 2级:室内弱防水; 3级:室内强防水; 4级:室外的防水。 FDA标准:指"国际亲近人体无公害"标准。 8.胶水的耐溶剂性: 用"丙酮"(油漆中的主要成分)测试胶水对丙酮的反映。涂油漆后,油漆中溶剂对胶膜的溶胀率。越大胶水的质量就越差。质量差的胶水在有"丙酮"存在的高温环境下,半个小时左右胶水的胶膜就会慢慢变黑,胶膜的内聚力下降。 9.胶膜的颜色对胶的粘结力有没有影响? 胶水的胶膜是透明的或是乳白的,这都是很正常的它不会影响胶水的粘结力(发黑、乳白发胀对胶水的粘结力有影响)。一般情况下,在加了阻水的填充剂后的胶水,其胶膜的透明度较差,但它不会影响胶水的效力。 10.水溶性胶水的粘接原理:

胶粘剂的基本理论01

胶粘剂的基本理论 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。 一、吸附理论 人们把固体对胶粘剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿。如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。 许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低,这就是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和氟塑料很难粘接。 通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。在粘附力和内聚力中所包含的化学键有四种类型:(1)离子键(2)共价键(3)金属键(4)范德华力胶粘剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 二、化学键形成理论 化学键理论认为胶粘剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用、异氰酸酯对金属与橡胶的胶接界面等的研究,均证明有化学键的生成。化学键的强度比范德化作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普通,要形成化学键必须满足一定的量子化`件,所以不可能做到使胶粘剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要比分子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。 三、弱界层理论 当液体胶粘剂不能很好浸润被粘体表面时,空气泡留在空隙中而形成弱区。又如,当中含杂质能溶于熔融态胶粘剂,而不溶于固化后的胶粘剂时,会在固体化后的胶粘形成另一相,在被粘体与胶粘剂整体间产生弱界面层(WBL)。产生WBL除工艺因素外,在聚合物成网或熔体相互作用的成型过程中,胶粘剂与表面吸附等热力学现象中产生界层结构的不均匀性。不均匀性界面层就会有WBL出现。这种WBL的应力松弛和裂纹的发展都会不同,因而极大地影响着材料和制品的整体性能。 四、扩散理论 两种聚合物在具有相容性的前提下,当它们相互紧密接触时,由于分子的布朗运动或链段的摆产生相互扩散现象。这种扩散作用是穿越胶粘剂、被粘物的界面交织进行的。扩散的结果导致界面的消失和过渡区的产生。粘接体系借助扩散理论不能解释聚合物材料与金属、玻璃或其他硬体胶粘,因为聚合物很难向这类材料扩散。 五、静电理论 当胶粘剂和被粘物体系是一种电子的接受体-供给体的组合形式时,电子会从供给体(如金属)转移到接受体(如聚合物),在界面区两侧形成了双电层,从而产生了静电引力。

常见胶粘剂及其作用原理

胶粘剂 胶接(粘合、粘接、胶结、胶粘)是指同质或异质物体表面用胶粘剂连接在一起的技术,具有应力分布连续,重量轻,或密封,多数工艺温度低等特点。胶接特别适用于不同材质、不同厚度、超薄规格和复杂构件的连接。胶接近代发展最快,应用行业极广,并对高新科学技术进步和人民日常生活改善有重大影响。因此,研究、开发和生产各类胶粘剂十分重要。 胶粘剂的分类 胶粘剂的分类方法很多,按应用方法可分为热固型、热熔型、室温固化型、压敏型等;按应用对象分为结构型、非构型或特种胶;接形态可分为水溶型、水乳型、溶剂型以及各种固态型等。合成化学工作者常喜欢将胶粘剂按粘料的化学成分来分类 热塑性纤维素酯、烯类聚合物(聚乙酸乙烯酯、聚乙烯醇、过氯乙烯、聚异丁烯等)、聚酯、聚醚、聚酰胺、聚丙烯酸酯、a-氰基丙烯酸酯、聚乙烯醇缩醛、乙烯-乙酸乙烯酯共聚物等类 热固性环氧树脂、酚醛树脂、脲醛树脂、三聚氰-甲醛树脂、有机硅树脂、呋喃树脂、不饱和聚酯、丙烯酸树脂、聚酰亚胺、聚苯并咪唑、酚醛-聚乙烯醇缩醛、酚醛-聚酰胺、酚醛-环氧树脂、环氧-聚酰胺等类 合成橡胶型氯丁橡胶、丁苯橡胶、丁基橡胶、丁钠橡胶、异戊橡胶、聚硫橡胶、聚氨酯橡胶、氯磺化聚乙烯弹性体、硅橡胶等类 橡胶树脂剂酚醛-丁腈胶、酚醛-氯丁胶、酚醛-聚氨酯胶、环氧-丁腈胶、环氧-聚硫胶等类 胶粘理论 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互作用的结果。

因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。 吸附理论 人们把固体对胶粘剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。理论认为: 粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶粘剂分子与被粘物表面分子的作用过程有两个过程: 第一阶段是液体胶粘剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶粘剂粘度等都有利于布朗运动的加强。第二阶段是吸附力的产生。当胶粘剂与被粘物分子间的距离达到10-5Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。 根据计算,由于范德华力的作用,当两个理想的平面相距为10Å时,它们之间的引力强度可达10-1000MPa;当距离为3-4Å时,可达100-1000MPa。这个数值远远超过现代最好的结构胶粘剂所能达到的强度。因此,有人认为只要当两个物体接触很好时,即胶粘剂对粘接界面充分润湿,达到理想状态的情况下,仅色散力的作用,就足以产生很高的胶接强度。可是实际胶接强度与理论计算相差很大,这是因为固体的力学强度是一种力学性质,而不是分子性质,其大小取决于材料的每一个局部性质,而不等于分子作用力的总和。计算值是假定两个理想平面紧密接触,并保证界面层上各对分子间的作用同时遭到破坏时,也就不可能有保证各对分子之间的作用力同时发生。 胶粘剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 化学键形成理论

聚氨酯黏合剂原理及其应用

过去的一节课,我们讲粘合剂,着重讲了粘合工艺和原理、代表性粘合剂,侯兴旺刘红良等同学也给出了对导电粘合剂的浅显理解。但是我没有讲应用的问题,请同学们逆向思考:粘合剂的使用是为了粘合两种材料,假设在使用一段时间后粘合剂松开了,或者你想重新加工粘合两种材料,这样就需要除去或者洗脱掉原有的粘合剂,请至少列举一种粘合剂的应用以及其对应的后处理方法、并指出原理是什么。

一、聚氨酯黏合剂的应用 1、汽车用聚氨酯胶粘剂新型汽车结构中引入大量的轻质金属、复合材料和塑料,造成汽车用胶粘剂和密封胶持续增长。在汽车上应用最为广泛的聚氨酯胶粘剂主要有装配挡风玻璃用单组分程固化聚氨酯密封胶、粘接玻璃约维增强塑料和片状模塑复合村料的结构胶粘剂、内装件用双组分聚氨酯胶粘剂及水性聚氯酯胶等。此外,茎车内饰件也是胶粘剂用量增长的一个领域。汽车上应用广泛的水性聚氨酯胶粘剂是指聚氨酯溶于水或分散于水中而形成的胶粘剂。大多数水性聚氨酯是线性热塑性聚氨酯,由于其涂膜没有交联,分子质量较低,因而耐水性、耐溶剂性、胶膜强度等性能还较差,必须对其进行改性,以提高其性能。聚酯和丙烯酸的杂和分散体与脲二酮和异氰脱脲酸酯配合制备的汽车修补清漆,不需要高速搅拌设备,容易混合在一起且具有良好的粘附性能。 2、木材用聚氨酯胶粘剂随着世界性森林资源急剧减少和我国天然林资源保护工程的实施,小木材拼大板就要求胶粘剂粘接强度和耐久耐候等性能优于木材本身。胶粘剂用量的多少,已成为衡量木材工业技术发展水平的标志。过去人们用的木村胶粘剂多为以甲醛为主要原料的脖醛树脂,酚醛树脂和三聚氰氨甲醛树脂,但由于游离的甲醛存在,产品使用期间会逐淋向周围散发甲醛气体,造成环境污染。木村加工行业已开始将目光投向新型的环保胶粘剂聚氯酯胶,以期减少对环境的行染。木工行业使用的单组分湿气固化聚氨酯胶粘剂是液态的,在室温下使用。通常其粘接强度高、柔韧性和耐水性好,并能和许多非木基材(如纺织纤维、金属、塑料、橡胶筑)粘接。单组分聚氨酯胶粘剂在测试中所表现出的干、返强度均要好于酚醛胶粘剂。粘接前,在粘接基材表面涂布羟甲基间苯二酚(HMR)偶合剂可以提高粘接强度。HMR可以加强所有热固型木村胶粘剂的粘接强度,当木村表面预涂HMR偶合剂时,单组分聚氨酯胶粘剂的强度和耐久性可以满足大部分严格的测试要求。 3、鞋用聚氨酯胶粘剂我国是一个制鞋大国,鞋用胶粘剂的发展经历三代后,随着全球性环保意识的提高,以及石油危机的加剧,促使第四代环保无溶剂型和水基型载用粘胶剂的出现。近年来,水性聚氨酯的制备工艺己日趋成熟。对于一些低极性鞋材如SBS等材质的粘接, 聚氨酯胶粘剂的剥高强度达不到要求。通过添加增粘树脂等进行改性,可开发出具有结晶度高、结晶速度快、内聚强度大和剥离强度较理想的聚氨酯鞋用胶粘剂。 4包装用聚氨酯胶粘剂软包装又称软罐头,以其轻质方便、保鲜期长、卫生、易贮存运输、易拆开、垃圾量少及货架效应良好等独特的综合性能,现己超过硬包装如塑料、玻璃瓶和罐等。聚氨酯胶粘剂由于其优异的性能,可将不同性质的薄膜材料粘接在一起得到耐寒、耐泊、耐药品、透明、耐磨等各种性能的软包装用复合薄膜。目前在国内外市场中, 聚氨酯胶粘剂已经成为软包装用复合薄膜加工的主要胶粘剂。在国内胶粘剂市场中,包装用复合薄膜制造业中, 聚氨酯胶粘剂用量仅次于制鞋业而居第二位。用于包装的聚氨酯胶粘剂品种繁多,如水基聚氨酯胶粘剂、热熔型聚氨酯胶粘剂、溶剂型聚氨酯胶粘剂以及无溶剂型聚氨酯胶粘剂等。其中常用的聚氨酯热熔胶又可分为热塑性聚氨酯弹性体热熔胶与反应型热熔胶两类。热塑性热熔胶的主要缺点是粘度较高,故对涂布表观质量的影响较大。反应型聚氨酯热熔胶粘剂是在传统热熔胶基础上发展起来的一类新型胶粘剂,它不仅有传统热熔胶初粘性好和后固化性能优的特点,又具有聚氮酯的组成结构多变和性能调节范围大的优点,对多种基材具有优良的粘接性能。另外,在包装用水

粘胶剂的基本理论

东莞星宇材料粘胶剂的基本理论 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。 一、吸附理论 人们把固体对胶粘剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶粘剂分子与被粘物表面分子的作用过程有两个过程:第一阶段是液体胶粘剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶粘剂粘度等都有利于布朗运动的加强。第二阶段是吸附力的产生。当胶粘剂与被粘物分子间的距离达到10-5?时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。 根据计算,由于范德华力的作用,当两个理想的平面相距为10?时,它们之间的引力强度可达10-1000MPa;当距离为3-4?时,可达100-1000MPa。这个数值远远超过现代最好的结构胶粘剂所能达到的强度。因此,有人认为只要当两个物体接触很好时,即胶粘剂对粘接界面充分润湿,达到理想状态的情况下,仅色散力的作用,就足以产生很高的胶接强度。可是实际胶接强度与理论计算相差很大,这是因为固体的力学强度是一种力学性质,而不是分子性质,其大小取决于材料的每一个局部性质,而不等于分子作用力的总和。计算值是假定两个理想平面紧密接触,并保证界面层上各对分子间的作用同时遭到破坏时,也就不可能有保证各对分子之间的作用力同时发生。 胶粘剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 二、化学键形成理论 化学键理论认为胶粘剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用、异氰酸酯对金属与橡胶的胶接界面等的研究,均证明有化学键的生成。化学键的强度比范德化作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普通,要形成化学键必须满足一定的量子化`件,所以不可能做到使胶粘剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要比分子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。 三、弱界层理论

胶粘剂粘接原理

粘接原理 1、机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素。胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为 (1)机械镶嵌; (2)形成清洁表面; (3)生成反应性表面; (4)表面积增加。由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。 2、吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿(γ SV=γ SL+γ LVcosθ。γ SV,γ SL,γ LV各代表了固气接触,固液接触和液气接触。θ为0o表示完全浸润)。如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。 许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低(即γ氟塑料很难粘接。

通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。在粘附力和内聚力中所包含的化学键有四种类型: 1)离子键 2)共价键 3)金属键 4)xx力 3、扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果。 4、静电理论由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。 5、弱边界层理论认为,当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏。弱边界层来自胶粘剂、被粘物、环境,或三者之间任意组合。如果杂质集中在粘接界面附近,并与被粘物结合不牢,在胶粘剂和被粘物内部都可出现弱边界层。 当发生破坏时,尽管多数发生在胶粘剂和被粘物界面,但实际上是弱边界层的破坏。,这就SV要大)是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和聚乙烯与金属氧化物的粘接便是弱边界层效应的实例,聚乙烯含有强度低的含氧杂质或低分子物,使其界面存在弱边界层所承受的破坏应力很少。如果采用表面处理方法除去低分子物或含氧杂质,则粘接强度获得很大的提高,事实业已证明,界面上确存在弱边界层,,致使粘接强度降低。 粘接原理 目前已提出的粘接理论主要有:

单组分聚氨酯胶粘剂配方和合成机理

单组分聚氨酯胶粘剂配方 和合成机理 Modified by JEEP on December 26th, 2020.

单组分聚氨酯胶粘剂配方和合成机理 单组分胶粘剂配方和合成机理 湿固化型胶 1.湿固化机理:湿固化型胶粘剂中含有活泼的NCO基团,当暴露于空气中时能与空气中的微量水分子发生反应;粘接时,它能与基材表面吸附的水以及表面存在羟基大呢感活性氢基团发生化学反应,生成脲键结构。因此湿固化型胶粘剂固化后的胶层组成是胶粘剂—聚脲结构。 2.软木用胶:将以NCO为端基的胶粘剂应用于软木碎屑的粘接,由林产化工厂于软木碎屑中加入胶粘剂,混合均匀,加热压制成型,制成软木板材、片材等制品,用作保温、隔音等材料,其特点是耐水、防腐蚀。该胶粘剂是湿固化胶粘剂和密封剂的基础粘料,若对配方稍加调整,亦即加入一定比例的三官团的聚氧化丙烯三醇(如N-330),制成的NCO端基的预聚体胶粘剂即可作为下列材料的粘料(基料): (1)浇注型橡胶的基料; (2)建筑用防水材料的粘料; (3)田径运动场地用橡胶跑道(塑胶跑道)胶面层的粘料; (4)密封胶粘剂的粘料。 该胶粘剂还可用于泡沫、聚苯乙烯泡沫等的粘接,使用方便,无公害,受到用户欢迎。 3.配方1:聚氧化丙烯多元醇(M=3000) 51份 MDI 26份 TDI(80/20) 份 1,4-丁二醇份

将上述四组分原料混合,在80℃反应3h后,降温,用10份二甲苯稀释,制得NCO含量约%的预聚体。该预聚体可作为弹性基材的胶粘剂。具有耐水、柔韧性好、强度高等优点。胶膜的拉伸强度可达,伸长率360%,在80℃热水中浸泡7天后仍能保持较好的强度。 配方2:聚氧化丙烯三醇(M=6000) 400份 聚氧化丙烯二醇(4/=2000) 1000份 MDI315份 氢化萜烯酚醛树脂 180份 按以上配方原料制成预聚体,再加人气相法二氧化硅、滑石粉等填料以及增塑剂、叔胺和有机锡类催化剂,制成含填料的预聚体。 按HDI缩二脲1610份、r-巯丙基三甲氧基硅烷40份、二甲基硅烷427份、二甲基哌嗪份制成硅烷化合物。 单组分胶粘剂按预聚体:硅烷化合物:萜烯增粘剂=271:6:70(质量份数)混合配制。用于玻璃-帆布、铝-铝、冷轧钢-冷轧钢的粘接。 配方3:高活性聚醚多元醇(M=5500) 2556份 PAPI(平均官能团度2.1) 5108份 苯乙烯568份 丙烯腈568份 高活性聚醚多元醇与PAPI于100℃反应,制得预聚体,于此预聚体中,要3h内慢慢加人苯乙烯和丙烯腈的混合液,并每隔1h添加28份偶氮二异丁腈(ABIN),最后再反应2h,并于120℃减压抽除未反应单体,制得产品粘度为6000Pa·s,外观为浅褐色不透明的粘稠液,NCO含量为%。 称取上述预聚体100份,加入20份炭黑、份惰性填料,制成湿固化接枝型单组分胶粘剂,其剪切强度达 8MPa,而且有触变性。而未接枝的胶粘剂,其剪切强度为5MPa,外观为自由流动的粘稠液。

粘合剂概述

在橡胶工业中橡胶与骨架材料之间的粘结十分重要,它们之间的黏合水平决定了产品的性能和使用寿命,因此黏合体系也是十分重要特种配合体系。 一、黏合体系的分类及几个术语的含义 黏合又称粘结、胶接、黏着等,是指将两个材料或物件(可同种,也可不同种)粘在一起的过程。关于黏合物质的名称有多种,如增黏剂、胶黏剂、黏合剂、粘结剂等。①增黏剂是指添加橡胶、塑料或胶黏剂中的配合剂,主要用于制品成型操作,提高未硫化胶之间的粘合性。 ②胶粘剂是指使将两种或两种以上的制件(或材料)链接在一起的一类物质,多是胶液或胶膜形式。③直接黏合剂是指直接配入胶料中的配合剂,在硫化时使被粘表面之间产生化学键合或强烈的物理吸附,形成牢固的界面层,主要用于含骨架材料的复合制品如轮胎等。下面仅就橡胶工业领域中应用的黏合剂进行分类。 松香树脂:脱氢松香酸、脱羟松香、氢化松香甘油酯等 天然树脂萜烯树脂:多萜树脂、萜烯-酚醛树脂 妥尔油:100%妥尔油、聚合妥尔油、氢化妥尔油增黏剂 烷基酚醛树脂:如对-叔丁基酚-甲醛树脂、对-叔辛基苯 酚甲醛树脂、对-叔辛基苯酚乙炔树脂、 合成树脂改性烷基酚醛树脂 石油树脂:C5树脂、C9树脂、苯乙烯-茚树脂、苯乙烯-丁二烯树脂、古马隆-茚树脂等 黏合剂其他:如聚异丁烯树脂、Rx-80树脂 间甲白体系:如黏合剂HTM、HMMM、RA;间苯二酚、RS、RE、R-80、RF;RH、RL等直接黏合剂钴盐体系:如环烷酸钴、硬脂酸钴、乙酸钴、硼酰化钴等 其他体系:三臻体 树脂型:环氧树脂、酚醛树脂、聚酯树脂、脲醛树脂、丙烯酸酯等胶黏剂 胶黏剂橡胶型:氯丁橡胶胶黏剂、丁腈橡胶胶黏剂、改性天然橡胶胶黏剂、氯磺化聚乙烯胶黏剂、聚硫橡胶胶黏剂、羧基橡胶胶黏剂、丁基橡胶胶黏剂、硅橡胶胶黏剂、聚氨酯橡胶胶黏剂等 混合型:橡胶-橡胶、橡胶-树脂、树脂-树脂 其他类:偶联剂体系,如硅烷类Chemlock黏合剂;多异氰酸酯 二、黏合的基本原理 粘合剂粘结两种材料时,首先黏合剂要与被粘物表面充分接触,其次黏合剂与被粘物之间要形成足够的黏附力才能形成牢固度符合要求的黏合界面。 1、固体的表面特征 由于固体表面分子力场不平衡,所以有表面能。不同类型固体表面能不同。 常用的烷基酚醛树脂之所以能增加未硫化胶的粘性 三、粘合机理 由胶黏剂与被粘物形成的粘合存在着吸附作用与吸附理论、静电作用与静电理论和扩散作用与扩散理论这三种理论解释。 1、吸附作用与吸附理论

粘接的基本原理

概述 1. 胶粘剂的发展 2. 胶粘剂的优缺点 3. 粘接力的产生范德华力 A. 物质分子间作用力表面张力和表面自由能 B. 化学键力浸润和扩展 C. 界面静电引力吸附作用与吸附理论 D. 粘接的三大理论静电作用和静力理论 扩散作用和扩散理论 4. 影响粘接强度的因素 A. 物理因素 B. 化学因素 5. 表面处理对铝合金粘接性的影响

概述 一、概述 1. 古时代,人类就知道利用粘液为自己造福,如糯米糊加上填料造建宝塔和密封棺椁。到秦朝修建万里长城就是以糯米糊为基料的胶粘剂将砖叠而成,再如骨胶就动物骨经石灰处理和水浸后得到了骨胶,用作填缝隙及木器,弓箭和铠甲的胶粘剂,还在骨胶里加木烟灰制成墨。中国人很早就用血朊、松香、树汁制成各种胶粘剂。 善于航海的腓尼基人得力于胶粘剂才造出经受风暴的航海船只,古埃及的金字塔,法老墓和木乃伊,如果没胶粘剂是不可能将这些文物保存不到今天的。 到17世纪,人们才开始建立工厂,专门生产胶粘剂,这些胶粘剂主要是采用骨胶,酪元,血朊,淀粉糊和大豆蛋白来制造,这些胶粘剂主要用于木制品,印刷,裱糊装潢。而且也用于早期的航空工业,布和胶制机翼这些胶粘剂都是亲水的,就出现了耐水性,耐霉菌性差,不宜在湿热条件下使用。 随着工业的发展,人类开始寻找耐水,耐霉菌的胶粘剂,化学合成的酚酪树脂成功地替代酪朊,成为航空工业的主要胶粘剂。18世纪至20世纪的100年间又相继出现了天然乳胶胶粘剂,烟片配制的胶粘剂,20世纪30年代又出现了现代橡胶,纤维素类和醇酸树脂类胶粘剂。 受二次世界大战的刺激,酚醛树脂胶粘剂很快就发展了许多改性品种,如缩醛-酚醛、氯丁-酚醛、丁腈-酚醛、间苯二酚中醛树脂,糠醇树脂。其中缩醛-酚醛树脂的牌号Redux 粘剂用于占斗机主翼,在飞行中被粘金属因疲劳易断裂时粘接部位仍完好。1944年英国大黄锋型歼击机使用合成胶粘剂。60年代中期包括鬼怪式、三叉、海盗B58。这说明粘接结构件能具有优异的力学性能,这个时期内出现许多新胶粘剂,如环氧树脂、多异氰酸酯、聚醋酸乙烯、三聚氰胺、甲醛和氯化橡胶等为基料的胶粘剂,特别是性能优异的环氧树脂类胶粘剂,在二次世界大战后,胶粘剂有更大的发展,战后40年间,聚氨酯,丙烯酸酯类,聚烯烃弹性体,含硅、氟、钛其他元素的胶粘剂,聚苯醚、聚苯硫醚都有很大的发展。现代生活中,胶粘剂广泛应用于人类生活的各个领域,如医学上,人体骨骼,牙齿修补;以如在服装行业中衣服和粘接和衣服防护;还在食品,建筑行业,地铁的防震和防水,地面各车轫的密封等。我们可设想世上如果没有胶粘剂,现代的飞机,飞船和人造卫星不知要推迟多久才能升空。 所以人类的现代文明是离不开胶粘剂和粘接。

胶粘剂粘接理论

粘接理论 1、机械理论机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素。胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为(1)机械镶嵌;(2)形成清洁表面;(3)生成反应性表面;(4)表面积增加。由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。 2、吸附理论吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿。如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。 许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低,这就是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和氟塑料很难粘接。通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。在粘附力和内聚力中所包含的化学键有四种类型(1)离子键

(2)共价键 (3)金属键 (4)范德华力 3、扩散理论扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果。 4、静电理论由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。 5、弱边界层理论弱边界层理论认为,当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏。弱边界层来自胶粘剂、被粘物、环境,或三者之间任意组合。如果杂质集中在粘接界面附近,并与被粘物结合不牢,在胶粘剂和被粘物内部都可出现弱边界层。当发生破坏时,尽管多数发生在胶粘剂和被粘物界面,但实际上是弱边界层的破坏。 聚乙烯与金属氧化物的粘接便是弱边界层效应的实例,聚乙烯含有强度低的含氧杂质或低分子物,使其界面存在弱边界层所承受的破坏应力很少。如果采用表面处理方法除去低分子物或含氧杂质,则粘接强度获得很大的提高,事实业已证明,界面上确存在弱边界层,,致使粘接强度降低。

聚氨酯胶粘剂的粘接机理

聚氨酯胶粘剂的粘接机理 聚氨酯胶粘剂是目前正在迅猛发展的聚氨酯树脂中的一个重要组成部分,具有优异的性能,在许多方面都得到了广泛的应用,是八大合成胶粘剂中的重要品种之一,适用于各种结构性粘合领域。 大家可能会好奇,聚氨酯胶粘剂的粘结力度这么强,粘结材料的种类又是这么广泛,那么它究竟是如何将各种材料粘结在一起的呢?下面,洛阳天江化工新材料有限公司就聚氨酯胶粘剂粘结材料种类的不同将聚氨酯胶粘剂的粘结机理概括为了以下几类: 一、金属、玻璃、陶瓷等的粘接 金属、玻璃等物质表面张力很高,属于高能表面,在聚氨酯胶粘剂固化物中含有内聚能较高的氨酯键和脲键,在一定条件下能在粘接面上聚集,形成高表面张力胶粘层。一般来说,胶粘剂中异氰酸酯或其衍生物百分含量越高,胶粘层的表面张力越大,胶越坚韧,能与金属等基材很好地匹配,粘接强度一般较高。 1、含-NCO基团的胶粘剂对金属的粘接机理如下: 金属表面一般存在着吸附水(即使经过打磨处理的金属表面也存在微量的吸附水或金属氧化物水合物),-NCO与水反应生成的脲键与金属氧化物之间由于氢键而螯合形成酰脲—金属氧化物络合物,-NCO基团还能与金属水合物形成共价键等。 2、在无-NCO场合,金属表面水合物及金属原子与氨酯键及脲键之间产生范德华力和氢键,并且以TDI、MDI为基础的聚氨酯胶粘剂含苯环,具有冗电子体系,能与金属形成配价键。金属表面成分较为复杂,与聚氨酯胶之间形成的各种化学键或次价键(如氢键)的类型也很复杂。 3、玻璃石板陶瓷等无机材料一般由SO2、CaO和Na2O等成分构成,表面也含吸附水羟基,粘接机理大致与金属相同。 二、塑料橡胶的粘接 橡胶的粘接一般选用多异氰酸酯胶粘剂或橡胶类胶粘剂改性的多异氰酸酯胶粘剂,胶粘剂中所含的有机溶剂能使橡胶表面溶胀,多异氰酸酯胶粘剂的分子量较小,可渗入橡胶表层内部,与橡胶中存在的活性氢发生反应,形成共价键。此外,多异氰酸酯还会与潮气反应生成脲基或缩二脲,并且在加热固化时异氰酸

胶粘剂原理

胶粘剂原理 主剂是胶粘剂的主要成分,主导胶粘剂粘接性能,主剂由高聚物构成,要求具有良好的粘附性和润湿性等。可作为粘料的物质有: 1.天然高分子,如淀粉、骨胶、鱼胶等。 2.合成树脂,如尿醛树脂、酚醛、聚氯乙烯、聚碳酸酯、聚甲醛。 3.无机粘料,如硅酸盐、磷酸盐等。 胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。 吸附理论 理论认为:粘接力的主要来源是粘接体系的分子间作用力,即范德华引力和氢键。当胶粘剂与被粘物分子间的距离达到10-5?时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。 分子间作用力是提供粘接力的主要因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 化学键理论 化学键理论认为胶粘剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用等的研究,均证明有化学键的生成。此外,还有扩散理论和静电理论等,但都非主导作用。 生活就像化学反应,有无数种的可能性和路线设计,但我们要遵重客观规律并去生成那些最有价值的东西; 生活就像化学反应,有时难以进行并非此路不通,可能需要加加热或找个催化剂,即改变一下条件和方式; 生活就像化学反应,有时表面千变万化轰轰烈烈我们以为改变了很多,但其实一些最根本的东西并没有变化; 生活就像化学反应,无论表面上怎样千变万化推陈出新,背后总是有因有果有规可循; 生活就像化学反应,若遇到不合适的对方,任凭你怎样认真努力和耐心都不会有想要的结果;生活就像化学反应,无论你爱或不爱也无论你理解或不理解,它都客观地存在于那里。。。

相关主题