搜档网
当前位置:搜档网 › 【强烈推荐】高一物理牛顿运动定律总结

【强烈推荐】高一物理牛顿运动定律总结

【强烈推荐】高一物理牛顿运动定律总结
【强烈推荐】高一物理牛顿运动定律总结

高 一 物 理 第 四 章 《 牛 顿 运 动 定 律 》 总 结

二、解析典型问题

问题1:必须弄清牛顿第二定律的矢量性。

牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。

例1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?

分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:

F f =macos300, F N -mg=masin300 因为

56=mg F N ,解得5

3

=mg F f . 问题2:必须弄清牛顿第二定律的瞬时性。

牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。

例2、如图2(a )所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1

的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。现将L 2线剪断,求剪断瞬时物体的加速度。

(l )下面是某同学对该题的一种解法:

分析与解:设L 1线上拉力为T 1,L 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡,有

T 1cos θ=mg , T 1sin θ=T 2, T 2=mgtan θ

剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度。因为mg tan θ=ma ,所以加速度a =g tan θ,方向在T 2反方向。

你认为这个结果正确吗?请对该解法作出评价并说明理由。

图2(b)

2(a)

图1

(2)若将图2(a)中的细线L 1改为长度相同、质量不计的轻弹簧,如图2(b)所示,其他条件不变,求解的步骤和结果与(l )完全相同,即 a =g tan θ,你认为这个结果正确吗?请说明理由。

分析与解:(1)错。因为L 2被剪断的瞬间,L 1上的张力大小发生了变化。剪断瞬时物体的加速度a=gsin θ.

(2)对。因为L 2被剪断的瞬间,弹簧L 1的长度来不及发生变化,其大小和方向都不变。

问题3:必须弄清牛顿第二定律的独立性。

当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。那个方向的力就产生那个方向的加速度。

例3、如图3所示,一个劈形物体M 放在固定的斜面上,上表面水平,在水平面上放有光滑小球m ,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是:

A .沿斜面向下的直线

B .抛物线

C .竖直向下的直线 D.无规则的曲线。

分析与解:因小球在水平方向不受外力作用,水平方向的加速度为零,且初速度为零,故小球将沿竖直向下的直线运动,即C 选项正确。

问题4:必须弄清牛顿第二定律的同体性。

加速度和合外力(还有质量)是同属一个物体的,所以解题时一定要把研究对象确定好,把研究对象全过程的受力情况都搞清楚。

例4、一人在井下站在吊台上,用如图4所示的定滑轮装置拉绳把吊台和自己提升上来。图中跨过滑轮的两段绳都认为是竖直的且不计摩擦。吊台的质量m=15kg,人的质量为M=55kg,起动时吊台向上的加速度是a=0.2m/s 2,求这时人对吊台的压力。(g=9.8m/s 2)

分析与解:选人和吊台组成的系统为研究对象,受力如图5所示,F 为绳的拉力,由牛顿第二定律有:2F-(m+M)g=(M+m)a

则拉力大小为:N g a m M F 3502

)

)((=++=

再选人为研究对象,受力情况如图6所示,其中F N 是吊台对人的支持力。由牛顿第二定律得:F+F N -Mg=Ma,故F N =M(a+g)-F=200N.

由牛顿第三定律知,人对吊台的压力与吊台对人的支持力大小相等,方向相反,因此人对吊台的压力大小为200N ,方向竖直向下。 问题5:必须弄清面接触物体分离的条件及应用。

3

4

5 a N

图6

相互接触的物体间可能存在弹力相互作用。对于面接触的物体,在接触面间弹力变为零时,它们将要分离。抓住相互接触物体分离的这一条件,就可顺利解答相关问题。下面举例说明。

例5、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a <g =匀加速向下移动。求经过多长时间木板开始与物体分离。

分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。据牛顿第二定律有:

mg-kx-N=ma 得N=mg-kx-ma

当N=0时,物体与平板分离,所以此时k

a g m x )

(-= 因为2

21at x =

,所以ka

a g m t )

(2-=。

例6、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。

分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。在0_____0.2s 这

段时间内P 向上运动的距离:

x=mg/k=0.4m 因为221at x =

,所以P 在这段时间的加速度22/202s m t

x

a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.

当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.

例7、一弹簧秤的秤盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k=800N/m ,系统处于静止状态,如图9所示。现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,求F 的最大值和最小值各是多少?(g=10m/s 2)

分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。此时P 受到盘的支持力为零,由于盘的质量m 1=1.5kg ,所以此时弹簧不能处于原长,这与例2轻盘不同。设在0_____0.2s 这段时间内P 向上运动的距离为x,对物体P 据牛顿第二定律可得: F+N-m 2g=m 2a

对于盘和物体P 整体应用牛顿第二定律可得:

图7

图8

图9

a m m g m m x k g m m k F )()()(212121+=+-??

????-++

令N=0,并由述二式求得k a m g m x 12-=

,而

2

2

1at x =,所以求得a=6m/s 2. 当P 开始运动时拉力最小,此时对盘和物体P 整体有F min =(m 1+m 2)a=72N. 当P 与盘分离时拉力F 最大,F max =m 2(a+g)=168N. 问题6:必须会分析临界问题。

例8、如图10,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力F

B =2N ,A受到的水平力FA =(9-2t)N ,(t

的单位是s)。从t =0开始计时,则:

A .A物体在3s 末时刻的加速度是初始时刻的5/11倍;

B .t >4s 后,B物体做匀加速直线运动;

C .t =4.5s 时,A物体的速度为零;

D .t >4.5s 后,AB的加速度方向相反。

分析与解:对于A 、B 整体据牛顿第二定律有:F A +F B =(m A +m B )a,设A 、B 间的作用为N ,则对B 据牛顿第二定律可得: N+F B =m B a

解得N t

F m m F F m N B B A B A B

3

416-=-++=

当t=4s 时N=0,A 、B 两物体开始分离,此后B 做匀加速直线运动,而A 做加速度逐渐减小的加速运动,当t=4.5s 时A 物体的加速度为零而速度不为零。t >4.5s 后,A所受合外力反向,即A 、B 的加速度方向相反。当t<4s 时,A 、B 的加速度均为B

A B

A m m F F a ++=

综上所述,选项A 、B 、D 正确。

例9、如图11所示,细线的一端固定于倾角为450的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球。当滑块至少以加速度a= 向左运动时,小球对滑块的压力等于零,当滑块以a=2g 的加速度向左运动时,线中拉力T= 。

分析与解:当滑块具有向左的加速度a 时,小球受重力mg 、绳的拉力T 和斜面的支持力N 作用,如图12所示。

在水平方向有Tcos450-Ncos450=ma; 在竖直方向有Tsin450-Nsin450-mg=0.

由上述两式可解出:0

045

cos 2)

(,45sin 2)(a g m T a g m N +=-= 由此两式可看出,当加速度a 增大时,球受支持力N 减小,绳拉力T 增加。当a=g 时,N=0,此时小球虽与斜面有接触但无压力,处于临界状态。这时绳的拉力

图10

mg a T N

450

图12 mg a

T α 图13

a

A

P

450

图11

T=mg/cos450=mg 2.

当滑块加速度a>g 时,则小球将“飘”离斜面,只受两力作用,如图13所示,此时细线与水平方向间的夹角α<450.由牛顿第二定律得:Tcos α=ma,Tsin α=mg,解得mg g a m T 522=+=。

问题7:必须会用整体法和隔离法解题。

两个或两个以上物体相互连接参与运动的系统称为连接体.以平衡态或非平衡态下连接体问题拟题屡次呈现于高考卷面中,是考生备考临考的难点之一.

例10、用质量为m 、长度为L 的绳沿着光滑水平面拉动质量为M 的物体,在绳的一端所施加的水平拉力为F , 如图14所示,求:

(1)物体与绳的加速度;

(2)绳中各处张力的大小(假定绳的质量分布均匀,下垂度可忽略不计。) 分析与解:(1)以物体和绳整体为研究对象,根据牛顿第二定律可得: F=(M+m )a,解得a=F/(M+m).

(2)以物体和靠近物体x 长的绳为研究对象,如图15所示。根据牛顿第二定律可得:F x =(M+mx/L)a=(M+

x L m )

m

M F

+ . 由此式可以看出:绳中各处张力的大小是不同的,当x=0时,绳施于物体M 的力的大小为

F m

M M

+。

例11、如图16所示,AB 为一光滑水平横杆,杆上套一轻环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当细绳与AB 成θ角时,小球速度的水平分量和竖直分量的大小各是多少?轻环移动的距离d 是多少?

分析与解:本题是“轻环”模型问题。由于轻环是套在光滑水平横杆上的,在小球下落过程中,由于轻环可以无摩擦地向右移动,故小球在落到最低点之前,绳

子对小球始终没有力的作用,小球在下落过程中只受到重力作用。因此,小球的运动轨迹是竖直向下的,这样当绳子与横杆成θ角时,小球的水平分速度为V x =0,小球的竖直分速度θsin 2gL V y =。可求得轻环移动的距离

是d=L-Lcos θ.

问题8:必须会分析与斜面体有关的问题。

例12、如图17所示,水平粗糙的地面上放置一质量为M 、倾角为θ的斜面体,斜面体表面也是粗糙的有一质量为m 的小滑块以初速度V 0由斜面底端滑上斜面上经过时间t 到达某处速度为零,在小滑块上滑过程中斜面体保持不动。求此过程中水平地面对斜面体的摩擦力与支持力各为多大?

图14

M

图15

M

A

B 图16

图17

分析与解:取小滑块与斜面体组成的系统为研究对象,系统受到的外力有重力(m+M)g/地面对系统的支持力N 、静摩擦力f(向下)。建立如图17所示的坐标系,对系统在水平方向与竖直方向分别应用牛顿第二定律得:

-f=0-mV 0cos θ/t ,

[N -(m+M)g]=0-mV 0sin θ/t 所以t mV f θcos 0=

,方向向左;t

mV g M m N θ

sin )(0-+=。 问题9:必须会分析传送带有关的问题。

例13、如图18所示,某工厂用水平传送带传送零件,设两轮子圆心的距离为S ,传送带与零件间的动摩擦因数为μ,传送带的速度恒为V ,在P 点轻放一质量为m 的零件,并使被传送到右边的Q 处。设零件运动的后一段与传送带之间无滑动,则传送所需时间为 ,摩擦力对零件做功为 .

分析与解:刚放在传送带上的零件,起初有个靠滑动摩擦力加速的过程,当速度增加到与传送带速度相同时,物体与传送带间无相对运动,摩擦力大小由f=μmg 突变为零,此后以速度V 走完余下距离。

由于f=μmg=ma,所以a=μg. 加速时间 g

V a V t μ==

1 加速位移 g

V at S μ2

2112121==

通过余下距离所用时间 g

V

V S V S S t μ212-=-=

共用时间 g

V V S t t t μ221+=

+= 摩擦力对零件做功 22

1

mV W =

例14、如图19所示,传送带与地面的倾角θ=37o

,从A 到B 的长度为16m,传送带以V 0=10m/s 的速度逆时针转动。在传送带上端无初速的放一个质量为0.5㎏的物体,它与传送带之间的动摩擦因数μ=0.5,求物体从A 运动到B 所需的时间是多少?(sin37o

=0.6,cos37o

=0.8)

分析与解:物体放在传送带上后,开始阶段,传送

带的速度大于物体的速度,

传送带给物体一沿斜面向

下的滑动摩擦力,物体由静

止开始加速下滑,受力分析如图20(a )所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物

图18

f mg

图19

图20 (a)

(b)

体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图20(b)所示。综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变” 。

开始阶段由牛顿第二定律得:mgsin θ+μmgcos θ=ma 1; 所以:a 1=gsin θ+μgcos θ=10m/s 2

;

物体加速至与传送带速度相等时需要的时间t1=v/a 1=1s;发生的位移: s=a 1t12

/2=5m<16m;物体加速到10m/s 时仍未到达B 点。

第二阶段,有:mgsin θ-μmgcos θ=ma 2 ;所以:a 2=2m/s 2

;设第二阶段物体滑动到B 的时间为t 2 则:L AB -S =vt2+a 2t22

/2 ;解得:t 2=1s , t2/

=-11s (舍去)。故物体经历的总时间t=t 1+t 2 =2s .

从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻。 问题10:必须会分析求解联系的问题。

例15、风洞实验室中可产生水平方向的,大小可调节的风力。现将一套有小球的细直杆放入风洞实验室。小球孔径略大于细杆直径。如图21所示。

(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上作匀速运动,这时小球所受的风力为小球所受重力的0.5倍。求小球与杆间的动摩擦因数。

(2)保持小球所受风力不变,使杆与水平方向间夹角为370并固定,则小球从静止出发在细杆上滑下距离S 所需时间为多少?(sin370 = 0.6,cos370 = 0.8)

分析与解:依题意,设小球质量为m ,小球受到的风力为F ,方向与风向相同,水平向左。当杆在水平方向固定时,小球在杆上匀速运动,小球处于平衡状态,受四个力作用:重力G 、支持力F N 、风力F 、摩擦力F f ,如图21所示.由平衡条件得:

F N =mg F=F f F f =μF N

解上述三式得:μ=0.5.

同理,分析杆与水平方向间夹角为370时小球的受力情况:重力G 、支持力F N1、风力F 、摩擦力F f1,如图21所示。根据牛顿第二定律可得:

ma F F mg f =-+1cos sin θθ 0cos sin 1=-+θθmg F F N F f1=μF N1

图21

F G F f F N

G F

F N1

F f1

解上述三式得g m

F mg F a f 4

3sin cos 1

=

-+=

θθ. 由运动学公式,可得小球从静止出发在细杆上滑下距离S 所需时间为: g

gS

a S t 3622=

=. 三、警示易错试题

典型错误之一:不理解“轻弹簧”的物理含义。

例16、(2004年湖北高考理综试题)如图22所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相

同:○1中弹簧的左端固定在墙上,○2中弹簧的左端受大小也为F 的拉力作用,○3中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,○

4中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以L 1、L 2、L 3 、L 4依次表示四个弹簧的伸长量,则有:

A .L 2>L 1; B. L 4>L 3; C .L 1>L 3; D. L 2=L 4.

错解:由于○

4中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动,而○3中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,所以有 L 4>L 3,即B 选项正确。

分析纠错:笔者看到这道试题以后,对高考命题专家是佩服得五体投地!命题者将常见的四种不同的物理情景放在一起,让学生判别弹簧的伸长量的大小,不少学生不加思考的选择B 答案。没有良好思维习惯的学生是不能正确解答本题的。这正是命题人的独具匠心!本题实际上就是判断四种情景下弹簧所受弹力的大小。由于弹簧的质量不计,所以不论弹簧做何种运动,弹簧各处的弹力大小都相等。因此这四种情况下弹簧的弹力是相等,即四个弹簧的伸长量是相等。只有D 选项正确。 典型错误之二:受力分析漏掉重力。

例17、蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m 高处。已知运动员与网接触的时间为1.2s 。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g=10m/s 2)

错解:将运动员看质量为m 的质点,从h 1高处下落,刚接触网时速度的大小 112gh V = (向下)

, 弹跳后到达的高度为h 2,刚离网时速度的大小 212gh V =

(向上)

,速度的改变量 21V V V +=?(向上), 以a 表示加速度,t ?表示接触时间,则t a V ?=?, 接触过程中运动员受到向上的弹力F 。由牛顿第二定律,

ma F =, 由以上五式解得,t

gh gh m

F ?+=1

222 , 代入数值得:N F 900= 。

F F

123图22

分析纠错:接触过程中运动员受到向上的弹力F 和重力mg,由牛顿第二定律,ma mg F =-, 由以上五式

解得,t

gh gh m mg F ?++=1

222 , 代入数值得:N F 1500=

四、如临高考测试

1.一个质量可忽略不计的降落伞,下面吊一个很轻的弹簧测力计,测力计下面挂一个质量为10kg 的物体。降落伞在下降过程中受到的空气阻力为30N ,则此过程中测力计的示数为(取g=10m/s 2

A .130N

B .30N

C .70N

D .100N

2.在汽车中悬线上挂一小球。实验表明,当做匀变速直线运动时,悬线将与

竖直方向成某一固定角度。如图23所示,若在汽车底板上还有一个跟其相对静止的物体m 1,则关于汽车的运动情况和物体m 1的受力情况正确的是:

A .汽车一定向右做加速运动;

B .汽车一定向左做加速运动;

C .m 1除受到重力、底板的支持力作用外,还一定受到向右的摩擦力作用;

D .m 1除受到重力、底板的支持力作用外,还可能受到向左的摩擦力作用。 3.如图24所示,一质量为M 的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a 、b 为两个位于斜面上质量均为m 的小木块。已知所有接触面都是光滑

的。现发现a 、b 沿斜面下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于 ( )

A .Mg+mg

B .Mg+2mg

C .Mg+mg (sinα+sinβ)

D .Mg+mg(cosα+cosβ)

4.如图25所示,一个铁球从竖立在地面上的轻弹簧正上方某处自由下落,接触弹簧后将弹簧压缩。在压缩的全过程中,弹簧均为弹性形变,那么当弹簧的压缩量最大时:

A .球所受合力最大,但不一定大于重力值

B .球的加速度最大,且一定大于重力加速度值

C .球的加速度最大,有可能小于重力加速度值

D .球所受弹力最大,且一定大于重力值。

5、有一只箩筐盛有几个西瓜,放在粗糙水平地面上,箩筐与水平地面间的动摩擦因数为μ若给箩筐一个水平初速度V 0,让整筐西瓜在水平地面上滑行,则在滑行过程中,箩筐内某个质量为m 的西瓜(未与箩筐接触)受到周围的西瓜对它的作用力的大小为:

A .0

B .mg μ

C .2

1μ+mg

D .2

1μ-mg

m

θ 图23

m 1

左 M α β a

b

图24

图25

a

θ 图26

G F f

F N

6、一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a,如图26所示.在物体始终相对于斜面静止的条件下,下列说法中正确的是

A.当θ一定时,a越大,斜面对物体的正压力越小

B.当θ一定时,a越大,斜面对物体的摩擦力越大

C.当a一定时,θ越大,斜面对物体的正压力越小

D.当a一定时,θ越大,斜面对物体的摩擦力越小

高一物理-牛顿运动定律知识点归纳

高一物理:牛顿运动定律知识点归纳 ; 1.牛顿第一定律 (1)内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。一切物体都有惯性,惯性是物体的固有性质。质量是物体惯性大小的唯一量度。 (3)牛顿第一定律说明了物体不受外力时的运动状态是匀速直线运动或静止,所以说力不是维持物体运动状态的原因,而是使物体改变运动状态的原因,即产生加速度的原因。 2、牛顿第二定律 (1)内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。表达式为。 (2)牛顿第二定律的瞬时性与矢量性 对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定。当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义。 (3)运动和力的关系

牛顿运动定律指明了物体运动的加速度与物体所受外力的合力的关系,即物体运动的加速度是由合外力决定的。但是物体究竟做什么运动,不仅与物体的加速度有关还与物体的初始运动状态有关。比如一个正在向东运动的物体,若受到向西方向的外力,物体即具有向西方向的加速度,则物体向东做减速运动,直至速度减为零后,物体再在向西方向的力的作用下,向西做加速运动。由此说明,物体受到的外力决定了物体运动的加速度,而不是决定了物体运动的速度,物体的运动情况是由所受的合外力以及物体的初始运动状态共同决定的。 3、牛顿第三定律 (1)内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。 (2)作用力和反作用力与一对平衡力的区别与联系 关系类别作用力和反作用力一对平衡力相同大小相等相等方向相反、作用在同一条直线上相反、作用在同一条直线上不同作用点作用在两个不同的物体上作用在同一个物体上性质相同不一定相同作用时间同时产生同时消失一个力的变化,不影响另一个力的变化 本文链接: ://..//xuexizongjie/2800716

高考物理专题汇编物理牛顿运动定律的应用(一)及解析

高考物理专题汇编物理牛顿运动定律的应用(一)及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动

人教版高一物理知识点归纳总结

质点参考系和坐标系

时间和位移

实验:用打点计时器测速度 知识点总结 了解打点计时器的构造;会用打点计时器研究物体速度随时间变化的规律;通过分析纸带测定匀变速直线运动的加速度及其某时刻的速度;学会用图像法、列表法处理实验数据。 一、实验目的 1.练习使用打点计时器,学会用打上的点的纸带研究物体的运动。 3.测定匀变速直线运动的加速度。 二、实验原理 ⑴电磁打点计时器 ①工作电压:4~6V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ⑵电火花计时器 ①工作电压:220V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ③打点原理:它利用火花放电在纸带上打出小孔而显示点迹的计时器,当接通220V的交流电源,按下脉冲输出开关时,计时器发出的脉冲电流经接正极的放电针、墨粉纸盘到接负极的纸盘轴,产生电火花,于是在纸带上就打下一系列的点迹。 ⑵由纸带判断物体做匀变速直线运动的方法 0、1、2…为时间间隔相等的各计数点,s1、s2、s3、…为相邻两计数点间的距离,若△s=s2-s1=s3-s2=…=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。 ⑶由纸带求物体运动加速度的方法

三、实验器材 小车,细绳,钩码,一端附有定滑轮的长木板,电火花打点计时器(或打点计时器),低压交流电源,导线两根,纸带,米尺。 四、实验步骤 1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。 2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。 3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点, 取下纸带, 换上新纸带, 重复实验三次。 4.选择一条比较理想的纸带,舍掉开头的比较密集的点子, 确定好计数始点0, 标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。也可求出各计数点对应的速度, 作v-t图线, 求得直线的斜率即为物体运动的加速度。 五、注意事项 1.纸带打完后及时断开电源。 2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。 3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。 4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。 常见考法 纸带处理时高中遇到的第一个实验,非常重要,在平时的练习中、月考、期中、期末考试均会高频率出现,以致在学业水平测试和高考中也做为重点考察内容,是选择、填空题的形式出现,同学们要引起重视。 误区提醒 要注意的就是会判断纸带的运动形式、会计算某点速度、会计算加速度,在运算的过

完整word高一物理《天体运动》单元检测卷.docx

高一物理《天体运动》单元测试卷 一、 1、我国已成功地射了“神舟 6 号” 人船,已知船在太空中运行的 道是一个,的一个焦点是地球的球心,如所示.船在运行中只受到 地球它的万有引力作用,在船从道的 A 点沿箭方向运行到 B 点的程中,以下法中正确的是() A .船的速率不 B.船的速率增大 C.船的机械能守恒D.船的机械能增加 2、把水星和金星太阳的运匀速周运.从水星与金星和太阳 在一条直上开始,若得在相同内水 星、金星的角度分θ1、θ2(均角),由此条件可 求得水星和金星() A .量之比B.太阳运的道半径之比 C.太阳运的能之比D.受到太阳的引力之比 3、若两行星的量分M 和 m,它太阳运行的道半 径分 R 和 r,它的公周期之比?() M R3MR3R2 A. m B. r 3 C. mr D.r 2 4、假地球可量均匀分布球体,已知地球表面重力加速度在两极大小 g0,赤道的大小 g;地球自周期 T,引力常量 G.地球的密度()A .B.C.D. 5、苹果落向地球,而不是地球向上运碰到苹果.下列述中正确的是() A.由苹果量小,地球的引力小,而地球量大,苹果的引力大造成的 B.由地球苹果有引力,而苹果地球没有引力造成的 C.苹果地球的作用力和地球苹果的作用力是相等的,由于地球量极大,不可能生明的加速度 D.以上法都不 1 6、离地面某一高度 h 的重力加速度是地球表面重力加速度的2 ,高度 h 是 1 地球半径的()A.2 倍 B. 2 C.4 倍 D.( 2 -1)倍

7、均匀分布在地球赤道平面上空的三颗同步通信卫星能够实现除地球南北极等 少数地区外的“全球通信”。一直地球半径为R,地球表面的重力加速度为g,地 球自转周期为 T,下面列出的是关于散客卫星中任意两颗卫星间距离s 的表达式, 其中正确的是() 4222 332233gR T C.gR T D.42 8、北斗卫星系统由地球同步轨道卫星与低轨道卫星两种组成,这两种卫星在轨 道正常运行时() A .同步轨道卫星运行的周期较大B.同步轨道卫星运行的线速度较大 C.同步轨道卫星运行可能飞越南京上空D.两种卫星运行速度都大于第一宇宙 速度 二、多项选择 9、列关于卫星的说法正确的是() A. 同步卫星运行速度等于7.9 km/s B. 同步卫星在赤道上空,离地面高度一定,相对地面静止 C.第一宇宙速度是地球近地卫星的环绕速度 D.第一宇宙速度与卫星的质量有关 10、2014 年 10 月 24 日凌晨 2 时,“小飞”嫦娥五号试验器在西昌卫星发射中心 发射成功,并于11 月 1 日顺利返回,成功着陆.这是中国首次实施从月球轨道 返回地球的返回飞行试验器.试验器对嫦娥五号关键技术进行了相关验证,以确 保后续的探月计划顺利进行.设想几年以后,我国宇航员随“嫦娥”号成功登月: 宇航员随“嫦娥”号登月飞船贴近月球表面做匀速圆周运动,宇航员测出飞船绕行 N 圈所用的时间为T;登月后宇航员利用随身携带的弹簧秤测出质量为m 的iPhoneN 手机所受的“重力”为 F.已知万有引力常量为G.则根据以上信息我们 可以得到() A .月球的密度B.月球的自转周期 C.飞船的质量D.月球的“第一宇宙速度” 11、由于某种原因,人造地球卫星的轨道半径减小了,那么 A.卫星受到的万有引力增大,线速度减小 B.卫星的向心加速度增大,周期减小 C.卫星的动能、重力势能和机械能都减小 D.卫星的动能增大,重力势能减小,机械能减小 12、下列说法正确的是 ()

高中物理牛顿运动定律题20套(带答案)

高中物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资

(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o , 求: ()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能. 【答案】()1物资P 从B 端开始运动时的加速度是()2 10/.2m s 物资P 到达A 端时的动能 是900J . 【解析】 【分析】 (1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度; (2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】 (1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=; cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+= (2)解法一:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22 A mg F L s mv mv θ--=- 到A 端时的动能2 19002 kA A E mv J = = 解法二:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用, P 的加速度2 2sin cos 2/a g g m s θμθ=-= 后段运动有:2 22212 L s vt a t -=+, 解得:21t s =, 到达A 端的速度226/A v v a t m s =+=

高考物理牛顿运动定律试题经典及解析

高考物理牛顿运动定律试题经典及解析 一、高中物理精讲专题测试牛顿运动定律 1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求: (1)物体与水平面间的动摩擦因数; (2)水平推力F的大小; (3)s内物体运动位移的大小. 【答案】(1)0.2;(2)5.6N;(3)56m。 【解析】 【分析】 【详解】 (1)由题意可知,由v-t图像可知,物体在4~6s内加速度: 物体在4~6s内受力如图所示 根据牛顿第二定律有: 联立解得:μ=0.2 (2)由v-t图像可知:物体在0~4s内加速度: 又由题意可知:物体在0~4s内受力如图所示 根据牛顿第二定律有: 代入数据得:F=5.6N (3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:

【点睛】 在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活 处理.在这类问题时,加速度是联系运动和力的纽带、桥梁. 2.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为 0.8h m =。在光滑的轨道上A 处设置一固定的障碍物,当小车撞到障碍物时会被粘住不 动,而货物继续运动,最后恰好落在光滑轨道上的B 点。已知货物与小车上表面的动摩擦因数0.5μ=,货物做平抛运动的水平距离AB 长为1.2m ,重力加速度g 取210/m s 。 ()1求货物从小车右端滑出时的速度; ()2若已知OA 段距离足够长,导致小车在碰到A 之前已经与货物达到共同速度,则小车 的长度是多少? 【答案】(1)3m/s ;(2)6.7m 【解析】 【详解】 ()1设货物从小车右端滑出时的速度为x v ,滑出之后做平抛运动, 在竖直方向上:2 12 h gt = , 水平方向:AB x l v t = 解得:3/x v m s = ()2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研 究对象,系统在水平方向动量守恒, 由动量守恒定律得:()0mv m M v =+共, 解得:4/v m s =共, 由能量守恒定律得:()2201122 Q mgs mv m M v μ==-+共相对, 解得:6s m =相对, 当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得: 22 11'22 x mgs mv mv 共μ-= -,

高一物理天体运动方面练习题

物理测试 1、 两颗人造卫星A 、B 绕地球做圆周运动,周期之比为TA :TB=1:8;则轨道半径之比和运动速率之比分别为( ) A 、RA :RB=4:1 vA :vB=1:2 B、RA :RB=4:1 vA :vB=2:1 C、RA :RB=1:4 vA :vB=1:2 D、RA :RB=1:4 vA :vB=2:1 2、如图,在一个半径为R、质量为M的均匀球体中,紧贴着球的边缘挖去一个半径为R/2的球星空穴后,剩余的 阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大? 3、两个球形的行星A、B各有一个卫星a和b,卫星的圆轨迹接近各行星的表面。如果两行星质量之比为MA/MB=p,两个行星半径之比RA/RB=q,则两卫星周期之比TA/TB为______ 4、一颗人在地球卫星以初速度v发射后,可绕地球做匀速圆周运动,若使发射速度为2v,该卫星可能( ) A、绕地球做匀速圆周运动,周期变大 B、绕地球运动,轨道变为椭圆 C、不绕地球运动,轨道变为椭圆 D、挣脱太阳引力的束缚,飞到太阳系以外的宇宙 5、如图,有A、B两颗行星绕同一颗恒星做圆周运动,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 (1)至少经过多长时间,两行星再次相距最近? (2)至少经过多长时间,两行星相距最远? 6、已知地球的质量为M,地球的半径为R,地球的自传周期为T,地球表面的重力加速度为g,无线电信号的传播 速度为C,如果你用卫星电话通过地球卫星中的转发器发的无线电信号与对方通话,则在你讲完话后要听到对 方的回话,所需要的最短时间为( ) A、322244πT gR c ? B 、322242πT gR c ? C 、)4(43222R T gR c -?π D 、)4(23222R T gR c -?π 7、在天体演变过程中,红色巨星发生爆炸后,可以形成中子星,中子星具有极高的密度。 (1)若已知某中子星的密度为ρ,该中子星的卫星绕它作圆周运动,试求该中子星运行的最小周期。

高一物理牛顿运动定律测试题

(三)牛顿运动定律测验卷 一.命题双向表 二. 期望值:65 三. 试卷 (三)牛顿运动定律测验卷 一.选择题(每道小题 4分共 40分 ) 1.下面关于惯性的说法正确的是() A.物体不容易停下来是因为物体具有惯性 B.速度大的物体惯性一定大 C.物体表现出惯性时,一定遵循惯性定律 D.惯性总是有害的,我们应设法防止其不利影响 2.一个物体受到多个力作用而保持静止,后来物体所受的各力中只有一个力逐渐减小到零后 又逐渐增大,其它力保持不变,直至物体恢复到开始的受力情况,则物体在这一过程中A.物体的速度逐渐增大到某一数值后又逐渐减小到零 B.物体的速度从零逐渐增大到某一数值后又逐渐减小到另一数值 C.物体的速度从零开始逐渐增大到某一数值 D.以上说法均不对 3.质量为m1和m2的两个物体,分别以v1和v2的速度在光滑水平面上做匀速直线运动, 且v1

图-1 图 3-3-7 A .力F 与v1、v2同向,且m1>m2 B .力F 与v1、v2同向,且m1m2 D .力F 与v1、v2反向,且m1 2a 1 D a 2 = 2a 1 9、质量为m 1和m 2的两个物体,由静止从同一高度下落,运动中所受的空气阻力分别是F 1和F2.如果发现质量为m 1的物体先落地,那么 A. m 1>m 2 B. F 1<F 2 C. F 1/m 1<F 2/m 2 D. F 1/m 1>F 2/m 2 10、如图所示,将质量为m =0.1kg 的物体用两个完全一样的竖直轻弹簧固定在升降机内,当升降机和物体以4m/s 2的加速度匀加速向上运动时,上面的弹簧对物体的拉力为0.4N ,当升降机和物体以8m/s 2的加速度向上运动 时,上面弹簧的拉力为 A 、0.6N B 、0.8N C 、1.0N D 、 1.2N

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

重点高中物理天体运动知识

重点高中物理天体运动 知识 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

“万有引力定律”习题归类例析 万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析. 一、求天体的质量(或密度) 1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量 由mg=G得.(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.) [例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为 设初始平抛小球的初速度为v,则水平位移为x=vt.有○1 当以2v的速度平抛小球时,水平位移为x'=2vt.所以有② 在星球表面上物体的重力近似等于万有引力,有mg=G③ 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量

卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为 [例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)() A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r B.月球绕地球运行的周期T和地球的半径r C.月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T和轨道半径r [解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D 项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系 可得 由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为() A. B.

最新高中物理牛顿运动定律试题经典

最新高中物理牛顿运动定律试题经典 一、高中物理精讲专题测试牛顿运动定律 1.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求: (1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】 由图得:0-2s 内环的加速度a=v t =0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N 联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30° 2.如图甲所示,质量为m 的A 放在足够高的平台上,平台表面光滑.质量也为m 的物块B 放在水平地面上,物块B 与劲度系数为k 的轻质弹簧相连,弹簧 与物块A 用绕过定滑轮的轻绳相连,轻绳刚好绷紧.现给物块A 施加水平向右的拉力F (未知),使物块A 做初速度为零的匀加速直线运动,加速度为a ,重力加速度为,g A B 、均可视为质点. (1)当物块B 刚好要离开地面时,拉力F 的大小及物块A 的速度大小分别为多少; (2)若将物块A 换成物块C ,拉力F 的方向与水平方向成037θ=角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块C 的质量应满足什么条件?(00 sin 370.6,cos370.8==)

高考物理牛顿运动定律练习题及解析

高考物理牛顿运动定律练习题及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.如图1所示,在水平面上有一质量为m 1=1kg 的足够长的木板,其上叠放一质量为m 2=2kg 的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等?现给木块施加随时间t 增大的水平拉力F =3t (N ),重力加速度大小g =10m/s 2

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

高一物理必修一牛顿运动定律知识点总结-精选文档

高一物理必修一牛顿运动定律知识点总结 物理学与其他许多自然科学息息相关,如物理、化学、生物和地理等。小编准备了高一物理必修一牛顿运动定律知识点,希望你喜欢。 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。 (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:a??v,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。(不能说力是产生?t 速度的原因、力是维持速度的原因,也不能说力是改变加速度的原因 (3)定律说明了任何物体都有一个极其重要的属性惯性;一 切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,因此它不是一个实验定律 (5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律

当成牛顿第二定律在F=0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。公式F=ma. (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础; (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,力的瞬时效果是加速度而不是速度; (3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,Fx=max,Fy=may, 若F 为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不 是物体的实际加速度。 (4)牛顿第二定律F=ma定义了力的基本单位牛顿(使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即 1N=1kg.m/s2.

高考物理牛顿运动定律专项训练及答案.doc

高考物理牛顿运动定律专项训练及答案 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v0= 2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v1= 4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v2= 1m/s,方向向左。重力加速度g= 10m/s2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】( 1)0.3( 2)1 (3)2.75m 20 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:a1 v2 v1 1 4 m / s2 3m / s2,方向向右 t 1 对小滑块根据牛顿第二定律有:1mg ma1,可以得到: 1 0.3 ; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: v0 1 mg22mg m t1 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 1 mg 2 2mg m v2 t2 而且 t1 t2 t 1s 联立可以得到: 1 t1 0.5s,t2 0.5s ; 2 , 20 (3)在t1 0.5s时间内,木板向右减速运动,其向右运动的位移为:0v0 x1t10.5m ,方向向右; 在 t20.5s 时间内,木板向左加速运动,其向左加速运动的位移为:

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

相关主题