搜档网
当前位置:搜档网 › 变频器驱动电路常用的几种驱动

变频器驱动电路常用的几种驱动

变频器驱动电路常用的几种驱动
变频器驱动电路常用的几种驱动

变频器驱动电路常用的几种驱动IC

变频器驱动电路中常用IC,共有为数不多的几种。可以设想一下,变频器电路的通用电路,必定是主电路(包括三相整流电路和三相逆变电路)和驱动电路,即便是型号的功率级别不同的变频器,驱动电路却往往采用了同一型号的驱动IC,甚至于驱动电路的结构和布局,是非常类似的和接近的。

早期的和小功率的变频器机种,经常采用TLP250、A3120(HCPL3120)驱动IC,内部电路简单,不含IGBT保护电路;以后被大量广泛采用的是PC923、PC929的组合驱动电路,往往上三臂IGBT采用PC923驱动,而下三臂IGBT则采用PC929驱动。PC929内含IGBT检测保护电路等;智能化程度比较高的专用驱动芯片A316J,也在大量机型中被采用。

通过熟悉驱动IC的引脚功能和掌握相关的检测方法,达到对驱动电路进行故障判断与检测的能力,以及能对不同型号的驱动IC应急进行代换与修复。

一、TLP250和HCPL3120驱动IC:

8 Vcc 7 Vo 6 Vo

5 GND

8 Vcc

7 Vo

6 Vo

5 GND

8 Vcc

7 Vo

6 Nc

TLP250 HCPL3120/ J312 HCNW3120

图1 三种驱动IC的功能电路图

TLP250:输入IF电流阀值5mA,电源电压10∽35V,输出电流±,隔离电压2500V,开通/关断时间(t PLH/ t PHL)μs。可直接驱动50A1200V的IGBT模块,在小功率变频器驱动电路中,和早期变频器产品中被普遍采用。

HCNW3120(A3120):与HCPL3120、HCPLJ312内部电路结构相同,只是因选材和工艺的不同,后者的电隔离能力低于前者。输入IF电流阀值,电源电压15∽30V,输出电流±2A,隔离电压1414V,可直接驱动150A/1200V的IGBT模块。

三种驱动IC的引脚功能基本一致,小功率机型中可用TLP250直接代换另两种HCNW3120和HCPL3120,大多数情况下TLP350、HCNW3120可以互换,虽然它们的个别参数和内部电路有所差异,如TPL250的电流输出能力较低,但在变频器中功率机型中,驱动IC往往有后置放大器,对驱动IC的电流输出能力就不是太挑剔了。

驱动IC实质上都为光耦合器件,具有优良的电气隔离特性。输入侧内部电路为一只发光二极管,有明显的正、反向电阻特性。用指针式万用表×1k档测量,2、3脚正向电阻约为100kΩ左右,反向电阻无穷大;用×10k档测量,正向电阻约为25kΩ左右,反向电阻也为无穷大。当然2、3脚与输出侧各引脚电阻,都是无穷大的。5、6脚和5、8脚之间,均有鲜明的正、反向电阻,当5脚搭红表笔时,有10kΩ/30 kΩ的电阻值,5脚接黑表笔时,电阻值接近于无穷大。因选材、工艺和封装型式的不同和测量仪表的选型不同,得出的测量数值会有一定的差异。TLP250的输出电路采用互补式电压跟随器输出电

路,V1、V2均为双极型器件三极管。而HCPL3120的输出电路V2采用了DMOS 三极管,两种芯片的输出侧电阻值有所差异。在上电检测中,从驱动IC 的电路结构中可得出如下结论:当2、3脚输入电流通路接通时,TPL250内部V1导通,6、7脚则与8脚电压相近或相等;当2、3脚输入电流为零时,TLP250内部V2导通,6、7脚则与5脚电位相近或相等。这即是对TLP250好坏进行判断的依据。

TLP250在线测量:

因机型不同,外围电路的数值不尽相同,所以测量得出的在线电阻值的参考意义不大。在供电状态下,可方便测出TLP250的好坏情况。驱动电路的带电检测,须在单独检修驱动电路的情况下或已将逆变功率电路的供电切除的情况下进行!严禁在整机运行状态下,直接下笔测量驱动电路——由表笔引入的干扰信号会误触通IBGT ,造成严重损坏!在脱开逆变电路或切断逆变电路供电的情况下,和CPU 主板能输出正常六路驱动脉冲的情况下,可以在线检测驱动IC 的工作状态。

在变频器的控制线路处于停机状态时,测量2、3脚电压应为0V ,测量5、6脚电压应为OV ;操作变频器的操作显示面板,使之处于启动运行状态,测量2、3脚应有左右的正向电压值,此时测量5、6脚之间应有2--4V 左右的电压输出。说明TLP250是好的。2、3脚输入电压有变化,但输出脚无电压变化,或输出脚一直保持一个固定不变的高电平或低电平,说明TLP250损坏。

当然,也可用外加电源串联限流电阻提供TLP250的输入电流,检测输出脚的电压变化,来检测判断TLP250的好坏。上述检测方法同样适用于HCNW3120等的检测。 二、PC923、PC929驱动IC :

IF- 18 Vcc

5 Vc

6 Vo

7 GND IF+ 3

IF- 2Nc 4Nc 5Nc 6Nc 7

13 Vcc 12 Vc 11 Vo 10 GND 14 GND 9 C 8 FS

图2 配对应用的驱动IC :PC923(8引脚)、PC929(14引脚)

两片驱动IC 经常成对出现,成为驱动电路的一个经典组合模式。PC923用于上三臂IGBT 管子的驱动,PC929则用于驱动下三臂IGBT 管子,并同时承担对IGBT 导通管压降的检测,对IBGT 实施过流保护和输出OC 报警信号的任务。PC929与普通驱动IC 的不同,在于内部含有IGBT 保护电路和OC 信号输出电路,将驱动和保护功能集成于一体。

PC923的相关参数:输入IF 电流值5∽20mA ,电源电压15∽35V ,输出峰值电流±,隔离电压5000V ,开通/关断时间(t PLH/ t PHL )μs 。可直接驱动50A/1200V 以下的小功率IGBT 模块。PC923的电路结构同TLP250等相近,但输出引脚不太一样。5、8脚之间可接入限流电阻,限制输出电流以保护内部V1、V2三极管。常规应用,是将5、8脚直接短接,接入供电电源的正极。如果将输出侧引线改动一下,也可以与TLP520、A3120等互为代换。其上电检测方法也同于TLP250,在此不予赘述。

PC929的相关参数与PC923相接近,在电路结构上要复杂一些。1、2脚为内部发光二极管阴极,3脚为发光管阳极,1、3脚构成了信号输入端。4、5、6、7脚为空端子。输入信号经内部光电耦合器、放大器隔离处理后经接口电路输入到推挽式输出电路。10、14脚为输出侧供电负端,13脚为输出侧供电正端,12脚为输出级供电端,一般应用中将13、12脚短接。11脚为驱动信号输出端,经栅极电阻接IGBT或后置功率放大电路。PC929的9脚为IGBT管压降信号检测脚,9、10脚经外电路并联于IGBT的C、E极上。IGBT在额定电流下的正常管压降仅为3V左右。异常管压降的产生表征了IGBT运行在危险的过流状态下。PC929的8脚为IGBT管子的OC(过载、过流、短路)信号输出脚,由外接光耦合器将故障信号返回CPU。

图3 PC923、PC929与后置放大器构成的U相驱动电路

PC929内部IGBT保护电路的动作过程:在正常状态下,变频器无论处于待机或运行状态,2、3脚输入脉冲信号电流,11脚相继产生+15V和的输出驱动电压信号。此时PC929的8(FS)脚一直为高电平状态;当所驱动的IGBT管子流过异常电流时(如2倍以上额定电流),IGBT的导通管压降迅速上升,使9脚电压到达故障报警阀值(7V),PC929内部的IGBT保护电路起控,11脚输出的正向激励电压降低,使IGBT的导通电流下降,同时控制8脚内部的三极管Q3导通,输出一个低电平的OC故障信号,经外接光耦合器送入CPU,CPU据过流情况实施保护停机等动作。

表1 PC923、PC929输出侧的各脚电阻值(kΩ)

PC9293、2脚10脚搭红笔10、8脚10、9脚10、11脚10、12脚10、13脚正向25∞5510∞20

反向∞10脚搭黑笔1313121110在单独维修电源/驱动板的上电检测中,因PC929的9、10脚与IGBT模块脱离,一接受运行信号,8脚即报出OC故障信号,11脚输出脉冲电压也被内部IGBT保护电路所嵌制,致使无法测出PC929的工作状态。需采取相应措施,解除PC929的管压降检测功能,强制电路正常工作,达到方便检测的目的。

三、智能型驱动IC——HCPL-316J(A316J):

图4 HCPL-316J内部结构框图及引脚功能图

图5 HCPL-316J内部电路原理图

图6 由HCPL-316J构成的驱动电路

图4和图5分别为A316J的内部结构图和原理图。AJ316的输出电流值达,可直接驱动150A/1200V 的IGBT。作为一种专用驱动芯片,其各项功能已接近完善,外围附属电路相对简洁。输入侧内部电路为数字门电路,阻抗较高,不必取用大的信号源电流。内含欠电压封锁输出电路和IGBT保护电路;内含输入脉冲信号和输出OC信号的两路光电耦合器;具有故障时封锁驱动脉冲和故障复位控制功能,与CPU 配合,可实现自动停机、自动复位等控制。

如图4和图5,A316J内部以两只光耦合器的光传输通道为分界点,分出了输入侧电路和输出侧电路。1、2为V IN+、V IN-正/负信号输入端,LED1与相关输入侧、输出侧电路构成了脉冲信号传输电路。输入信号经门电路由发光管LED1(光耦合器)传输至输出侧电路。输出侧接受到的光信号再经受控放大电路,进行功率放大后由11脚输出,驱动IGBT模块。LED1的阳极和阴极分别由7、8脚引出,便于外接故障保护电路,以切断脉冲信号的传输。但常规应用中,一般是将7脚悬空,8脚直接接输入侧信号(电源)地,构成了信号直通回路。

内部输出级电路为推挽式输出电路,由复合放大器保障大电流输出能力。实际电路中,控制电路的供电端子13脚与输出级放大器的供电端子12脚也是短接的,接入驱动电路供电电源的正极,9、10脚接入供电负极,电源电压范围为15∽30V。

驱动电路对IGBT的过载保护,并非是通过电流采样——串联电流采样电阻或采用电流互感器来进行的,而是由IGBT的通态管压降,来判断IGBT是否出处于过流状态。在额定电流以下运行时,IGBT 管压降不大于3V,当运行电流达到IGBT的两倍时,管压降会上升到7V以上。应该实施保护停机了。 LED2(光电耦合器)与输入、输出侧相关电路构成了IGBT管压降检测电路、IGBT模块的OC信号报警电路和故障复位电路。14脚为IGBT管压降信号(IGBT过电流检测信号)输入脚,14、16脚经外接元件并联于IGBT的C、E极上。正常工作状态下,IGBT保护电路不动作,LED2为截止状态,输入侧内部RS触发器的输出Q端保持低电平,对LED1的信号输入通路不起控制作用,同时6脚内部DMOS管因无工作偏压处于截止状态,6脚(模块OC信号输出脚)为高阻态(高电平),电路正常工作;当负载过重或驱动电路本身故障或IGBT有开路性损坏时,14脚检测到IGBT导通期间的管压降达7V以上时,内部IGBT 保护电路起控,11脚内部功率输出电路被先行封锁,LED2导通,RS触发器Q端变为高电压,脉冲信号输入门电路被封锁,同时6脚内部DMOS管子导通,将低电平的OC信号输入CPU或前级故障信号处理电路。当RS触发器被触发后,将维持故障锁定状态,LED1的传输通路被切断,驱动信号无输出。直到AJ316

的5脚(复位信号输入脚)接受一个外来(该信号常用CPU输出)低电平的复位信号时,RS触发器状态复位,LDE1等电路构成的脉冲信号传输通道,才又重新开通。15脚在OC故障信号输出时为高电平,也可配合外接电路进行故障报警等,一般电路中,15脚也被空置未用。

OC故障信号、供电电源欠电压信号和脉冲输入信号,决定着AJ316的输出状态。输出推挽电路具有互锁功能,确保上、下管子不会同时导通。当供电电压低落到12V以下时,为避免IGBT欠激励而导致电路故障,内部欠电压电路保护电路起控,推挽输出电路的DMOS下管被强制导通,将驱动脉冲输出端下拉为低电平,IGBT被截止;在脉冲输入信号有效期间,IGBT保护电路检测到IGBT的管压降异常上升时,则保护电路起控,推挽输出电路的上部达林顿管被关断,并由RS触发器实施了故障锁定。同时推挽输出电路下管中并联的DMOS管子中放大倍数小的管子先行导通,经外接触发回路将IGBT的G、E结电容所储存的电荷进行缓慢释放,使IGBT软关断,避免由主电路的分布电感形成过大的Ldi/dt,易使IGBT超出安全工作区而损坏。

对A316J驱动IC的测量判断见下表。

表2 A316J的各脚电阻值(MF47型表×1k档测量)

A316J的上电检测,请参见本博的其它文章。

旷野之雪

2010年3月21日星期日

变频器常用光耦驱动PC923和PC929详解

变频器常用光耦驱动PC923和PC929详解在变频器驱动芯片中,PC923与PC929算是比较常见的了。在知名品牌如台安变频器,安川变频器,富士变频器中都有使用到。两者可谓是黄金搭档。本文将对这两个驱动芯片的原理和应用进行详细的剖析! 图2 配对应用的驱动IC:PC923(8引脚)、PC929(14引脚) PC923用于上三臂IGBT管的驱动,PC929则用于驱动下三臂IGBT管,同时承担对IGBT导通管压降的检测,对IBGT实施过流保护和输出OC报警信号的任务。PC929与普通驱动IC的不同,在于内部含有IGBT保护电路和OC信号输出电路,将驱动和保护集于一体。 PC923的相关参数:输入IF电流5∽20mA,电源电压15∽35V,输出峰值电流±0.4A,隔离电压5000V,开通/关断时间0.5μs。可直接驱动50A/1200V以下的IGBT模块。PC923的电路结构同TLP250等相近,但输出引脚不一样。5、8脚之间可接入限流电阻,限制输出电流以保护内部V1、V2三极管。常规应用,是将5、8脚短接,接入供电电源的正极。如果将输出侧引线改动一下,也可以与TLP520、3120等互为代换。它的上电检测方法也同于TLP250,在此不予赘述。 PC929的相关参数与PC923相接近,在电路结构上要复杂的多。1、2脚为内部发光二极管阴极,3脚为发光管阳极,1、3脚构成了信号输入端。4、5、6、7脚为空端子。输入信号经内部光电耦合器、放大器隔离处理后经接口电路输入到推挽式输出电路。 10、14脚为输出侧供电负极,13脚为输出侧供电正端,12脚为输出级供电端,一般应用中将13、12脚短接。11脚为驱动信号输出端,经栅极电阻接IGBT或后置功率放大电路。PC929的9脚为IGBT管压降信号检测脚,9、10脚经外电路并联于IGBT的C、E 极上。IGBT在额定电流下的正常管压降仅为3V左右。异常管压降的产生表明了IGBT运行在过流状态下。PC929的8脚为IGBT管子的OC(过载、过流、短路)信号输出脚,由外接光耦合器将故障信号返回给CPU。

几种常用变频器驱动电路的维修方法概要

几种常用变频器驱动电路的维修方法 (1驱动电路损坏的原因及检查 造成驱动损坏的原因有各种各样的,一般来说出现的问题也无非是U,V,W三相无输出,或者输出不平衡,再或者输出平衡但是在低频的时候抖动,还有启动报警等等。当一台变频器大电容后的快熔开路,或者是IGBT逆变模块损坏的情况下,驱动电路基本都不可能完好无损,切不可换上好的快熔或者IGBT逆变模块,这样很容易造成刚换上的好的器件再次损坏。 这个时候应该着重检查一下驱动电路上是否有打火的印记,这里可以先将IGBT 逆变模块的驱动脚连线拔掉,用万用表电阻挡测量六路驱动电路是否阻值都相同(但是极个别的变频器驱动电路不是六路阻值都相同的:如三菱、富士等变频器,如果六路阻值都基本相同还不能完全证明驱动电路是完好的,接着需要使用电子示波器测量六路驱动电路上电压是否相同,当给定一个启动信号时六路驱动电路的波形是否一致; 如果手里没有电子示波器的话,也可以尝试使用数字式电子万用表来测量驱动电路六路的直流电压,一般来说,未启动时的每路驱动电路上的直流电压约为10V左右,启动后的直流电压约为2-3V,如果测量结果一切正常的话,基本可以判断此变频器的驱动电路是好的。接着就将IGBT逆变模块连接到驱动电路上,但是记住在没有100%把握的情况最稳妥的方法还是将IGBT逆变模块的P从直流母线上断开,中间接一组串联的灯泡或者一个功率大一点的电阻,这样能在电路出现大电流的情况下,保护IGBT逆变模块不被大电容的放电电流烧坏,下面就讲几个在维修变频器时和驱动电路有关的实例: (2安川616G5,3.7kW的变频器 安川616G5,3.7kW的变频器,故障现象为三相输出正常,但在低速时电动机抖动,无法进行正常运行。首先估计多数为变频器驱动电路损坏,正确的解决办法应该是确定故障现象后将变频器打开,将IGBT逆变模块从印刷电路板上卸下,使用电子示

616G3安川变频器驱动电路图说

《616G3-55kW安川变频器》主电路 HI-35E2T2CU-U/70A R r/R U V W 3CN/4 16CN 风扇故障检测端子 2.3开路时跳FAN故障 开路时跳FU故障 开路时跳OH故障 14CN/15CN 开路时跳OH故障

《616G3-55kW安川变频器》主电路图说 所有变频器主电路的结构都是相似的,乃至于是相同的。而安川变频器的主电路和台湾东元变频器的主电路更是如出一辙。稍后我观察到两机的控制面板是一样的,控制面板和参数的设置也是相似的。发现两种从硬件到软件都相似甚至于是相同的机器,给安装调试与维修,都会带来很多的方便。只要手头有一种技术资料参考,就可以调试和维修二种设备了。 打开这两种大功率变频器的外壳,检查主电路时,安装于逆变模块上方(与模块并联的)的六只长方形盒体状的大东西,首先会引起我们的兴趣——与每相上臂IGBT管子并联的是型号为MS1250D225P,与下臂IGBT管子并联的型号为MS1250D225N。用句网络上的话说:这究竟是个什么东东?安装于此处意欲何为呢? 大凡并联在IGBT管子上的东西,或电容或阻容网络,均是为保护IGBT管子而设置的。即当该管子截止时,快速消耗掉反向电压所形成的能量,提供一个反向电流的通路,以保护IGBT管子不承受(实质上是使其承受得少一点罢了)反压的冲击。众所周知,无论是双极型或是场效应器件,在承受正向电压上往往有一定的富裕量,但对于反向电压的耐受能力却是极其脆弱的。所以在IGBT管子上并联的一嘟喽一嘟喽的东西,可以说都是完成此一消耗反压任务的。 需要说明的是:MS1250D225P和MS1250D225N的内部电路,笔者并未打开实物进行验证,模块损坏后,这两种器件往往都是完好的,所以也不便将其破坏后拆解。上图的内部电路是据测量揣摩画出的,仅为读者朋友提供一个参考。我查找了大量资料和在网络上进行了搜寻,均未找到此元件的资料。从揣测电路的基础上进行原理上的分析,显然容易产生误导。故暂时省略对其原理的解析。 但在模块上并联了此类元件后,将在检修上给我们带来新的体验。见下述。 按照常规的检修方法,我们在更换损坏的模块后,进行通电试验前,须将上图中的P点切断,串入两只25W(或40W)灯泡,再行上电,这样万一逆变模块回路或驱动电路异常,造成上、下臂两只IGBT管子共通对直流电源的短路时,因灯泡的限流作用,使昂贵的IGBT模块免遭损坏。其它品牌的变频器,在管子两端并联皮法级的小容量电容,在通电或变频器启动后,只要U、V、W输出端子空载,灯泡是不会亮的。但安川变频器在检修中的表现就有所不同了。在P点串入灯泡,上电,灯泡不亮,是对的,我松了一口气;按操作面板启动变频器,灯泡变为雪亮!坏了,输出模块有短路现象!这是我的第一判断。停电检查模块和驱动电路,均无异常。回头查看电路结构,在拆除掉MS1250D225P和MS1250D225N后,启动变频器后灯泡不亮了。测空载输出三相电压正常。这两只元件与外接10Ω80W电阻,提供了约百毫安的电流通路,使25W灯泡变为雪亮。以几十瓦的功耗的牺牲换来IGBT管子更高的安全性,这是安川变频器的模块保护电路的特色。 变频器空载启动后,由于MS1250D225P和MS1250D225N等元件的关系,逆变电路自身形成了一定的电路通路,并非为逆变模块不良造成。该机是一个特例。有了电路通路,也并一定是模块已经损坏了,观察一下,是哪些元件提供了此电流的通路?当新鲜的经验固化成思维定式,对故障的误判就在所难免了。 整机控制电源是由图下方一只多抽头变压器来取得的。插座3CN和4CN的短接线不同,可调整输入电压的级别,以保证次级绕组AC220V电压的精确度。散热风机是采用AC220V电源的,此电源又经整滤波做为开关电源的输入。单独检修驱动板时,须将风扇端子的2、3;接触器端子的3、4;14CN,15CN,16CN的端子均短接,人为消除欠压(FU/LU)、过热(OH)、风扇坏(FAN)等故障信号,才能使CPU输出六路脉冲信号,便于对驱动电路进行检查。

变频器维护检修规程(维护内容、安全措施)

目录 一、总则 二、维护标准 三、检修周期与内容 四、检修与质量标准 五、试验 六、设备整体评估

一、总则 主题内容与适用范围 主题内容 本规程规定了高压变频器及低压变频装置的维护标准、检修周期、项目及质量标准、检修后试验、常见故障及处理方法等。 适用范围 本规程适用于杭州晟途机电有限公司内的高压及低压变频器的检修及维护。 编写依据 参照厂家提供的使用说明书、技术资料和图纸,结合现场具体情况进行制定。 二、维护标准 变频器外观应清洁,盘面应无脱漆、锈蚀,标志应正确、齐全; 所有接线应无过热,元器件、插件的固定螺栓应无松动和锈蚀;元器件、插件应清洁,无损伤和过热,插件及控制板上的电子元件应无脱焊、虚焊、过热、老化现象,功能参数符合说明书要求; 电压表、电流表、干式变压器温度表、高压带电指示装置等表计指

示正常; 所有开关应完好无损且动作灵活、可靠; 照明、冷却风扇等辅助系统应完好,运行正常; 保护回路中的元器件应无损伤,运行参数整定值准确; 整流干式变压器运行正常,绕组温度正常,无异常声音; 控制系统电源工作正常,市电控制电源消失后柜内UPS切换应正常。 IGBT模块静态测试应正常,标准值为; M; 主回路的绝缘电阻应大于5 模拟保护动作时,信号显示系统应显示正确,报警电路应可靠报警。 三、高压变频器检修周期与内容 高压变频器检修周期和项目: 检修项目: 基本维护 a.柜内的清洁; b.空气滤清器的清洁;

c.电路部件的变色、变形,漏液(电容器电阻电抗器变压器等)的确认; e.控制板(电阻、电容器的变色、变形,基板的变色、变形、脏污、焊接的老化等)的确认和清洁; f.配线(有无因发热导致的变色、腐蚀)的确认; g.紧固部分(螺栓,螺帽,螺钉类的松动)的确认; h.进行本装置的主电路部分的检查时,应在断开(OFF)输入电源后,经过约5分钟以上,在验电后进行。 i.装置内部的电容器在将输入电源断开(OFF)后电荷仍会残留一段时间,会有触电的危险。 j.为防止发生触电事故,在设备运转的状态下请不要打开门。 深度维护 第一步主电路器件及控制回路器件的清洁 第二步柜体,结构用品 a.冷却风扇:确认风量有无异常,风扇的噪声是否増加。特别是拆除后重新安装时,如果忘记拧紧螺栓等,会因为振动使轴承叶片等受到损坏,因此要特别小心。 b.滤网:目测检查滤网是否堵塞,在室外轻轻拍打,去掉粉尘,在中性清洗剂的溶液中去掉脏物,水洗后干燥。 c.主电路部件,柜内所有部件:检查机壳内有无灰尘堆积,变压器、导体紧固部分、保险丝、电容器、电阻有无变色、发热、异常声音、异味、损坏;仔细检查配线、安装零件有无断线、断开的配线、紧固

变频器电路原理详解经典

要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动! 变频器维修入门--电路分析图 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

科沃—工控维修的120 .gzkowo. 驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路科沃—电梯维修的120 .gzkowo. 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,部都具有保护功能。

变频器检修规程资料

变频器检修维护工作规程 目次 1总则 2完好标准 3检修周期与内容 4检修与质量标准 5试验与验收 6维护保养与故障处理 7附件 1总则 1.1内容与适用范围 1.1.1内容:本规程规定了高压变频器及低压变频装置的完好标准、检修周期、项目及质量标准、检修后试验及验收、常见故障及处理方法等。 1.1.2适用范围本规程适用于明湖热电厂高压及低压变频器的检修。 1.1.3参照厂家提供的使用说明书、技术资料和图纸,结合我厂设备具体情况进行制定。 2标准 2.1外观应清洁,盘面应无脱漆、锈蚀,标志应正确、齐全; 2.2所有接线应无过热,元器件、插件的固定螺栓应无松动和锈蚀;元器件、插件应清洁,无损伤和过热,插件及控制板上的电子元件应无脱

焊、虚焊、过热、老化现象,功能参数符合说明书要求; 2.3电压表、电流表、干式变压器温度表、高压带电指示装置等表计指示正常; 2.4所有开关应完好无损且动作灵活、可靠; 2.5照明、冷却风扇等辅助系统应完好,运行正常; 2.6保护回路中的元器件应无损伤,运行参数整定值准确; 2.7整流干式变压器运行正常,绕组温度正常,无异常声音; 2.8控制系统双电源互投装置工作正常,交流控制电源消失后柜内UPS 切换应正常。 2.9各IGBT 模块工作温度应正常; 2.10主回路的绝缘电阻应大于5 MΩ; 2.11模拟保护动作时,信号显示系统应显示正确,报警电路应可靠报警。 3检修周期与内容 3.1高压变频器检修周期和项目: 日检:每天1 次 月检:每3~6 月1 次年检:每1~2 年1 次 3.2.1检修项目: 3.2.1.1日检:对于以下项目,以目测检查为中心实施,有异常时应立即进行维修: a.确认安装环境:确认温度、湿度、有无特殊气体、有无尘埃; b.确认电抗器、变压器、冷却风扇等有无异常声音,有无振动;

变频器驱动电路详解

变频器驱动电路详解 测量驱动电路输出的六路驱动脉冲的电压幅度都符合要求,如用交流档测量正向激励脉冲电压的幅度约14V左右,负向截止电压的幅度约7.5V左右(不同的机型有所差异),对驱动电路经过以上检查,一般检修人员就认为可以装机了,此中忽略了一个极其重要的检查环节——对驱动电路电流(功率)输出能力的检查!很多我们认为已经正常修复的变频器,在运行中还会暴露出更隐蔽的故障现象,并由此导致了一定的返修率。 变频器空载或轻载运行正常,但带上一定负载后,出现电机振动、输出电压偏相、频跳OC故障等。 故障原因:A、驱动电路的供电电源电流(功率)输出能力不足;B、驱动IC或驱动IC后置放大器低效,输出内阻变大,使驱动脉冲的电压幅度或电流幅度不足;C、IGBT低效,导通内阻变大,导通管压降增大。 C原因所导致的故障比例并不高,而且限于维修修部的条件所限,如无法为变频器提供额定负载试机。但A、B原因所带来的隐蔽性故障,我们可以采用为驱动增加负载的方法,使其暴露出来,并进而修复之,从面能使返修率降到最低。IGBT的正常开通既需要幅值足够的激励电路,如+12V以上,更需要足够的驱动电流,保障其可靠开通,或者说保障其导通在一定的低导通内阻下。上述A、B 故障原因的实质,即由于驱动电路的功率输出能力不足,导致了IGBT虽能开通但不能处于良好的低导能内阻的开通状态下,从而表现出输出偏相、电机振动剧烈和频跳OC故障等。 让我们从IGBT的控制特性上来做一下较为深入的分析,找出故障的根源所在。 一、IGBT的控制特性: 通常的观念,认为IGBT器件是电压型控制器件——为栅偏压控制,只需提供一定电平幅度的激励电压,而不需吸取激励电流。在小功率电路中,仅由数字门电路,就可以驱动MOS型绝缘栅场效应管。做为IGBT,输入电路恰好具有MOS型绝缘栅场效应管的特性,因而也可视为电压控制器件。这种观念其实有失偏颇。因结构和工艺的原因,IGBT管子的栅-射结间形成了一个名为Cge的结电容,对IGBT管子开通和截止的控制,其实就是Cge进行的充、放电控制。+15V的激励脉冲电压,提供了Cge的一个充电电流通路,IGBT因之而开通;-7。5V的负向脉冲电压,将Cge上的“已充电荷强行拉出来”,起到对充电电荷的快速中和作用,IGBT因之而截止。 假定IGBT管子只对一个工作频率为零的直流电路进行通断控制,对Cge一次性充满电后,几乎不再需要进行充、放电的控制,那么将此电路中的IGBT管子说成是电压控制器件,是成立的。而问题是:变频器输出电路中的IGBT管子工作于数kHz的频率之下,其栅偏压也为数kHz频率的脉冲电压!一方面,对于这种较高频率的信号,Cge的呈现出的容抗是较小的,故形成了较大的充、放电电流。另一方面,要使IGBT可靠和快速的开通(力争使管子有较小的导通内阻),在IGBT的允许工作区内,就要提供尽可能大的驱动电流(充电电流)。对于截止的控制也是一样,须提供一个低内阻(欧姆级)的外部泄放电路,将栅-射结电容上的电荷极快地泄放掉!

变频器逆变单元故障的检修方法

逆变单元故障包括OUT1、OUT2、OUT3,它们分别代表逆变单元U相、V相、W相故障。此故障一般只出现在驱动光耦使用PC929的机器中,代表驱动板有1270系列、1290AV03、1250AVS系列、1258AVS系列等。 OUT 故障一般分有上电跳OUT;运行跳OUT;带载加载跳OUT。此原因一般都是因为检测电路检测到逆变管VCE电压异常输出告警信号,当控制板检测到此信号后马上停止驱动输出并显示出故障代码。当然不排除因保护电路本身异常导致的误保护。值得注意的是在某些情况下会因为开关电源输出不稳定影响驱动电路供电导致机器无规律跳OUT故障,如因散热风扇启动电流过大,每次运行风扇启动瞬间即跳OUT。检修时需注意区分。 (1)对于上电跳OUT故障:此问题一般都是因为保护电路本身不良或者驱动部分,模块门极有明显的短路、断路情况。可以通过屏蔽相应相OUT保护信号判断。如果屏蔽后其它一切正常,则说明问题是因保护电路本身不良引起。屏蔽后运行,如果有三相不平衡,则说明驱动电路或者模块有问题。 (2)对于运行跳OUT故障:此问题一般都是驱动电路和模块本身不良引起。首先可以用万用表电阻档测试驱动电路相关部位及模块门极有无明显短路、断路现象。屏蔽相关相OUT保护信号运行,测试驱动波形是否正常(无示波器时可使用万用表交流电压档对比测试各路驱动波形)。重点关注波形的形状、幅度、死区时间等,最后检测IGBT是否损坏。对比其它相测试驱动门极结电容是否正常(万用表电容档)。 (3)对于带载加载跳OUT故障:此情况相对前两种来说检修难度稍大。首先,检测保护电路本身是否有元件性能不良。正确检测前提下,对怀疑有问题的二极管、贴片电容采取替换法代换之(注意判断控制板上OUT信号检测电路是否正常,可用替换法)。第二,对比检测驱动电路驱动光耦供电是否正常,门极驱动电阻是否变值。第三,不加载测试驱动波形是否正常。最后仔细判断,测试IGBT本身是否有问题。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.sodocs.net/doc/ad1918090.html,/

变频器驱动电路的结构及原理

变频器驱动电路的结构 15KW以下的驱动电路,则由PC923和PC929经栅极电阻直接驱动IGBT,中、大功率变频器,则由后置放大器将驱动冗输出的驱动脉冲进行功率放大后,再输入了的C、E极。 驱动电路的电源电路,是故障检测的一个重要环节要求,而且要求其具有足够的电流(功率)输出能力一不但要求其输出电压范围满足正常-带负载能力。每一相的上、下化IGBT驱动电路,因IGBT的触发回路不存在共电位点,驱动电路也需要相互隔离的供电电源。由开关电源电路中的开关变压器绕组输出的交流电压,经整流滤波成直流电压后,又由R68、 VS1(10V稳压二极管)简单稳压电路处理成正和负两路电源,供给驱动电路。电源的0V(零电位点)线接人了PC2的2、3极,驱动化的供电脚则接人了 28V的电源电压。 光耦合器的输入、输人侧应有独立的供电电源,以形成输入电流和输出电流的通路。PC2的2、 3脚输入电流由+5V*提供。此处,供电标记为十5V*,是为了和开关电源电路输出的+V5相区分。+5V*供电电路如图4-10所示。该电路可看作一简单的动态恒流源电路,R179为稳压二极管的限流电阻,稳压二极管的击穿电压值为 3.5V左右。基极电流回路中稳压电路的接入,使流过发射结的Ib 维持一恒定值,进而使动态Ic也近似为恒定值。忽略VT8的导通压降,电路的静态输出电压为+5V,但动态输出电压值取决于所接负载电路的“动态电阻值”,而动态输出电流总是接近于恒定的,这就使得驱动电路内部发光二极管能维持一个较为恒定的光通量,从而使传输脉冲信号的“陡峭度”比较理想,使传输特性大为改善。 变频器驱动电路的原理 由CPU主板来的脉冲信号,经R66加到PC2的3脚,在输人信号低电平期间,PC2形成由+5V*、 PC2的2、 3脚内部发光二极管、信号源电路到地的输入电流通路,〔2内部输出电路的晶体管VU导通,PC2的6脚输出高电平信号18V峰值),经R65为驱动后置放大电路的VT10提供正向偏流,VT10的导通将正供电电压经栅极电阻引人到IGBT的G极,IGBT开通;在输人信号的高电平期间,PC2的3脚也为+5V高电平,因而无输人电流通路,PC2内部输出电路的晶体管VT2导通,6脚转为负压输出(10V峰值),经R65为驱动后置放大电路的VT11提供了正向偏流,VT11的导通将供电的负电压——IGBT的截止电压经栅极电阻R91引人到IGBT的G极,IGBT关断。在待机状态,PC2的3脚输入信号一直维持在+5V高电平状态,则驱动电路一直输出-10V的截止电压,加到CN1出触发端子上,IGBT—直维持于可靠的截止状态上。 因IGBT栅-射极间结电容的存在,对其开通和截止的控制过程,实质上是对IGBT栅-射极间结电容进行充、放电的过程,这个充、放电过程形成了一定的峰值电流,故功率较大的IGBT模块须由VT10、 VT11组成的互补式电压跟随放大器来驱动。

变频驱动与控制技术介绍

变频驱动技术

绪论 以交流(直流)电动机为动力拖动各种生产机械的系统我们称之为交流(直流)调速系统,也称交流(直流)电气拖动系统。变频调速技术是交 流电气传动系统的一种。 目的 根据设备和工艺的要求通过改变电动机速度或输出转矩改变终端设备的速度或输出转矩。 意义 序号意义有代表意义的行业或设备 1节能风机、水泵、注塑机 2提高产品质量机床、印刷、包装等生产线 3改善工作环境电梯、中央空调 注:并不是所有的设备使用调速装置后都可以节能

调速系统构成 中间传动机构 交流电源输入 终端机械 交流电机 直流调速装置 直流输出 皮带轮、齿轮箱等风机、泵等 直流电机 交流调速装置 交流输出 执行机构 变频器

交、直流调速系统的特点 直流调速系统特点: ●控制对象:直流电动机 ●控制原理简单,一种调速方式●性能优良,对硬件要求不高●电机有换向电刷(换向火化)●电机设计功率受限 ●电机易损坏,不适应恶劣现场●需定期维护交流调速系统特点: ●控制对象:交流电动机 ●控制原理复杂,有多种调速方式●性能较差,对硬件要求较高 ●电机无电刷,无换向火化问题●电机功率设计不受限 ●电机不易损坏,适应恶劣现场●基本免维护

国内调速技术现状 (1)晶闸管交流器和开关断器件(DJT、IGBT、VDMOS)斩波器供电的直流调速设备。 随着交流调速的发展,该设备在缩减,但由于我国旧设备改造任务多,以及它在几百至一千多kW范围内价格比交流调速低得多,所以在短期内有一定市场。国产设备能满足需要,部分出口。自行开发的控制器多为模拟控制,近年来主要采用进口数字控制器配国产功率装置。 (2)IGBT等逆变器供电的交流变频调速设备。这类设备的市场很大,总容量占的比例不大,但台数多,增长快,应用范围从单机扩展到全生产线,从简单的V/f控制到高性能的矢量控制。约有50家工厂和公司生产,其中合资企业占很大比重。 (3)负载换流式电流型晶闸管逆变器供电的交流变频调速设备。这类产品在抽水蓄水能电站的机组起动,大容量风机、泵、压缩机和轧机传动方面有很大需求。国内只有少数科研单位有能力制造,目前容量最大做到12MW。功率装置国内配套,自行开发的控制装置只有模拟式的,数字装置需进口,自己开发应用软件。 (4)交-交变频器供电的交流变频调速设备。这类产品在轧机和矿井卷扬传动方面有很大需求,台数不多,功率大。主要靠进口,国内只有少数科研单位有能力制造。目前最大容量做到7000~8000kW。功率部分国产,数字控制装置进口,包括开发应用软件。

变频器驱动电路常用的几种驱动IC

变频器驱动电路常用的几种驱动IC 变频器驱动电路中常用IC,共有为数不多的几种。可以设想一下,变频器电路的通用电路,必定是主电路(包括三相整流电路和三相逆变电路)和驱动电路,即便是型号的功率级别不同的变频器,驱动电路却往往采用了同一型号的驱动IC,甚至于驱动电路的结构和布局,是非常类似的和接近的。 早期的和小功率的变频器机种,经常采用TLP250、A3120(HCPL3120)驱动IC,内部电路简单,不含IGBT保护电路;以后被大量广泛采用的是PC923、PC929的组合驱动电路,往往上三臂IGBT采用PC923驱动,而下三臂IGBT则采用PC929驱动。PC929内含IGBT检测保护电路等;智能化程度比较高的专用驱动芯片A316J,也在大量机型中被采用。 通过熟悉驱动IC的引脚功能和掌握相关的检测方法,达到对驱动电路进行故障判断与检测的能力,以及能对不同型号的驱动IC应急进行代换与修复。 一、TLP250和HCPL3120驱动IC: 8 Vcc 7 Vo 6 Vo 5 GND 8 Vcc 7 Vo 6 Vo 5 GND 8 Vcc 7 Vo 6 Nc TLP250 HCPL3120/ J312 HCNW3120 图1 三种驱动IC的功能电路图 TLP250:输入IF电流阀值5mA,电源电压10∽35V,输出电流±0.5A,隔离电压2500V,开通/关断时间(t PLH/ t PHL)0.5μs。可直接驱动50A1200V的IGBT模块,在小功率变频器驱动电路中,和早期变频器产品中被普遍采用。 HCNW3120(A3120):与HCPL3120、HCPLJ312内部电路结构相同,只是因选材和工艺的不同,后者的电隔离能力低于前者。输入IF电流阀值2.5mA,电源电压15∽30V,输出电流±2A,隔离电压1414V,可直接驱动150A/1200V的IGBT模块。 三种驱动IC的引脚功能基本一致,小功率机型中可用TLP250直接代换另两种HCNW3120和HCPL3120,大多数情况下TLP350、HCNW3120可以互换,虽然它们的个别参数和内部电路有所差异,如TPL250的电流输出能力较低,但在变频器中功率机型中,驱动IC往往有后置放大器,对驱动IC的电流输出能力就不是太挑剔了。 驱动IC实质上都为光耦合器件,具有优良的电气隔离特性。输入侧内部电路为一只发光二极管,有明显的正、反向电阻特性。用指针式万用表×1k档测量,2、3脚正向电阻约为100kΩ左右,反向电阻无穷大;用×10k档测量,正向电阻约为25kΩ左右,反向电阻也为无穷大。当然2、3脚与输出侧各引脚电阻,都是无穷大的。5、6脚和5、8脚之间,均有鲜明的正、反向电阻,当5脚搭红表笔时,有10kΩ/30 kΩ的电阻值,5脚接黑表笔时,电阻值接近于无穷大。因选材、工艺和封装型式的不同和测量

变频器驱动IC的区别和OC报警的解除方法

PC817 驱动IC 的区别和OC 报警的解除方法 ——答shihong888网友的提问 一、各类驱动IC 的区别: 变频器驱动电路的核心元器件是驱动IC ,常用型号有TLP250、A3120、PC923、PC929、A316J 等。驱动IC 实质上是光耦器件的一种,采用光耦器件的目的,一是实现对耦输入、输出侧不同供电回路的隔离,二是输出侧有一定的功率驱动能力,是兼有电气隔离和功率放大两种作用的。 普通四线端光耦器件,如PC817等,内部电路由一只输入发光二极管与输出光敏三极管构成,在输入侧有了输入电流(典型应用值5—10mA )通路后, 输出侧三极管产生被激发光电子而导通。主传输,如变频器的数字信号控制端子,多采 作为驱动IC 的光耦器件,在结构上比PC817稍微复杂一些,输出级多由射极输出到补放大器构成,如TLP250、A3120、PC923等,输出级由V1、V2两级射极互补电路组成。V1导通将VCC 正供电电压经输出6、7脚加到IGBT 的栅射结上,提供IGBT 开通的驱动电流。如果把IGBT 的栅射结看作是一只电容的话,则V1导通提供了IGBT 栅射结电容的充电电流,令其开通;而V2的导通,则将输出6、7脚拉为GND 地电平或负供电电压,提供所驱动IGBT 栅射结电容的电荷泄放通道,令其快速截止。工作中V1、V2两管交替导通,实施对IGBT 的开通与截止控制。需要说明的是,对此驱动电路的供电往往采用+15V 、-7.5V 的正负双电源,以增强其控制能力。 8 Vcc 7 Vo 6 Vo 5 GND (1).TLP250IC PC929则在TLP250、A3120、PC923等的电路结构基础上,又添加了IGBT 保护电路,又称为IGBT 导通管压降检测电路,主要承担对IGBT 的过流、短路的快速保护。大家知道,在变频器U 、V 、W 输出回路中,已经串接了两只或三只电流互感器(由霍尔元件采集电流信号并经放大电路所处理),其输出信号经后级电路分别处理成模拟和开关量信号,送入CPU ,进行电流显示、输出控制、

变频器原理图讲解

系列原理图简介 一.机型简介 整个30X系列包括以下几个类型,同功率的机型在硬件上的区别就是控制板的功能上有优化,驱动板都是相同的。不同功率段的硬件设计模式上,15KW以下包括15KW采取驱动板带整流桥+单管IGBT+DSP板的模式,30KW~45KW采用可控硅+驱动板45DRV不带整流部分+IGNT模块+DSP板的模式,55KW~75KW 采用可控硅+驱动板55POWER不带整流部分+55DRV+IGNT模块+DSP板的模式,90KW以上的结构和55KW不同之处在于55DRV不同。 二.系统框图 三.4KW驱动板 驱动板按功率段分,15KW以下的驱动板模式和18.5KW以上驱动板模式。这里主要以4KW小功率机型和45KW大功率机型为例讲解。先以4KW为例进行介绍。 驱动板主要包括整流滤波+软启动+开关电源+电源指示灯+UVW电流检测 +PWM光耦隔离+电平转换+故障保护电路+母线电压检测,下面分别介绍: 3.1软启动+母线电压检测 左图母线电压检测是变压器副边输出经过电阻分压后Udc信号给DSP,标准是母线电压为530V时Udc=1.50v;右图为软启动电路,刚通电瞬间电容相当于短路,母线电流很大,通过电阻R92限流来消耗能量,到电容充好电后通过继电器将R92短路,这里设定的是母线电压为400V继电器动作.右图中还有电源指示灯电路通过电阻分压方式设计. 3.2开关电源 单端反激式开关电源由反激式变压器+UC3844电源控制芯片+MOS管,单端反激工作原理: MOS管导通,母线电压加在变压器原边线圈,副边线圈为上负下正,二极管反向,副边绕组没有电流;MOS管截止,副边线圈为上正下负,绕组中储存的能量向负载释放.根据IN=I'N',在MOS管导通期间储存的能量在截止期间有多少释放,取决于截止时间. UC3844电源管理器主要是控制MOS管的脉冲占空比,根据IF,VF,+15V三个反馈信号调整输出脉冲占空比,IF>1v,VF>15V,+15V>15V,三种情况下都会自动调节.标准是+15V误差为±0.02V; 电感的作用,滤除占波开关电流中的脉动成份。从滤波效果看,电感量越大,效果越明显;但电感过大,会使滤波器的电磁时间常数变大,使输出电压对占空

变频器维修故障及解决方案

变频器维修故障及解决方案 上海千举机电科技有限公司 1、发动机缸盖变形的修理近十多年来,随着电力电子技术、微电子技术及现代控制理论向交流电气传动领域的渗透,变频交流调速已逐渐取代了过去的滑差调速、变极调速、直流调速等调速系统。几乎可以说,有交流电动机的地方就有变频器的使用。其最主要的特点是具有高效率的驱动性能及良好的控制特性。 现在通用型的变频器一般包括以下几个部分:整流桥、逆变桥、中间直流电路、预充电电路、控制电路、驱动电路等。一台变频器的好坏,驱动电路起着至关重要的作用,现就来谈谈驱动电路常见的问题以及解决的办法。 驱动电路只是一个统称,随着技术的不断发展,驱动电路本身也经历了从插脚式元的驱动电路到光耦驱动电路,再到厚膜驱动电路,以及比较新的集成驱动电路,现在前面提到的后三种驱动电路在维修中还是经常能遇到的。 2几种驱动电路的维修方法 (1)驱动电路损坏的原因及检查 造成驱动损坏的原因有各种各样的,一般来说出现的问题也无非是U,V,W三相无输出,或者输出不平衡,再或者输出平衡但是在低频的时候抖动,还有启动报警等等。当一台变频器大电容后的快熔开路,或者是IGBT逆变模块损坏的情况下,驱动电路基本都不可能完好无损,切不可换上好的快熔或者IGBT逆变模块,这样很容易造成刚换上的好的器件再次损坏。这个时候应该着重检查下驱动电路上是否有打火的印记,这里可以先将IGBT 逆变模块的驱动脚连线拔掉,用万用表电阻挡测量六路驱动电路是否阻值都相同(但是极个别的变频器驱动电路不是六路阻值都相同的:如三菱、富士等变频器),如果六路阻值都基本相同还不能完全证明驱动电路是完好的,接着需要使用电子示波器测量六路驱动电路上电压是否相同,当给定一个启动信号时六路驱动电路的波形是否一致如果手里没有电子示波器的话,也可以尝试使用数字式电子万用表来测量驱动电路六路的直流电压,一般来说,未启动时的每路驱动电路上的直流电压约为10V左右,启动后的直流电压约为2-3V,如果测量结果一切正常的话,基本可以判断此变频器的驱动电路是好的。接着就将IGBT逆变模块连接到驱动电路上,但是记住在没有100%把握的情况最稳妥的方法还是将IGBT逆变模块的P 从直流母线上断开,中间接一组串联的灯泡或者一个功率大一点的电阻,这样能在电路出现大电流的情况下,保护IGBT逆变模块不被大电容的放电电流烧坏,下面就讲几个在维修变频器时和驱动电路有关的实例: (2)安川616G5,3.7kW的变频器 安川616G5,3.7kW的变频器,故障现象为三相输出正常,但在低速时电动机抖动,无法进行正常运行。首先估计多数为变频器驱动电路损坏,正确的解决办法应该是确定故障现象后将变频器打开,将IGBT逆变模块从印刷电路板上卸下,使用电子示波器观察六路驱动电路打开时的波形是否一致,找出不一致的那一路驱动电路,更换该驱动电路上的光耦,一般为PC923或者PC929,若变频器使用年数超过3年,推荐将驱动电路的电解电容全部更换,然后再用示波器观察,待六路波形一致后,装上IGBT逆变模块,进行负载实验,抖动现象消除。 (3)富士G9变频器 富士G9变频器,故障现在为上电无显示。 接到手估计可能是变频器开关电源损坏,打开变频器检查开关电源线路,但是经检查开关电源器件线路都无损坏,在DC正负处上直流电压也无显示,这个时候要估计到可能

新手入门--变频器电路原理分析

新手入门--变频器电路原理分析(分享) 要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动!变频器维修入门--电路分析图对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,内部都具有保护功能。 图2.4所示的电路是较典型的过流检测保护电路。由电流取样、信号隔离放大、信号放大输出三部分组成。

变频器原理图讲解

系 列 原 理 一. 机型简介 整个30X 系列包括以下几个类型,同功率的机型在硬件上的区别就是控制板的 功能上有优化,驱动板都是相同的。不同功率段的硬件设计模式上, 15KW 以下 包括15KW 采取驱动板带整流桥+单管IGBT+DSP 板的模式,30KW~45KW 采用 可控硅+驱动板45DRV 不带整流部分+IGNT 模块+DSP 板的模式,55KW~75KW 采用可控硅+驱动板55POWER 不带整流部分+55DRV+IGNT 模块+DSP 板的模 式,90KW 以上的结构和55KW 不同之处在于55DRV 不同。 二. 系统框图 三. 4KW 驱动板 驱动板按功率段分,15KW 以下的驱动板模式和18.5KW 以上驱动板模式。这里 主要以4KW 小功率机型和45KW 大功率机型为例讲解。先以4KW 为例进行介 绍。 驱动板主要包括整流滤波+软启动+开关电源+电源指示灯+UVW 电流检测 +PWM 光耦隔离+电平转换+故障保护电路+母线电压检测,下面分别介绍: 3.1软启动+母线电压检测 iM 1 1 匚:「?斗 | f — I - 1 1 丄问f 丄 匸丄 ; 亠 £?「 | .—— i L L R 石丄^ J ——■ 左图母线电压检测是变压器副边输出经过电阻分压后 Ude 信号给DSP 标准是母 线电压为53DVWPdS=150V 右图为软启动电路,刚通电瞬间电容相当于短路,母 ,到 电容充好电后通过继电器将琴R 92短 400V 继电器动作.右图中还有电源指示灯电路通过 * 3.2开关电源 单端反激式开关电源由反激式变压器 +UC3844电源控制芯片+MOS 管,单端反 激工作原理: MOS 管导通,母线电压加在变压器原边线圈,副边线圈为上负下正,二极管反向,副 边绕组没有电流;MOS 管截止,副边线圈为上正下负,绕组中储存的能量向负载释 放.根据IN=I'N',在MOS 管导通期间储存的能量在截止期间有多少释放,取决于 截止时间. UC3844电源管理器主要是控制 MOS 管的脉冲占空比,根据IF ,VF ,+15V 三 个反馈信号调整输出脉冲占空比,IF>1v,VF>15V,+15V>15V,三种情况下都会自动 调节标准是+15V 误差为土 0.02V ; 电感的作用,滤除占波开关电流中的脉动成份。从滤波效果看,电感量越大, 效果越明显;但电感过大,会使滤波器的电磁时间常数变大, 使输出电压对占空 线电流很大-?,通过电阻■ R9 路,这里设定的是母线电压为? 电阻分压方式设计. I — -■ ] IM 川黒 92限流来消耗能量 zr I

变频器维修之A316J驱动电路的检修

变频器维修之A316J(HCPL-316J)驱动电路的检修 是共用D51、E32直流电源的。驱动供电也由稳压电路分为+15V和-7.2V两路电源,以形成对IGBT供电的+15V激励电压回路和-7.2V的截止电压回路。驱动IC(A316J)的左侧引脚为输入侧电路,右侧引脚为输出侧电路。无论是脉冲信号还是OC故障信号,都由内部光耦合器电路相隔离。由PC929相比,因内部已有对OC信号的隔离,可省去外接光耦合器,并且脉冲信号、OC信号和故障复位信号可经控制端子CNN1直接与CPU脉冲输出引脚相连。在有的变频器电路中,仅是下三臂IGBT驱动电路采用A316J,上三管采用TLP250等。 图-1阿尔法变频器驱动电路 一、电路工作原理简述(以U上臂IGBT驱动电路为例): U31(A316J)的输入侧的供电为+5V,由CPU主板来的正向脉冲信号输入到3脚,经2脚到地形成输入信号通路;U31本身可能产生的OC信号由5脚经CNN1排线端子返回CPU,从CPU来的复位控制信号也由CNN1端子输入到U31的6脚。整个驱动电路中的六块驱动IC,

其OC信号和复位信号端是并联的,即检测到任一臂IGBT有过流故障时,都将OC故障信号以或输入方式,输入到CPU;而从CPU来的故障复位信号,也同时加到六片A316的6脚,将整个驱动电路一同复位。 驱动脉冲从A316J的11脚输出,经R74、R75栅极电阻引入到模块内部IGBT的G极。R77为栅极旁路电阻,Z34、Z35为栅、射极正负偏压嵌位稳压管,保护IGBT的输入回路的安全。 A316J的14脚外电路与16脚引线并接于IGBT的C、E极,构成IGBT管压降检测电路,电路仅由R72、D61、C46三只元件构成,C48吸收瞬态干扰,避免误保护动作出现。在11脚输出高电平驱动电压期间,IGBT1的导通,使D61正偏导通,将b点电位嵌制于OV驱动供电电位上。U31的14脚输入一个“IGBT良好开通”的低电平信号,驱动脉冲被正常传输;因过流或IGBT低效或损坏时,b、c两点间电压异常升高,D61反偏截止失去低电平嵌位作用,14脚为高电平状态,U31内部IGBT保护电路起控,将脉冲信号传输通道锁定,同时令5脚输出一个低电平的OC信号,通知CPU。直到6脚输入一个CPU来的低电平复位信号后,U31的故障锁定状态才被解除。 二、检修步骤和方法: 根据驱动电路相关的故障特征,可以有的放矢地进行检查和修复了。 1、小功率变频器,逆变输出电路采用集成型(一体化)模块,引脚较多,而且直接焊接于电源/驱动板上。在对驱动电路上电进行电压检测前,必须先行切断逆变模块的供电,待驱动电路检修完毕后,再将逆变模块的供电恢复!用壁纸刀或钢锯条将上图a点切开一个2mm以上的缺口,印刷线路板多为双面的,应将线路板两面的铜箔条各切开一个口子。切完后,测量一下从P供电线到逆变模块的P供电引入端子,呈现较大电阻后,再行上电。切忌在只切断一面的铜箔而另一面铜箔仍旧相连的状态下上电,避免测量不慎或驱动电路存在故障而造成IGBT的损坏! 2、电路静态测量(操作控制在停机状态): 输入侧电路(A316J的4脚为OV电位点): 3、4脚之间有+5V的供电引入;1脚信号输入端为接近0V的低电平。5、6脚为接近+5V 的高电平。说明A316J输入端静态工作点基本正常。 A、若测得1脚有1V(比如+5V)以上的高电平信号输入,检查CNN1端子10到CPU脉冲

相关主题