搜档网
当前位置:搜档网 › 课题三相异步电动机串电阻降压起动

课题三相异步电动机串电阻降压起动

课题三相异步电动机串电阻降压起动
课题三相异步电动机串电阻降压起动

液压控制机床滑台运动的PLC控制

授课教师:李梅

授课班级:08中电

授课时间:2010年10月20日

授课地点:5号楼二楼PLC实训室

附1 梯形图

《液压控制机床滑台运动的PLC控制》任务书

(学生用)

班级_______组别______组员_________指导教师 ___________ (一)根据工作原理写输入/输出端口配置表

(二)根据该电路的工作原理编程,画出梯形图、接线及调试。

(1)快进:

原位SQ1(X2)压合,按启动按钮SB1(X0)→液压泵电动机KM1(Y0)得电,电磁阀KA1(Y1)得电开始快进;

(教师讲解)

(a)梯形图:

(b)编程、接线与调试

接线:输入部分(按钮)与(输入触点)相连。

(按钮)与(输入触点)相连。

输出部分(输出触点)与(指示灯)相连。

(输出触点)与(指示灯)相连。

(注:不要遗漏公共端COM的连接线)

调试:按下,灯亮。

(2)工进:

快进至SQ2(X3)被压合→电磁阀KA2(Y2)得电开始工进;

(a)梯形图:

(b)编程、接线与调试

接线:输入部分(按钮)与(输入触点)相连。

输出部分(输出触点)与(指示灯)相连。

(注:不要遗漏公共端COM的连接线)

调试:按下,灯亮。

(3)快退:

工进至终点SQ3(X4)被压合→延时2秒(T0 K20)→延时2秒到(T0)→电磁阀KA3(Y3)得电滑台快退→快退至原位SQ1(X2)被压合→电磁阀KA1(Y1)得电再次快进(线路开始作循环);

(a)梯形图:

(b)编程、接线与调试

接线:输入部分(按钮)与(输入触点)相连。

输出部分(输出触点)与(指示灯)相连。

(注:不要遗漏公共端COM的连接线)

调试:按下,灯亮。

(4)停止:

按停止按钮SB2(X1)后→滑台停止工作(Y0~Y3)。

(a)梯形图:

(b)编程、接线与调试

接线:输入部分(按钮)与(输入触点)相连。

输出部分(输出触点)与(指示灯)相连。

(注:不要遗漏公共端COM的连接线)

调试:按下,灯亮。

(三)作业

(1)排除故障:如果电路只能启动滑台快进,不能工进,试分析产生该故障的可能原因。

(2)提问:此电气控制线路部分属于哪类控制方式?试分析其工作原理。

《液压控制机床滑台运动的PLC控制》说课稿

新桥职校李梅

学科:PLC应用

日期:2010年10月20日(第六节)

地点:新桥职校5号楼二楼PLC实训室

一、本节课的目的

本节课紧紧围绕完成工作任务的需要来选择课程内容,充分利用多媒体课件、PLC 实训台等媒体实施教学。在模拟设备上完成控制线路的编程、接线、调试,使学生充分掌握分析设计电气控制系统的方法,提高实践应用能力,培养学生实事求是的科学态度和严谨细致的工作作风,为今后从事电气安装、调试、运行、维护等工作打好基础。

二、作为支撑的课题研究主要内容

电气控制线路可采用传统的继电接触器控制,也可采用PLC控制,但工业控制领域现广泛应用PLC控制。为了既达到新课标要求,又能实现学生与企业零对接,本课题尝试对液压控制机床滑台运动的控制线路采用2种方法进行控制的研究,进而进行推广应用,培养学生的综合职业能力,满足学生职业生涯发展的需要。

三、教学方法

教学设计思路:从实际应用出发,以任务为导向,通过多媒体课件、PLC实训台等媒体实施教学,增强学生对所学知识的体验和认识。

《PLC应用》是一门比较实用的课程,但它需要学生有较强逻辑思维,初始接触时学生常感到无从下手,理不清思绪,进而可能失去学习的兴趣。为此首先应用直观教学法在课堂上运用视频及动画演示等多媒体使学生对液压控制机床滑台运动有一个感性认识,并引导学生得到课题的工作原理。其次运用PLC实训台进行现场体验式教学,根据电路特点“一步接一步、一环扣一环、层层深入”,逐步完成滑台“快进、工进、快退、停止”的设计、编程与调试,有意识地培养学生的逻辑思维能力和分析问题能力,提高学生的识图能力,实现理论和实践的统一,使学生的综合应用能力进一步得到了提升。

四、本节课的地位和作用及学生情况

本课程是中等职业学校电工类专业的重要课程,是工业自动化的重要载体,在工业控制领域发挥着越来越大的作用。根据新课标职业能力培养目标中要求能理解常用电气控制线路或简单实例的组成及工作原理,会用基本指令完成此类控制电路的设计与编程。学生已学习了一些基本指令及简单的基本控制线路的设计及编程,但大部分学生对一些具体实例的原理分析还达不到应有的深度,因此在设计时会感到困难,不能独立应用。

本节课所涉及的“液压控制机床滑台运动”虽然不是中级维修电工的考核内容,书上也未曾涉及,但在实际应用中却非常重要。希望通过本次课的教学,引导学生去认识、掌握新的线路,提高分析和解决问题的能力。

五、教学目标

(1)知识目标

理解液压控制机床滑台运动控制线路的工作原理;会用基本指令完成该电路的设计。

(2)技能目标

会使用PLC实训台对该电路进行编程、接线与调试,并对可能出现的故障进行排除。

(3)德育目标

提高学生的实践应用能力,培养学生实事求是的科学态度和严谨细致的工作作风,为今后从事电气安装、调试、运行、维护等工作打好基础。

六、教学重点、难点

(1)教学重点:理解该电路的工作原理;会用基本指令完成该线路的设计;编程、接线与调试,并对可能出现的故障进行排除。

(1)教学难点:理解该电路的工作原理;编程、接线与调试,并对可能出现的故障进行排除。

七、教学程序

(1)视频、动画引入课题。

(2)复习“启-保-停”电路的编程方法。

(3)分“快进、工进、快退、停止”进行设计、编程及调试。

(4)归纳、整理梯形图。

(5)布置作业。

他励直流电动机串电阻启动的设计15613

题目 他励直流电动机串电阻启动的设计 专业:电气工程及其自动化 班级:13电牵1班 姓名:贤第 学号:20130210470103

Pan=200kw ;Uan=440v ;Ian=497A ;nN=1500r/min;Ra=0.076Ω; 采用分级启动,启动电流最大不超过2Ia N,,求各段电阻值,并且求出切除电阻时的瞬时转速和电动势,并作出机械特性曲线,对启动特性进行分析。 三、设计计划 第1天查阅资料,熟悉所选题目; 第2天根据基本原理进行方案分析; 第3天整理思路,按步骤进行设计; 第4天整理设计说明书; 第5天准备答辩; 四、设计要求 1、设计工作量为按要求完成设计说明书一份。 2、设计必须根据进度计划按期完成。 3、设计说明书必须经指导教师审查签字方可答辩。

摘要 他励直流电动机启动时由于电枢感应电动势Ea =CeΦn = 0 ,最初启动电流IS =U/Ra,若直接启动,由于Ra很小,ISt会十几倍甚至几十倍于额定电流, 无法换向,同时也会过热,因此不能直接启动。 要限制启动电流ISt的大小可以有两种方法:降低电枢电压和电枢回路串接附加电阻。本文仅以他励直流电动机的串电阻启动为主题进行详细的阐述。 在实际中,如果能够做到适当选用各级启动电阻,那么串电阻启动由于其启动设备简单、 经济和可靠,同时可以做到平滑启动,因而得到广泛应用。但对于不同类型和规格的直流电动机,对启动电阻的级数要求也不尽相同。 关键词:他励直流电动机;启动电流;串电阻启动; 目录 引言 (5) 1 直流电动机 (7) 1.1直流电动机的工作原理 (7) 1.2直流电动机的分类 (7) 1.3他励直流电机工作原理 (8)

三相绕线型异步电动机转子串电阻启动的设计说明

引言 三相异步电动机是目前应用最为广泛的电动机。要想讨论电力拖动中经常遇到的绕线型异步电动机转子电路串联电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。 异步电动机是交流电动机的一种。由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。 异步电动机按供电电源相数的不同,有三相、两相和单相之分。三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。 三相异步电动机分为三相笼型异步电动机和三相绕线型异步电动机。我的设计为三相绕线型异步电动机转子电路串电阻启动。

1 三相异步电机的工作原理和结构组成 1.1 工作原理 三相对称绕组,接通三相对称电源,流过三相对称电流,产生旋转磁场(电生磁),切割转子导体,感应电势和电流(磁变生电),载流导体在磁场中受到电磁力的作用,形成电磁转矩(电磁生力),使转子朝着旋转磁场旋转的方向旋转。 1.2 结构组成 三相异步电动机主要由定子、转子、气隙三部分组成。 1.2.1 定子 三相异步电动机的定子由定子铁心、定子绕组和机座三部分组成。 1)定子铁心定子铁心是异步电动机主磁通磁路的一部分。为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。对于容量较大(10kW以上)的电动机,在硅钢片两面涂以绝缘漆,作为片间绝缘之用。定子铁心上的槽形通常有三种半闭口槽,半开口槽及开口槽。从提高电动机的效率和功率因数来看,半闭口槽最好。 2)定子绕组定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。开口槽也放入成型线圈,其绝缘通常采用云母带,线圈放入槽必须与槽壁之间隔有“槽绝缘”,以免电机在运行时绕组对铁心出现击穿或短路故障。一般根据定子绕组在槽布置的情况,有单层绕组及双层绕组两种基本型型。容量较大的异步电动机都采用双层绕组。双层绕组在每槽的导线分上下两层放置,上下层线圈边之间需要用层间绝缘隔开。小容量异步电动机常采用单层绕组。槽定子绕组的导线用槽楔紧固。槽楔常用的材料是竹、胶布板或环氧玻璃布板等非磁性材料。 3)机座机座的作用主要是固定和支撑定子铁心。中小型异步电动机一般都采用铸铁机坐,并根据不同的冷却方式而采用不同的机座型式。例如小型封闭式电动机、电机中损耗变成的热量全都要通过机座散出。为了加强散热能力,在机座的外表面有很多均匀分布的散热筋,以增大散热面积。对于大中型异步电动机,一般采用钢板焊接的机座。 1.2.2 转子 异步电机的转子由转子铁心、转子绕组和转轴组成。

直流电动机起动实验

实验一直流电动机起动实验 一、实验目的理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R F=181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。 四、实验步骤 1) 建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2 π =9.55。 2) 计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“ 0” 电枢电阻 R a =0.0870 电枢电感估算

直流电机串电阻启动(DOC)

指导教师评定成绩: 审定成绩: 重庆邮电大学移通学院 课程设计报告 设计题目:直流电机的串电阻启动过程设计 学校: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:年月 重庆邮电大学移通学院

目录 一、直流电动机的综述 (4) 1.1直流电动机的基本工作原理 (4) 1.2直流电动机的分类 (5) 1.3直流电动机的特点 (5) 二、他励直流电动机 (5) 2.1他励直流电动机的机械特性 (5) 2.2固有机械特性与人为机械特性 (6) 三、他励直流电动机的起动 (7) 3.1直流电动机的启动过程分析 (8) 3.2他励直流电动机起动电阻的计算 (9) 四、设计内容 (10) 五、结论 (11) 六、心得体会 (12) 七、参考文献 (12)

一、直流电动机的综述 1.1直流电动机的基本工作原理 图1 是一台最简单的直流电动机的模型,N和S是一对固定的磁极(一般是电磁铁,也可以是永久磁铁)。磁极之间有一个可以转动的铁质圆柱体,称为电枢铁心。铁心表面固定一个用绝缘导体构成的电枢线圈abcd,线圈的两端分别接到相互绝缘的两个弧形铜片上,弧形铜片称为换向片,它们的组合体称为换向器。在换向器上放置固定不动而与换向片滑动接触的电刷A和B,线圈abcd通过换向器和电刷接通外电路。电枢铁心、电枢线圈和换向器构成的整体称为电枢。 如果将电源正负极分别接电刷A和B,则线圈abcd中流过电流。在导体ab中,电流由a 流向b,在导体cd中,电流由c流向d,如图(a)所示。载流导体ab和cd均处于N和S 极之间的磁场当中,受到的电磁力的作用。用左手定则可知,载流导体ab受到的电磁力F 的方向是向左的,力图使电枢逆时针方向运动,载流导体cd受到的电磁力F的方向是向右的, 也是力图使电枢逆时针方向运动,这一对电磁力形成一个转矩, 即电磁转矩T,其方向为逆时针方向,使整个电枢沿逆时针方向转动。当电枢转过180°, 导体cd转到N极下,ab转到S极上,如图(b)所示。由于电流仍从电刷A流入,使cd中的电流变为由d流向c,而ab中的电流由b流向a,再从电刷B流出。用左手定则判别可知,导体cd受到的电磁力的方向是向左的,ab受到的电磁力的方向是向右的,因而电磁转矩的方向仍是逆时针方向,使电枢沿逆时针方向继续转动。当电枢在转过180°,就又回到图(a)所示的情况。这就是直流电动机的基本工作原理。

绕线型异步电动机串电阻

课程设计名称:电子技术课程设计题目:绕线型异步电动机串电阻启动 学期:2013-2014学年第2学期 专业:电气技术 班级:电技12-2 姓名:周立君 学号:1205020229 指导教师:王巍

辽宁工程技术大学 课程设计成绩评定表

课程设计任务书 一、设计题目 绕线型三相异步电动机串电阻启动设计 二、设计任务 1、分析绕线型三相异步电动机的启动过程; 2、给出启动级数、各级启动电阻计算公式; 3、以实际例子说明启动级数和各级启动电阻的计算过程; 三、设计计划 电机与拖动课程设计共计1周内完成: 1、第1~2天查资料,熟悉题目; 2、第3~5天方案分析,具体按步骤进行设计及整理设计说明书; 3、第6天准备答辩; 4、第7天答辩。 四、设计要求 1、以实际例子说明启动级数和各级启动电阻的计算步骤; 2、对电枢串电阻启动进行优缺点分析; 指导教师:王巍 时间:年月日

摘要 三相异步电动机是交流电机的一种,主要用作电动机使用,因其结构简单、价格便宜、运行可靠、维护方便,是当前工农业当中应用最普遍的电动机。但是启动电流大是所有电动机启动的共性,电动机启动过程要求启动电流不能超出允许范围而且启动转矩不能太小,启动电流过大可能导致绕组烧坏,启动转矩太小会导致电动机启动过程缓慢甚至不能启动。所以,研究一种可行而适用易操作的启动方案就变得十分必要了。本课题研究绕线型三相异步电动机的电枢串电阻启动,通过理论计算,给出启动级数、各级启动电阻等详细参数,以达到增加最初起动转矩,使电动机以最大转矩T起动,避免因直接起动产生较大电流而带来的危害,提高启动的平稳性的可观效果。 关键词:异步电动机;电枢串电阻;启动

直流电动机串电阻分级启动仿真实验设计

直流电动机串电阻分级启动仿真实验 电路图搭建: 如果电动机直接启动的话,设置Step1/ Step2 /Step3的起始值为0,并且step time 设为0,也就是在0时刻开始以后一直都为0值,也就是三个电阻开关保持闭合,使所串电阻短路,仿真得到转速和电枢电流的启动图形: 可以发现,启动电流在很短的时间里就冲击到很大的值,我们将电流波形横坐标和纵坐标分别放大看看: 从图中可以看到,在时间约为0.08s时刻电流冲击到了大约1840A,这很显然不符合要求,电机一启动就烧,或者启动瞬间熔断丝就烧断。

如果这时候串一个1Ω的电阻,也就是讲三个电阻值都串进电路,设置Step1/ Step2 /Step3的step time 设置为20s,得到以下波形: 可以发现启动电流变小了很多,在200A左右,这也就满足启动电流限制的要求了,但是串联的电阻不能一直在电路中,这样会造成能量损耗,因为虽然电阻很小,但是电流很大,电流平方得到损耗电功率就很大了,即使是在额定运行时,额定电流大约在88.8A,而且我们还发现在时间t=10s时刻,电机还没有达到额定运行状态,也就是启动过程太慢,这主要是串了启动电阻的原因。

现在我们采用分级启动,下次电阻降低是在电流约为额定的1.2倍时,这样我们选t=3.5s时,把串的0.518Ω的电阻去掉,使所串电阻为0.482Ω,设置step3的step time 为3.5s,得到如下仿真图: 可以发现电流会在3.5s时又有一个冲击电流,大约是210V左右,一般也能满足要求, 也就是说,二次所串的电阻0.482欧姆能够满足要求,现在我们试试如果去掉0.838Ω的电阻,只剩一只0.162Ω时仿真的波形: 很显然看出,在时间3.5s时刻,冲击电流很大,大约460V(底下的放大波形可以清楚地看出),这也就不能满足电机的启动电流的要求。所以我们在去电阻时候要选择大小,不能一次性完全去掉,而是一次一次的分级去掉。下面就是我们进行的第二次去电阻。

电动机降压启动接线方法

电动机降压启动接线方法 一.自耦减压启动 自耦减压启动是笼型感应电动机(又称异步电动机)的启动方法之一。它具有线路结构紧凑、不受电动机绕组接线方式限制的优点,还可按允许的启动电流和所需要的启动转矩选用不同的变压器电压抽头,故适用于容量较大的电动机。 图1 自耦减压启动 工作原理如图1所示:启动电动机时,将刀柄推向启动位置,此时三相交流电源通过自耦变压器与电动机相连接。待启动完毕后,把刀柄扳至运行位置切除自耦变压器,使电动机直接接到三相电源上,电动机正常运转。此时吸合线圈KV得电吸合,通过连锁机构保持刀柄在运行位置。停转时,按下SB按钮即可。 自耦变压器次级设有多个抽头,可输出不同的电压。一般自耦变压器次级电压是初级的40%、65%、80%等,可根据启动转矩需要选用。 二.手动控制Y-△降压启动

Y-△降压启动的特点是方法简便、经济。其启动电流是直接启动时的1/3,故只适用于电动机在空载或轻载情况下启动。 图2 手动控制Y-△降压启动 图2所示为QX1型手动Y-△启动器接线图。图中L1、L2和L3接三相电源,D1、D2、D3、D4、D5和D6接电动机。当手柄扳到“0”位时,八副触点都断开,电动机断电不运转;当手柄扳到“Y”位置时,1、2、5、6、8触点闭合,3、4、7触点断开,电动机定子绕组

接成Y形降压启动;当电动机转速上升到一定值时,将手柄扳到“△”位置,这时l、2、3、4、7、8触点接通,5、6触点断开,电动机定子绕组接成△形正常运行。 三.定子绕组串联电阻启动控制 电动机启动时,在电动机定子绕组中串联电阻,由于电阻上产生电压降,加在电动机绕组上的电压低于电源电压,待启动后,再将电阻短接,使电动机在额定电压下运行,达到安全启动的目的。 定子绕组串联电阻启动控制线路如图3所示。当启动电动机时,按下按钮SB1,接触器KM1线圈得电吸合,使电动机串入电阻降压启动。这时时间继电器KT线圈也得电,KT常开触点经过延时后闭合,使KM2线圈得电吸合。KM2主触点闭合短接启动电阻,使电动机在全电压下运行。停机时,按下停机按钮SB2即可。 四.手动串联电阻启动控制 当三相交流电动机标牌上标有额定电压为220/380V(△/Y)的接线方法时,不能用Y-△方法做降压启动,可用这种串联电阻或电抗器方法启动。

三相异步电动机启动方法

三相异步电动机启动方法 降压启动就可以降低启动电流,减少线路压降。除直接启动外,降压启动一般有星-三角降压启动,自藕变压降压启动,变频启动、软启动等。 三相异步电动机接线图 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。 1、三相电源绕组有几种接线方式?三相负载的连接方式有几种? 答:三相发电机或三相变压器的二次侧都具有三相绕组,它们都是用星Y形或三角△形的方式连接起来的。 三相负载的连接与发电机三相绕组的连接相似,也可接成形或三角形△。 2、什么叫三相三线制电路?什么叫三相四线制电路? 答:将负载与发电机用三根火线连接起来。就是三相三线制电路。 用三根火线和一根中线把电源和负载起来,就是三相四线制电路。 3、什么叫三相电源和负载的星型连接?什么叫相、线电压和相、线电流?他们之间的关系如何? 答:将三相绕级的末端连接在一起,从首端分别引出导线,这就是星形连接。通常三相绕组的始端用A、B、C表示,末端用X、Y、Z表示。绕组始端的引出线称为火线。三个绕组末端连接在一起的公共点“O”称为中性点,从中性点引出的一根导线称为零线(也称中线)。如果中性点接地,则零线也称做地线。 每相组两端间的电压(即每相绕组首端与中线之间的电压)uA、uB、uC叫做相电压。 两根火线之间(即两相之间)的电压uAB、uBC、uCA叫做线电压。 流过电源每相绕组或负载的电流,叫做相电流。火线中的电流iA、iB、iC,叫做线电流。在星形连接中,线电压的有效值是相电压有效值的倍,即U线=U相。线电流等于相电流。 即I线=I相。 4、三相四线制供电系统中,中性线(零线)的作用是什么?为什么零线不允许断路?答:中性线是三相电路的公共回线。中性线能保证三相负载成为三个互不影响的独立回路;

他励直流电机串电阻启动

他励直流电动机串电阻启动仿真一、工作原理 电动机的起动是指电机合上电源后,从静止状态加速到所要求的稳定转速时的过程。起动时把电动机电枢直接加上额定电压是不允许的,因为在起动前,电机转速为零,由电枢电势公式可知,Ea也为零,电枢绕组电阻Ra又很小,若此时加上额定电压,会引起过大的起动电流Is,Is = UN/Ra,其值可达额定值的10~20倍。这样大的启动电流会产生强烈火花,甚至烧毁换向器;还会加剧电网电压的波动,影响同一电网上其他设备的正常运行,甚至可能引起电源开关跳闸。 直流电动机在电枢回路中串联电阻起动是限制起动电流和起动转矩的有效方法之一。建立他励直流电动机电枢串联电阻起动的仿真模型,仿真分析其串联电阻起动过程,获得起动过程的电枢电流、转速和电磁转矩的变化曲线。 二、参数计算 有一台他励直流电动机,参数如下: PN=100KW UaN=440V IaN=497A

nN=1500r/min Ra=0.076Ω 若采用串电阻启动,所串电阻计算如下: (1)选择I1和I2 I1=(1.5~2.0)IaN=(1.5~2.0)497A=(745.5~994)A I2=(1.1~1.2)IaN=(1.1~1.2)497A=(546.7~596.4)A 选择I1=850A ,I2=550A (2)求出起切电流比β 5.1550 85021===I I β (3)求出启动时的电枢电路电阻Ram Ω=Ω==518.0850 4401I U R aN am (4)求出启动级数m 74.45 .1lg 076.0518.0lg lg lg ===βa aN R R m 故取m=5 (5)重新计算β,校验I 2

直流电动机起动实验

F 实验一直流电动机起动实验 一、实验目的 理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、 转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R =181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理 直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电 磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可 达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这 样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖 动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢 电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不 允许采用直接起动的。 四、实验步骤 1)建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2π =9.55。 2)计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“0” 电枢电阻 电枢电感估算R a =0.0870

电机与拖动课程设计---他励直流电动机串电阻启动

课程设计名称:电机与拖动课程设计 题目:他励直流电动机串电阻启动 专业:电气工程及其自动化 班级: 姓名: 学号:

直流电动机是人类最早发明和应用的一种电机。直流电机可作为电动机用,也可作为发电机用。直流电动机是将直流电能转换成机械能而带动生产机械运转的电器设备。与交流电动机相比,直流机因结构复杂、维护困难、价格较贵等缺点制约了它的发展,但是它具有良好的启动、调速和制动性能,因此在速度调节要求较要、正反转和启动频繁或多个单元同步协调运转的生产机械上,仍广泛采用直流电动机拖动。在工业领域直流电动机仍占有一席之地。因此有必要了解直流电动的运行特性。在四种直流电动机中,他励电动机应用最为广泛。 关键词:直流电机;串电阻;启动;原理;分类:机械特性;变速

1 直流电动机简介............................... 错误!未定义书签。 2 直流电机的基本结构 (1) 2.1 定子 (1) 2.2 转子.................................... 错误!未定义书签。 2.3 气隙.................................... 错误!未定义书签。 3 直流电动机的工作原理 (2) 4 直流电机的分类 (3) 5 他励直流电动机的机械特性 (5) 6 直流电机的名牌数据和主要系列 (6) 7 固有机械特性与人为机械特性 (7) 8 他励直流电动机串电阻起动 (8) 9 起动电阻的计算 (10) 10 设计得出结论 (12) 体会............................................ 错误!未定义书签。参考文献........................................ 错误!未定义书签。

三相异步电动机启动图(精)

1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a所示。点动正转控制线路是由转换开关QS 、熔断器FU 、启动按钮SB 、接触器KM 及电动机M 组成。其中以转换开关QS 作电源隔离开关,熔断器FU 作短路保护,按钮SB 控制接触器KM 的线圈得电、失电,接触器KM 的主触头控制电动机M 的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS ,此时电动机M 尚未接通电源。按下启动按钮SB ,接触器KM 的线圈得电,带动接触器KM 的三对主触头闭合,电动机M 便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB ,使接触器KM 的线圈失电,带动接触器KM 的三对主触头恢复断

开,电动机M 失电停转。在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB 换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2. 三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM 的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB (起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时,接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

绕线异步电动机串电阻启动

1.电动机 1.1旋转磁场 定子三相对称绕组中通以频率为f 1 的三相对称电流便会产生旋转磁场。旋转磁场的转速由下式确定 n 0= p f 1 60 式中,P为电机的极对数。n 又称为同步转速旋转磁场的转向由三相电 流通入三相绕组的相序决定。改变电流相序,旋转磁场的转向随之改变。 1.2异步电动机结构 Y形的电阻,或直接通过短路端环短三相异步电动机主要由静止的和转动的两部分构成,其静止部分称为定子。定子是用硅钢片叠成的圆筒形铁心,其内圆周有槽用来安放三相对称绕组:三相对称绕组每相在空间互差120°,可联接成Y形或Δ形。三相异步电动机转动的部分称为转子,是用硅钢片叠成的圆柱形铁心,与定子铁心共同形成磁路。转子外圆周有槽用以安放转子绕组。转子绕组有鼠笼式和线绕式两种。鼠笼式:将铜条扦入槽内,两端用铜环短接,或直接用熔铝浇铸成短路绕组。线绕式:安放三相对称绕组,其一端接在一起形成Y形,另一端引出连接三个已被接成路。 1.3异步电动机工作原理 转子绕组切割旋转磁场产生感应电势,并在短路的转子绕组中形成转子电流,转子电流与旋转磁场相互作用产生电磁力,形成转动力矩,使转子随旋转磁场以转速n转动并带动机械负载。转子和旋转磁场之间转速差的存在是异步电动机转动的必要条件,转速差以转差率s衡量

S= 0-n n n ×100% 1.4定子 定子铁芯:导磁和嵌放定子三相绕组:0.5mm 硅钢片冲制涂漆叠压而成;内圆均匀开槽;槽形有半闭口;半开口和开口槽三种:适用于不同的电机 定子绕组:电路;绝缘导线绕制线圈;由若干线圈按一定规律连接成三相对称绕组交流电机的定子绕组称为电枢绕组 机座:支撑和固定作用;铸铁或钢板焊接 1.5转子 转子铁芯:导磁和嵌放转子绕组;0.5mm 硅钢片;外圆开槽 转子绕组:分为笼型和绕线型两种 笼型绕组:电路;铸铝或铜条优缺点 绕线型绕组:对称三相绕组:星接;集电环优缺点 气隙:气隙大小的影响:中小型电机的气隙为0.2mm ~2mm 2.电动机的起动指标 起动是指电动机从静止状态开始转动起来,直至最后达到稳定运行。对于任何一台电动机,在起动时,都有下列两个基本的要求。 2.1起动转矩要足够大 堵转状态时电动机刚接通电源,转子尚未转动时的工作状态,工作点在特性曲线上的S 点。这时的转差s=1,转速n=0,对应的电磁转矩T st 称为起动转矩。 堵转状态说明了电动机的直接起动能力。因为只有在T st >T L <一般要求T st >(1.1~1.2)T L ,电动机才能起动起来。T st 大,电动机才能重载起动;T st

他励直流电动机启动

运动控制系统课程设计 课题:他励直流电动机启动 系别:电气与信息工程学院 专业: 学号: 姓名: 指导教师:

城建学院 2015年1月4日 成绩评定· 一、指导教师评语(根据学生设计报告质量、答辩情况及其平时表现综合评定)。

二、评分 课程设计成绩评定

目录 一、设计目的 (1) 二、设计要求 (1) 三、设计容 (1) 3.1、直流电动机 (1) 3.1.1直流电动机 (1) 3.1.2直流电动机的分类 (2) 3.1.3他励直流电机工作原理 (2) 3.2 他励直流电动机的启动 (3) 3.2.1 他励直流电动机串电阻启动 (3) 3.2.2 直流电动机电枢串电阻起动设计方案 (6) 3.2.3 多级启动的规律 (7) 3.3 结论 (7) 3.4他励直流电动机串电阻起动特性分析 (8) 四、设计体会 (10) 五、参考文献 (10)

一、设计目的 通过对一个实用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。 二、设计要求 完成所选题目的分析与设计,进行系统总体方案的设计、论证和选择;系统单元主电路和控制电路的设计、元器件的选择和参数计算;课程设计报告的整理工作。 三、设计容 有一台他励直流电动机,已知参数如下Pan=200kw ;Uan=440v ;Ian=497A ;Nn=1500r/min;Ra=0.076Ω;采用分级启动,启动电流最大不超过2IA,,求出各段电阻值,并作出机械特性曲线,对启动特性进行分析。 他励直流电动机的启动时间虽然很短,但是如果不能采用正确的启动方法,电动机就不能正常地投入运行。为此,应对电动机的启动过程和方法进行必要的分析。 直接启动时,他励直流电动机电枢加额定电压Un,电枢回路不串任何电阻,此时由于n=0,Ea=0,所以启动电流Ist=Un/Ra,由于电枢回路总电阻Ra较小,所以Ist可以达到额定电流In的十几甚至几十倍。这样大的电流可能造成电机换向严重不良,产生火花,甚至正、负电刷间出现电弧,烧毁电刷及换向器。另外,过大的启动电流使启动转矩Tst过大,会使机械撞击,也会引起供电电网电波动,从而引起其他接于同一电网上的电气设备的正常运行,因此是不允许的。一般只有微型直流电动机,由于自身电枢电阻大,转动惯量小,启动时间短,可以直接启动,其他直流电机都不允许直接启动。 在拖动装置要求不高的场合下,可以采用降低启动电压或在电枢回路串电阻的方法。他励直流电动机在电枢回路中串电阻,具有良好的启动特性、较大的启动转矩和较小的启

PLC课程设计-三相异步电动机转子串电阻启动

目录 摘要 (1) 关键词 (1) 1 关于PLC (2) 1.1概述 (2) 1.2 PLC的系统组成 (2) 2 S7-200简介 (3) 2.1 概述 (3) 2.2 组成 (3) 3 三相异步电动机的工作原理和结构组成 (3) 3.1 工作原理 (3) 3.2 结构组成 (4) 3.2.1 定子 (4) 3.2.2 转子 (4) 3.2.3 气隙 (4) 3.3 异步电动机的结构特点 (5) 3.4 转子串电阻启动的原理 (5) 3.5 启动电阻的使用原则 (5) 4 课程设计的目的 (5) 5 主接线图 (6) 5.1三相异步电动机转子串电阻启动主接线图 (6) 5.2绕线式的作用以及优缺点 (6) 6 硬件系统的设置 (6) 6.1 资源配置 (6) 6.2 PLC接线图 (7) 7 主程序设置 (7) 7.1 主程序梯形图 (7) 7.2 工作过程分析 (9) 8模拟软件上仿真动作与实验面板上调试演示结果 (10) 9课程设计总结 (11) 参考文献 (12)

三相异步电动机转子串电阻启动 三相异步电动机转子串电阻启动 指导教师 摘要:PLC在三相异步电机控制中的应用,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强、功能完善等优点。长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。本文设计了三相异步电动机的PLC控制电路,该电路主要以性能稳定、简单实用为目的。 关键词:PLC;编程语言;三相异步电机;继电器 Three-phase Asynchronous Motor Rotor String Resistance Start Student majoring in Automation Liu Tong Tutor Zhou Jing Lei Abstract:PLC in three-phase asynchronous motor control application, compared with the traditional relay control, has control of speed, high reliability and flexibility, the perfect function etc. Long-term since, PLC is always in the industrial automation control field, igge for various automatic control equipment provides a very reliable control applications. It can provide security for automation control application reliable and comparatively perfect solutions, suitable for the current industrial enterprise of automation needs. This paper introduces the design of three-phase asynchronous motor, the PLC control circuit, this circuit mainly stable performance, simple and practical for the purpose. Key words: PLC;programming languages,;three-phase asynchronous motor,;relays

同步电动机的起动

同步电动机的起动 1.同步电机的基本原理 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。 图1.1给出了最常用的转场式同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场) 气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。 除了转场式同步电机外,还有转枢式同步电机,其磁极安装于定子上,而交流绕组分布于转子表面的槽内,这种同步电机的转子充当了电枢。图中用AX、BY、CZ三个在空间错开120 分布的线圈代表三相对称交流绕组。 图1.1同步电机结构模型 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主

磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 感应电势有效值:每相感应电势的有效值为E0 =4.44fNψ Φ 感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p ,即 f=pn/60 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 1.2同步转速 同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: n=60f/p=3000/p 要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 1.3运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 分析表明,同步电机运行于哪一种状态,主要取决于定子合成磁场与转子主极磁场之间的夹角δ,δ称为功率角。

三相异步电机起动方式(精)

三相异步电机起动方式 1)直接起动,电机直接接额定电压起动。(55KW以下) 2)降压起动:(55KW以上)降压起动的主要目的是为了限制起动电流,但同时也限制了起动转矩,因此,这种方法只适用于轻载或空载情况下起动。常用的降压起动方法有下列几种: (1)定子串电抗降压起动;这种起动方法是在电动机定子绕组的电路中串入一个三相电抗器,电抗器说简单点就是线圈,能够产生感应电动势来降低直接输入的工频电压。 (2)星形-三角形启动器起动;这种方法只适用于正常运转时定子绕组作三角形连接的电动机。起动时,先将定子绕组改接成星形,使加在每相绕组上的电压降低到额定电压的1/根号3,从而降低了起动电。因为如果380V三相供电,三角形电机的相电压为380V,则在单相上的线电压也为380V,但是如果改为星型启动的话,相电压380V,线电压只有220V,定子电压降低了;待电动机转速升高后,再将绕组接成三角形,使其在额定电压下运行。

可以证明,星形起动时的起动电流(线电流)仅为三角形直接起动时电流(线电流)的1/3,即IYst=(1/3)I△st;其起动转矩也为后者的1/3 (3)软起动器起动; (4)用自耦变压器起动。对容量较大或正常运行时作星形连接的电动机,可应用 自耦变压器降压起动。 自耦变压器降压起动的优点是不受电动机绕组接线方法的限制,可按照允许的起动电流和所需的起动转矩选择不同的抽头,常用于起动容量较大的电动机。其缺点是设备费用高,不宜频繁起动。

单相异步电机起动方式 1)电阻分相起动; 2)电容分相起动; 3)继电器起动等。 一、直流电机的旋转原理 直流电机是磁场不动,导体在磁场中运动;交流电机是磁场旋转运动,而导体不动.直流电动机分为定子绕组和转子绕组.定子绕组产生磁场.当通直流电时.定子绕组产生固定极性的磁场.转子通直流电在磁场中受力.于是转子在磁场中受力就旋转起来. 二、单相交流电动机的旋转原理 单相交流电动机只有一个绕组,转子是鼠笼式的。单相电不能产生旋转磁场.要使单 相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自动起动。

绕线型三相异步电动机串电阻启动

课程设计名称:电机与拖动课程设计 题目:绕线型三相异步电动机串电阻启动 专业:电气工程及其自动化 班级:电气09-1 姓名: XXX 学号:XXXXXXXXXX XXXX大学 课程设计成绩评定表

摘要 三相异步电动机是交流电机的一种,主要用作电动机使用,因其结构简单、价格便宜、运行可靠、维护方便,是当前工农业当中应用最普遍的电动机。但是启动电流大是所有电动机启动的共性,电动机启动过程要求启动电流不能超出允许范围而且启动转矩不能太小,启动电流过大可能导致绕组烧坏,启动转矩太小会导致电动机启动过程缓慢甚至不能启动。所以,研究一种可行而适用易操作的启动方案就变得十分必要了。本课题研究绕线型三相异步电动机的电枢串电阻启动,通过理论计算,给出启动级数、各级启动电阻等详细参数,以达到增加最初起动转矩,使电动机以最大转矩T起动,避免因直接起动产生较大电流而带来的危害,提高启动的平稳性的可观效果。 关键词:异步电动机电枢串电阻启动

目录 引言 (1) 1三相异步电动机 (2) 1.1 三相异步电动机的基本结构 (2) 1.1.1 定子 (2) 1.1.2 转子 (2) 1.2 三相异步电动机的工作原理 (2) 1.2.1 旋转磁场 (2) 1.2.2 电磁转矩的产生 (3) 1.3 异步电动机的启动方法 (3)

1.4 异步电动机的启动指标 (3) 2 绕线形异步电动机串电阻启动 (4) 2.1 启动过程分析 (4) 2.1.1 串联启动电阻Rst和Rst启动 (4) 2.1.2 切除启动电阻Rst2 (5) 2.1.3 切除启动电阻Rs1 (5) 2.2 启动电阻的计算 (5) 2.2.1 选择起动转矩Tst1和切换转矩Tst2…………………………… 5 2.2.2 求出起动转矩比β (5) 2.2.3 求出起动级数m (5) 2.2.4 重新计算β,校验T ,是否在规定范围内……………………… 7 2.2.5 求出转子每相绕组的电阻R (7) 2.2.6 计算各级总电阻 (7) 2.2.7 求出各级起动的电阻 (8) 3 实际例子分析 (9) 3.1 电动机相关参数 (9) 3.2 计算起动转矩T1 (9) 3.3 计算切换转矩T2 (9) 3.4 计算切换转矩比β (9) 3.5 计算起动级数 (9)

相关主题