搜档网
当前位置:搜档网 › 【高中数学】 空间向量及其运算 学案

【高中数学】 空间向量及其运算 学案

【高中数学】      空间向量及其运算   学案
【高中数学】      空间向量及其运算   学案

第6讲 空间向量及其运算

一、知识梳理

1.空间向量的有关定理

(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb .

(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .

(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底.

2.两个向量的数量积(与平面向量基本相同)

(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →

=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π

2

,则称向量a ,b 互相垂直,记作a ⊥b . (2)两向量的数量积

两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质

①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ?a ·b =0; ③|a |2

=a ·a =a 2

; ④|a ·b |≤|a ||b |.

(4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);

③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算

(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).

a +

b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3),

λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3, a ⊥b ?a 1b 1+a 2b 2+a 3b 3=0,

a ∥

b ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ), cos 〈a ,b 〉=a ·b |a |·|b |=a 1b 1+a 2b 2+a 3b 3

a 21+a 22+a 23·

b 21+b 22+b 2

3

. (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2), 则AB →=OB →-OA →

=(x 2-x 1,y 2-y 1,z 2-z 1). 4.直线的方向向量与平面的法向量的确定

(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →

为直线l 的方向向量,与AB →

平行的任意非零向量也是直线l 的方向向量,显然一条直线的方向向量可以有无数个.

(2)平面的法向量

①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.

②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方

程组为?

????n·a =0,n·b =0.

5.空间位置关系的向量表示

常用结论

1.向量三点共线定理

在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →

(其中x +y =1),O 为平面内

任意一点.

2.向量四点共面定理

在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →

(其中x +y +z =1),

O 为空间任意一点.

二、教材衍化

1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →

=b ,

AA 1→=c ,则BM →

=________(用a ,b ,c 表示).

解析:BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →

)=c +12(b -a )=-12a +12b +c .

答案:-12a +1

2

b +c

2.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 解析:|EF →|2=EF →2=(EC →+CD →+DF →)2

=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)

=12

+22

+12

+2(1×2×cos 120°+0+2×1×cos 120°) =2,

所以|EF →

|=2,所以EF 的长为 2. 答案: 2 3.如图所示,

在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1

的中点,则直线ON ,AM 的位置关系是________.

解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设DA =2,则A (2,0,0),M (0,0,1),O (1,1,0),N (2,1,2),所以AM →

=(-2,0,1),ON →

=(1,0,2),AM →·ON →

=-2+0+2=0,所以AM ⊥ON .

答案:垂直

一、思考辨析

判断正误(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( )

(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( )

(4)若{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( ) (5)两向量夹角的范围与两异面直线所成角的范围相同.( ) (6)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →

=0.( ) 答案:(1)√ (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏

常见误区|K忽视向量共线与共面的区别

在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB 与CD 的位置关系是( )

A .垂直

B .平行

C .异面

D .相交但不垂直

解析:选B .由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),所以AB →=-3CD →

,所以AB →与CD →

共线,又AB 与CD 没有公共点,所以AB∥CD.

空间向量的线性运算(自主练透)

1.在空间四边形ABCD 中,若AB →=(-3,5,2),CD →

=(-7,-1,-4),点E ,F 分别为线段BC ,AD 的中点,则EF →

的坐标为( )

A .(2,3,3)

B .(-2,-3,-3)

C .(5,-2,1)

D .(-5,2,-1)

解析:选B.因为点E ,F 分别为线段BC ,AD 的中点,O 为坐标原点,所以EF →=OF →-OE →

,OF →

=12

(OA →+OD →),OE →

=12

(OB →+OC →

).

所以EF →=12(OA →+OD →)-12(OB →+OC →)=12(BA →+CD →)

=1

2

[(3,-5,-2)+(-7,-1,-4)]

=1

2

(-4,-6,-6)=(-2,-3,-3). 2.在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →

,OC →

表示(1)MG →;(2)OG →

.

解:(1)MG →=MA →+AG → =12OA →+23AN → =12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.

(2)OG →=OM →+MG → =12OA →-16OA →+13OB →+13OC → =13OA →+13OB →+13

OC →. 3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →

=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:

(1)AP →;(2)A 1N →;(3)MP →+NC 1→. 解:(1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→

=a +c +12AB →=a +c +1

2b .

(2)因为N 是BC 的中点,

所以A 1N →=A 1A →+AB →+BN →

=-a +b +12BC →

=-a +b +12AD →=-a +b +1

2c .

(3)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →

=-12a +? ?

???a +c +12b

=12a +1

2

b +

c , 又NC 1→=NC →+CC 1→=12BC →+AA 1→

=12AD →+AA 1→=1

2

c +a , 所以MP →+NC 1→=? ????12a +12b +c +? ????a +12c

=32a +12b +3

2

c .

用已知向量表示未知向量的解题策略

(1)用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.

(3)在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立.

共线、共面向量定理的应用(师生共研)

如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →

kAC 1→,BN →=kBC →

(0≤k ≤1).

(1)向量MN →是否与向量AB →,AA 1→

共面? (2)直线MN 是否与平面ABB 1A 1平行?

【解】 (1)因为AM →=kAC 1→,BN →=kBC →

, 所以MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1→)+AB → =kB 1A →+AB →

=AB →-kAB 1→=AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→

所以由共面向量定理知向量MN →与向量AB →,AA 1→

共面. (2)当k =0时,点M ,A 重合,点N ,B 重合,

MN 在平面ABB 1A 1内,当0

又由(1)知MN →与AB →,AA 1→

共面, 所以MN ∥平面ABB 1A 1.

三点P ,A ,B 共线

空间四点M ,P ,A ,B 共面

PA →

=λPB →

MP →

=xMA →+yMB →

对空间任一点O ,=OA →+tAB →

对空间任一点O ,OP →=OM →+xMA →+yMB →

对空间任一点O ,OP →=xOA →+(1-x )OB →

对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB →

1.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12

B .-13,12

C .-3,2

D .2,2

解析:选 A.因为a ∥b ,所以b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2),所以

?????6=k (λ+1),2μ-1=0,2λ=2k ,

解得?????λ=2,μ=12或????

?λ=-3,μ=1

2. 2.若A (-1,2,3),B (2,1,4),C (m ,n ,1)三点共线,则m +n =________. 解析:AB →=(3,-1,1),AC →

=(m +1,n -2,-2). 因为A ,B ,C 三点共线,所以存在实数λ,使得AC →=λAB →

. 即(m +1,n -2,-2)=λ(3,-1,1)=(3λ,-λ,λ),

所以????

?m +1=3λn -2=-λ-2=λ

,解得λ=-2,m =-7,n =4.所以m +n =-3.

答案:-3

3.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是平行四边形,E ,F ,G 分别是A 1D 1,

D 1D ,D 1C 1的中点.

(1)试用向量AB →,AD →,AA 1→表示AG →; (2)用向量方法证明平面EFG ∥平面AB 1C . 解:(1)设AB →=a ,AD →=b ,AA 1→

=c . 由题图得AG →=AA 1→+A 1D 1→+D 1G →

=c +b +12AB →

=1

2a +b +c =12

AB →+AD →+AA 1→. (2)证明:由题图,得AC →=AB →+BC →

=a +b , EG →

=ED 1→+D 1G →

=12b +12a =12

AC →,

因为EG 与AC 无公共点,

所以EG ∥AC ,因为EG ?/平面AB 1C ,AC 平面AB 1C ,

所以EG ∥平面AB 1C . 又因为AB 1→=AB →+BB 1→

=a +c ,

FG →

=FD 1→+D 1G →

=1

2c +12a =12

AB 1→,

因为FG 与AB 1无公共点,所以FG ∥AB 1, 因为FG ?/平面AB 1C ,AB 1平面AB 1C ,

所以FG ∥平面AB 1C , 又因为FG ∩EG =G ,FG ,EG 平面EFG , 所以平面EFG ∥平面AB 1C .

空间向量数量积的应用(典例迁移)

如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分

别是AB ,AD ,CD 的中点,计算:

(1)EF →·BA →;(2)EG →·BD →.

【解】 设AB →=a ,AC →=b ,AD →

=c .

则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=1

2c -12a ,BA →=-a ,

EF →

·BA →=? ??

??

12c -12a ·(-a )=12a 2-12a ·c =14

.

(2)EG →·BD →=(EA →+AD →+DG →)·(AD →-AB →)

=? ????-12AB →+AD →+AG →-AD →·(AD →-AB →) =? ????-12AB →+12AC →+12AD →·(AD →-AB →)

=? ??

??-12a +12b +12c ·(c -a )

=12(-1×1×12+1×1×12+1+1-1×1×12-1×1×12) =12

. 【迁移探究1】 (变问法)在本例条件下,求证EG ⊥AB . 证明:由例题知EG →=12(AC →+AD →-AB →

)=12

(b +c -a ),

所以EG →·AB →=12(a ·b +a ·c -a 2

)

=12?

?

???1×1×12+1×1×12-1=0.

故EG →⊥AB →

,即EG ⊥AB .

【迁移探究2】 (变问法)在本例条件下,求EG 的长. 解:由例题知EG →

=-12a +12b +12

c ,

|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →

|=22,即EG 的长为22.

【迁移探究3】 (变问法)在本例条件下,求异面直线AG 与CE 所成角的余弦值. 解:由例题知AG →=12b +12c ,CE →=CA →+AE →

=-b +12a ,

cos 〈AG →,CE →

〉=AG →·CE →|AG →||CE →|

=-23,

由于异面直线所成角的范围是?

????0,π2.

所以异面直线AG 与CE 所成角的余弦值为2

3

.

空间向量数量积的三个应用

求夹角

设向量a ,b 所成的角为θ,则cos θ=a ·b

|a ||b |

,进而可求两异面直线所

成的角

求长度(距离)

运用公式|a |2

=a ·a ,可使线段长度的计算问题转化为向量数量积的计算

问题

解决垂直问题 利用a ⊥b ?a ·b =0(a ≠0,b ≠0),可将垂直问题转化为向量数量积的计

算问题

三棱柱ABC -A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N

=2B 1N .设AB →=a ,AC →=b ,AA 1→

=c .

(1)试用a ,b ,c 表示向量MN →

(2)若∠BAC =90°,∠BAA 1=∠CAA 1=60°,AB =AC =AA 1=1,求MN 的长. 解:(1)由题图知 MN →

=MA 1→+A 1B 1→+B 1N →

=13

BA 1→

+AB →

+13

B 1

C 1→

=13(c -a )+a +13(b -a )=13a +13b +13c . (2)由题设条件知,

因为(a +b +c )2

=a 2

+b 2

+c 2

+2a ·b +2b ·c +2a ·c =1+1+1+0+2×1×1×12+2×1×1×1

2=5,

所以|a +b +c |=5,|MN →|=1

3|a +b +c |=53

.

利用向量证明平行与垂直问题(多维探究) 角度一 证明平行问题

(一题多解)如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三

角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:

(1)PB ∥平面EFG ; (2)平面EFG ∥平面PBC .

【证明】 (1)因为平面PAD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.

以A 为坐标原点,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).

法一:EF →=(0,1,0),EG →

=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ),

则?????n ·EF →=0,n ·EG →=0,即?

???

?y =0,x +2y -z =0,

令z =1,则n =(1,0,1)为平面EFG 的一个法向量, 因为PB →

=(2,0,-2), 所以PB →·n =0,所以n ⊥PB →,

因为PB ?/平面EFG ,所以PB ∥平面EFG .

法二:PB →=(2,0,-2),FE →=(0,-1,0),FG →

=(1,1,-1). 设PB →=sFE →+tFG →,

即(2,0,-2)=s (0,-1,0)+t (1,1,-1),

所以?????t =2,t -s =0,-t =-2,

解得s =t =2.所以PB →=2FE →+2FG →,

又因为FE →与FG →不共线,所以PB →,FE →与FG →

共面. 因为PB ?/平面EFG ,所以PB ∥平面EFG . (2)因为EF →=(0,1,0),BC →

=(0,2,0), 所以BC →=2EF →, 所以BC ∥EF .

又因为EF ?/平面PBC ,BC 平面PBC ,

所以EF ∥平面PBC ,

同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF

平面EFG ,GF

平面EFG ,

所以平面EFG ∥平面PBC . 角度二 证明垂直问题

如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落

在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.

(1)证明:AP ⊥BC ;

(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .

【证明】 (1)如图所示,以O 为坐标原点,以射线DB 方向为x 轴正方向,射线OD 为

y 轴正半轴,射线OP 为z 轴的正半轴建立空间直角坐标系.

则O (0,0,0),A (0,-3,0),

B (4,2,0),

C (-4,2,0),P (0,0,4).

于是AP →=(0,3,4),BC →

=(-8,0,0), 所以AP →·BC →

=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →

,即AP ⊥BC .

(2)由(1)知AP =5,又AM =3,且点M 在线段AP 上, 所以AM →=35AP →=? ????0,95,125,又BA →

=(-4,-5,0),

所以BM →=BA →+AM →=? ?

???-4,-165,125,

则AP →·BM →=(0,3,4)·? ????-4,-165,125=0,

所以AP →⊥BM →

,即AP ⊥BM , 又根据(1)的结论知AP ⊥BC ,

所以AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM

平面AMC ,故平面AMC ⊥平面BMC .

(1)利用空间向量解决平行、垂直问题的一般步骤

①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;

②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;

③通过空间向量的坐标运算研究平行、垂直关系; ④根据运算结果解释相关问题. (2)空间线面位置关系的坐标表示

设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).

①线线平行

l ∥m ?a ∥b ?a =k b ?a 1=ka 2,b 1=kb 2,c 1=kc 2.

②线线垂直

l ⊥m ?a ⊥b ?a ·b =0?a 1a 2+b 1b 2+c 1c 2=0.

③线面平行(l ?/α)

l ∥α?a ⊥u ?a ·u =0?a 1a 3+b 1b 3+c 1c 3=0.

④线面垂直

l ⊥α?a ∥u ?a =k u ?a 1=ka 3,b 1=kb 3,c 1=kc 3.

⑤面面平行

α∥β?u ∥v ?u =k v ?a 3=ka 4,b 3=kb 4,c 3=kc 4.

⑥面面垂直

α⊥β?u ⊥v ?u ·v =0?a 3a 4+b 3b 4+c 3c 4=0.

如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端

点的三条棱长都为1,且两两夹角为60°.

(1)求AC 1的长; (2)求证: AC 1⊥BD ;

(3)求BD 1与AC 夹角的余弦值. 解:(1)记AB →=a ,AD →=b ,AA 1→

=c ,

则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, 所以a ·b =b ·c =c ·a =12

.

|AC 1→|2=(a +b +c )2=a 2+b 2+c 2

+2(a ·b +b ·c +c ·a )

=1+1+1+2×? ??

??12+12+12=6, 所以|AC 1→

|=6,即AC 1的长为 6. (2)证明:因为AC 1→=a +b +c ,BD →

=b -a , 所以AC 1→·BD →

=(a +b +c )·(b -a ) =a ·b +|b |2

+b ·c -|a |2

-a ·b -a ·c =b ·c -a ·c

=|b ||c |cos 60°-|a ||c |cos 60°=0.

所以AC 1→⊥BD →

,所以AC 1⊥BD . (3)BD 1→=b +c -a ,AC →

=a +b , 所以|BD 1→|=2,|AC →

|=3,

BD 1→·AC →

=(b +c -a )·(a +b )

=b 2

-a 2

+a ·c +b ·c =1.

所以cos 〈BD 1→

,AC →

〉=BD 1→·AC →|BD 1→||AC →|

=66.

所以AC 与BD 1夹角的余弦值为66

.

[基础题组练]

1.已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且OA →=a ,OB →=b ,OC →

=c ,用a ,

b ,

c 表示MN →,则MN →

等于( )

A.1

2(b +c -a ) B.1

2(a +b +c ) C.1

2(a -b +c ) D.1

2

(c -a -b ) 解析:选D.MN →=MA →+AO →+ON →=1

2

(c -a -b ).

2.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( )

A .9

B .-9

C .-3

D .3

解析:选B.由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3),所以

????

?2x -y =7,x +2y =6,

-3x +3y =λ,

解得λ=-9. 3.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →

=( ) A .-1 B .0 C .1

D .不确定

解析:选B.如图,

令AB →=a ,AC →=b ,AD →

=c ,

则AB →·CD →+AC →·DB →+AD →·BC →

=a ·(c -b )+b·(a -c )+c·(b -a )=a·c -a·b +b·a -b·c +c·b -c·a =0.

4.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,四边形CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )

A. 3 B . 2 C .1

D .3- 2

解析:选D.因为BD →=BF →+FE →+ED →,所以|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →

+2BF →·ED →=1+1+1-2=3-2,所以|BD →

|=3- 2.

5.已知A (1,0,0),B (0,-1,1),O 为坐标原点,OA →+λOB →与OB →

的夹角为120°,则λ的值为( )

A .±

66 B .

66

C .-66

D .± 6

解析:选C.OA →+λOB →

=(1,-λ,λ),cos 120°=

λ+λ1+2λ2

·2

=-12,得λ=±6

6.经检验λ=

66不合题意,舍去,所以λ=-6

6

.

6.如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1

=________.

解析:因为OC →=12AC →

=12

(AB →+AD →), 所以OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.

答案:12AB →+12

AD →+AA 1→

7.已知PA 垂直于正方形ABCD 所在的平面,M ,N 分别是CD ,PC 的中点,并且PA =AD =1.在如图所示的空间直角坐标系中,则MN =________.

解析:连接PD ,因为M ,N 分别为CD ,PC 的中点,所以MN =1

2PD ,又P (0,0,1),D (0,

1,0),

所以PD =02

+(-1)2

+12

=2,所以MN =22

. 答案:

22

8.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →

的值为________.

解析:设OA →=a ,OB →=b ,OC →

=c ,

由已知条件得〈a ,b 〉=〈a ,c 〉=π

3,且|b |=|c |,

OA →

·BC →

=a ·(c -b )=a ·c -a ·b

=12|a ||c |-1

2|a ||b |=0, 所以OA →⊥BC →,

所以cos 〈OA →,BC →

〉=0. 答案:0

9.如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊

1

2

BC ,二面角A 1-AB -C 是直二面角.

求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .

证明:因为二面角A 1-AB -C 是直二面角,

四边形A 1ABB 1为正方形, 所以AA 1⊥平面BAC . 又因为AB =AC ,BC =2AB , 所以∠CAB =90°, 即CA ⊥AB ,

所以AB ,AC ,AA 1两两互相垂直. 建立如图所示的空间直角坐标系Axyz ,

设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2).

(1)A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →

=(2,0,0), 设平面AA 1C 的一个法向量n =(x ,y ,z ), 则?????n ·A 1A →=0,n ·AC →=0,即?????-2z =0,

2x =0,

即???

??x =0,z =0,

取y =1,则n =(0,1,0).

所以A 1B 1→

=2n , 即A 1B 1→

∥n .

所以A 1B 1⊥平面AA 1C .

(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →

=(2,0,-2), 设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1), 则?????m ·A 1C 1→=0,m ·A 1C →=0,即?????x 1+y 1=0,

2x 1-2z 1=0,

令x 1=1,则y 1=-1,z 1=1, 即m =(1,-1,1).

所以AB 1→

·m =0×1+2×(-1)+2×1=0, 所以AB 1→

⊥m , 又AB 1?/平面A 1C 1C , 所以AB 1∥平面A 1C 1C .

10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.求证:

(1)EF ∥平面PAB ; (2)平面PAD ⊥平面PDC .

证明:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角

坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1), 所以E ? ????1

2

,1,12,

F ?

?

?

??0,1,12,EF →

=?

??

??-12

,0,0,PB →=(1,0,-1),PD →=(0,2,-1),AP →

=(0,0,1),AD →

=(0,2,0),DC →

=(1,0,0),AB →

=(1,0,0).

(1)因为EF →=-12AB →,所以EF →∥AB →

,即EF ∥AB .

又AB

平面PAB ,EF ?/平面PAB ,

所以EF ∥平面PAB .

(2)因为AP →·DC →

=(0,0,1)·(1,0,0)=0, 所以AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC .

又AP ∩AD =A ,所以DC ⊥平面PAD . 所以平面PAD ⊥平面PDC .

[综合题组练]

1.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →

(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( )

A .必要不充分条件

B .充分不必要条件

C .充要条件

D .既不充分也不必要条件

解析:选B.当x =2,y =-3,z =2时,即OP →=2OA →-3OB →+2OC →.则AP →-AO →=2OA →-3(AB →

-AO →

)+2(AC →-AO →),即AP →=-3AB →+2AC →

,根据共面向量定理知,P ,A ,B ,C 四点共面;反之,

当P ,A ,B ,C 四点共面时,根据共面向量定理,设AP →=mAB →+nAC →(m ,n ∈R ),即OP →-OA →=m (OB →

-OA →)+n (OC →-OA →),即OP →=(1-m -n )OA →+mOB →+nOC →

,即x =1-m -n ,y =m ,z =n ,这组数显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件.

2.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且

AM ∥平面BDE ,则M 点的坐标为( )

A .(1,1,1)

人教A版高中数学《平面向量的线性运算》教学设计

2.2《平面向量的线性运算》教学设计 【教学目标】 1.掌握向量的加、减法运算,并理解其几何意义; 2.会用向量加、减的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 4.掌握实数与向量的积的定义以及实数与向量的积的三条运算律,会利用实数与向量的积的运算律进行有关的计算; 5.理解两个向量平行的充要条件,能根据条件判断两个向量是否平行; 6.通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想. 【导入新课】 设置情景: 1、 复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、 情景设置: (1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:AC BC AB =+ (2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:=+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:=+ (4)船速为AB ,水速为,则两速度和:AC =+ 新授课阶段 一、向量的加法 A B C A C A B C

O A a a a b b b 1.向量的加法:求两个向量和的运算,叫做向量的加法. 2.三角形法则(“首尾相接,首尾 连”) 如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a. 探究:(1)两相向量的和仍是一个向量; (2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且 |a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |. (4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加. 例1 已知向量a 、b ,求作向量a +b . 作法:在平面内取一点,作a OA = b AB =,则b a OB +=. 4.加法的交换律和平行四边形法则 问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应); A B C a +b a +b a a b b a b b aa

高中数学第二章平面向量章末小结导学案无答案新人教A版必修

第二章平面向量章末小结 【本章知识体系】 - 1 -

2 【题型归纳】 专题一、平面向量的概念及运算 包含向量的有关概念、加法、减法、数乘。向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线. 1、1.AB →+AC →-BC →+BA →化简后等于( ) A .3A B → B.AB → C.BA → D.CA → 2、在平行四边形ABCD 中,OA →=a ,OB →=b ,OC →=c ,OD →=d ,则下列运算正确的是( ) A .a +b +c +d =0 B .a -b +c -d =0 C .a +b -c -d =0 D .a -b -c +d =0 3、已知圆O 的半径为3,直径AB 上一点D 使AB →=3AD →,E 、F 为另一直径的两个端点, 则DE →·DF →=( ) A .-3 B .-4 C .-8 D .-6 4、如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则在以a , b 为基底时,AC →可表示为________,在以a , c 为基底时,AC →可表示为 ________. 5、下列说法正确的是( ) A .两个单位向量的数量积为1 B .若a ·b =a ·c ,且a ≠0,则b =c C .AB →=OA →-OB → D .若b⊥c ,则(a +c )·b =a ·b 专题二、平面向量的坐标表示及坐标运算 向量的坐标表示及运算强化了向量的代数意义。若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。 6、已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .1 B. 2 C .2 D .4 7、设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相接能构成四边形,则d =( ) A .(2,6) B .(-2,6) C .(2,-6) D .(-2,-6) 8、已知a =(1,1),b =(1,0),c 满足a ·c =0,且|a |=|c |,b ·c >0,则c =________. 专题三、平面向量的基本定理 平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。 9、已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( ) A.43a +23b B.23a +43 b C.23a -43b D .-23a +43 b

空间向量与立体几何(整章教案)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教

材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 ②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合, 则这些向量叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平 行直线;当我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与

人教A版高中数学必修四 2.4 《平面向量的数量积》教案

§2.4平面向量的数量积 教学目的: 1.掌握平面向量的数量积及其几何意义; 2.掌握平面向量数量积的重要性质及运算律; 3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题; 4.掌握向量垂直的条件. 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课 教 具:多媒体、实物投影仪 内容分析: 本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生 推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识 点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积 的运算律. 教学过程: 一、复习引入: 1. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ, 使b =λa . 2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内 的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e 3.平面向量的坐标表示 分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面 向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

【人教A版】2020高中数学必修四导学案:第二章平面向量_含答案

第二章 平面向量 1 向量和差作图全攻略 两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握. 一、向量a 、b 共线 例1 如图,已知共线向量a 、b ,求作a +b . (1)a 、b 同向; (2)a 、b 反向,且|a |>|b |; (3)a 、b 反向,且|a |<|b |. 作法 在与a 平行的同一条直线上作出三个向量OA →=a ,AB →=b ,OB → =a +b ,具体作法是:当 a 与 b 方向相同时,a +b 与a 、b 的方向相同,长度为|a |+|b |;当a 与b 方向相反时,a +b 与a 、b 中长度长的向量方向相同,长度为||a |-|b ||.为了直观,将三个向量中绝对值最 大的向量沿与a 垂直的方向稍加平移,然后分别标上a ,b ,a +b .作图如下: 例2 如图,已知共线向量a 、b ,求作a -b . (1)a 、b 同向,且|a |>|b |; (2)a 、b 同向,且|a |<|b |; (3)a 、b 反向. 作法 在平面上任取一点O ,作OA →=a ,OB →=b ,则BA → =a -b .事实上a -b 可看作是a +(- b ),按照这个理解和a +b 的作图方法不难作出a -b ,作图如下: 二、向量a 、b 不共线 如果向量不共线,可以应用三角形法则或平行四边形法则作图.

例3 如图,已知向量a 、b . 求作:(1)a +b ;(2)a -b . 作法1 (应用三角形法则) (1)一般情况下,应在两已知向量所在的位置之外任取一点O . 第一步:作OA → =a ,方法是将一个三角板的直角边与a 重合,再将直尺一边与三角板的另一直角边重合,最后将三角板拿开,放到一直角边过点O ,一直角边与直尺的一边重合的位置,在此基础上取|OA →|=|a |,并使OA → 与a 同向. 第二步:同第一步方法作出AB →=b ,一定要保证方向相同且长度相等.(此处最易错的是把AB → 作成与b 的方向相反.) 第三步:作OB →,即连接OB ,在B 处打上箭头,OB → 即为a +b . 作图如下: (2)第一步:在平面上a ,b 位置之外任取一点O ; 第二步:依照前面方法过O 作OA →=a ,OB → =b ; 第三步:连接AB ,在A 处加上箭头,向量BA → 即为a -b . 作图如下: 点评 向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”. 作法2 (应用平行四边形法则) 在平面上任取一点A ,以点A 为起点作AB → =a , AD → =b ,以AB ,AD 为邻边作?ABCD ,则AC →=a +b ,DB → =a -b .作图如下:

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

(新课程)高中数学 第18课时(向量的加法)导学案 苏教版必修4

总 课 题 平面向量 总课时 第18课时 分 课 题 向量的加法 分课时 第 1 课时 教学目标 理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作两个向量的和,掌握加法的交换律和结合律,并会用它们进行向量的运算。 重点难点 向量加法的三角形法则和平行四边形法则。向量加法的交换律和结合律。 引入新课 问题1、利用向量的表示,从景点O 到景点A 的位移为OA ,从景点A 到景点B 的位移为AB ,那么经过这两次位移后游艇的合位移是OB (如图) 这里,向量OA ,AB ,OB 三者之间有什么关系? 1、向量加法的定义________________________________________________________ 2、向量加法的三角形法则___________________________________________________ 具体步骤: (1)把两个向量平移后,使两个向量的一个起点与另一个起点相连。 (2)将剩下的起点与终点相连,并指向终点,则该向量为两个向量的和。 简记为“首尾相连,首是首,尾是尾” 3、向量加法的平行四边形法则_______________________________________ 4、对于零向量和任一向量a 有 a a a =+=+00,对于相反向量有()()0 =+-=-+a a a a 5、向量加法的运算律 交换律____________________________ 结合律______________________________ 6、如果平面内有n 个向量依次首尾连接组成一条封闭折线,那么这n 个向量的和是什么? 例题剖析 例1、作出下列向量的和: O B A a b b b a a (1) (2) (3)

空间向量高中数学教案课程

空间向量 考纲导读 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式; 掌 握 空 间 两 点 间 的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是:

1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量. (2) 向量相等:方向 且长度 . (3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 .(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论: .5.空间向量基本定理 (1) 空间向量的基底: 的三个向量. 2.线性运算律 (1) 加法交换律:a +b = .

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

高中数学导学案

§3.1.2 空间向量的数乘运算(一) 班级:二年级 组名:数学 设计人: 审核人: 领导审批: 学习目标 1. 掌握空间向量的数乘运算律,能进行简单的代数式化简; 2. 理解共线向量定理和共面向量定理及它们的推论; 3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. P 86~ P 87,找出疑惑之处) 复习1:化简:⑴ 5(32a b - )+4(23b a - ); ⑵ ()()63a b c a b c -+--+- . 2:在平面上,什么叫做两个向量平行? 在平面上有两个向量,a b ,若b 是非零向量,则a 与b 平行的充要条件 学习探究(由学生完成) 问题:空间任意两个向量有几种位置关系?如何判定它们的位置关 系? 新知:空间向量的共线: 1. 如果表示空间向量的 所在的直线互相 或 ,则这些向量叫共线向量,也叫平行向量. 2. 空间向量共线: 定理:对空间任意两个向量,a b (0b ≠ ), //a b 的充要条件是存在唯一 实数λ,使得 推论:如图,l 为经过已知点A 且平行于已知非零向量的直线,对空间的任意一点O ,点P 在直线l 上的充要条件是 反思:充分理解两个向量,a b 共线向量的充要条件中的0b ≠ ,注意零向 量与任何向量共线. 知识应用:已知5,28,AB a b BC a b =+=-+ ()3CD a b =- ,求证: A,B,C 三点共线. 精讲例题 例1 已知直线AB ,点O 是直线AB 外一点,若O P xO A yO B =+ ,且x +y =1, 试判断A,B,P 三点是否共线?

变式:已知A,B,P 三点共线,点O 是直线AB 外一点,若12 O P O A tO B =+ , 那么t = 例2 已知平行六面体''''ABC D A B C D -,点M 是棱AA ' 的中点,点G 在 对角线A ' C 上,且CG:GA ' =2:1,设CD =a ,' ,CB b CC c == ,试用向量,,a b c 表示向量' ,,,C A C A C M C G . 变式1:已知长方体''''ABC D A B C D -,M 是对角线AC ' 中点,化简下列 表达式:⑴ ' AA CB - ;⑵ '''''AB B C C D ++ ⑶ ' 111222 AD AB A A +- 变式2:如图,已知,,A B C 不共线,从平面ABC 外任一点O ,作出点,,,P Q R S ,使得: ⑴22OP OA AB AC =++ ⑵32O Q O A AB AC =-- ⑶32OR OA AB AC =+- ⑷ 23OS OA AB AC =+- . 小结(由学生完成)空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量的方向. ※ 动手试试(由学生完成) 练1. 下列说法正确的是( ) A. 向量a 与非零向量b 共线,b 与c 共线,则a 与c 共线; B. 任意两个共线向量不一定是共线向量; C. 任意两个共线向量相等; D. 若向量a 与b 共线,则a b λ= . 2. 已知32,(1)8a m n b x m n =-=++ ,0a ≠ ,若//a b ,求实数.x 三、总结提升 ※ 学习小结 1. 空间向量的数乘运算法则及它们的运算律; 2. 空间两个向量共线的充要条件及推论. 知识拓展 平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

高中数学教案:2.1.1 向量的概念

课 时 教 案 第 二 单元 第 1 案 总第 18 案 课题 2.1.1向量的概念 2011年 5月17日 教学目标 理解向量、零向量、单位向量、模的意义和向量的几何表示,会用字母表示向量 培养学生的唯物辩证思想和分析辨别能力 了解平行向量、共线向量和相等向量的意义,会判断向量间共线、相等的关系 教学重点 理解向量、零向量、单位向量、向量的模的意义 了解平行向量、共线向量和相等向量的意义 使学生对现实生活的向量和数量有一个清楚的认识 教学难点 理解向量的几何表示,会用字母表示向量 了解平行向量、共线向量和相等向量的意义 高考考点 理解向量、零向量、单位向量、向量的模的意义 理解向量的几何表示,会用字母表示向量 课 型 新授课 教 具 多媒体、三角板、投影仪 教 法 讲练结合 教 学 过 程 教师活动预设 学生活动预设 复习引入 在物理中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.还有一些量,如我们所学习的力、位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量 师:(边画图边讲解)美国“小鹰”号航空母舰导弹发射处接到命令:向1200公里处发射两枚战斧式巡航导弹(精度10米左右,射程超过2000公里),试问导弹是否能击中伊拉克的军事目标? 不能,因为没有给定发射的方向 现实生活中还有哪些量既有大小又有方向?哪些量只有大小没有方向? 力、速度、加速度等有大小也有方向, 温度和长度只有大小没有方向. 讲解新课 向量的概念:我们把既有大小又有方向的量叫向量 注意:数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小 说明:1.有向线段是向量最好的模型 2.向量不能比较大小 有向线段的三要素:起点、方向、长度 以A 为起点、B 为终点的有向线段记作 向量的表示方法:几何方法 代数符号 ①用有向线段表示; ②用字母,a b r r 等表示; ③用有向线段的起点与终点字母:AB u u u r ; ④向量AB 的大小(长度)称为向量的模,记作|AB u u u r |.

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

人教版-高一数学必修4全套导学案

第二章平面向量 2.1 向量的概念及表示 【学习目标】 1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量的概念;并会区分平行向量、相等向量和共线向量; 2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别; 3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。【学习重难点】 重点:平行向量的概念和向量的几何表示; 难点:区分平行向量、相等向量和共线向量; 【自主学习】 1.向量的定义:__________________________________________________________; 2.向量的表示: (1)图形表示: (2)字母表示: 3.向量的相关概念: (1)向量的长度(向量的模):_______________________记作:______________ (2)零向量:___________________,记作:_____________________ (3)单位向量:________________________________ (4)平行向量:________________________________ (5)共线向量:________________________________ (6)相等向量与相反向量:_________________________ 思考: (1)平面直角坐标系中,起点是原点的单位向量,它们的终点的轨迹是什么图形?____ (2)平行向量与共线向量的关系:____________________________________________ (3)向量“共线”与几何中“共线”有何区别:__________________________________ 【典型例题】 例1.判断下例说法是否正确,若不正确请改正: (1)零向量是唯一没有方向的向量; (2)平面内的向量单位只有一个; (3)方向相反的向量是共线向量,共线向量不一定是相反向量; b c,则a和c是方向相同的向量; (4)向量a和b是共线向量,//

空间向量及其线性运算(教案)

课 题:空间向量及其线性运算 教学目标: 1.运用类比方法,经历向量及其运算由平面向空间推广的过程; 2.了解空间向量的概念,掌握空间向量的线性运算及其性质; 3.理解空间向量共线的充要条件 教学重点:空间向量的概念、空间向量的线性运算及其性质; 教学难点:空间向量的线性运算及其性质。 教学过程: 一、创设情景 1、蚂蚁爬行的问题引入为什么要研究空间向量. 2、平面向量的概念及其运算法则; 二、建构数学 1.空间向量的概念: 在空间,我们把具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量 ⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算 定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图) b a AB OA OB +=+= b a -=-= )(R a ∈=λλ 运算律: ⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3.平行六面体: 平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A '''',它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。 4.共线向量 与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向 量叫做共线向量或平行向量.a 平行于b 记作b a //. 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同 一直线,也可能是平行直线. 5.共线向量定理: 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,

最新人教版高中数学《平面向量》全部教案

人教版高中数学《平面向量》全部教案

第五章 平面向量 第一教时 教材:向量 目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与 已知向量相等,根据图形判定向量是否平行、共线、相等。 过程: 一、开场白:课本P93(略) 实例:老鼠由A 向西北逃窜,猫在B 处向东追去, 问:猫能否追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了。 二、提出课题:平面向量 1.意义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量 等 注意:1?数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 2?从19世纪末到20世纪初,向量就成为一套优良通性的数学体 系,用以研究空间性质。 2.向量的表示方法: 1?几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 A B A(起点) B (终 a

记作(注意起讫) 2?字母表示法:可表示为(印刷时用黑体字) P95 例 用1cm 表示5n mail (海里) 3.模的概念:向量AB 的大小——长度称为向量的模。 记作:|| 模是可以比较大小的 4.两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意0与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 例:温度有零上零下之分,“温度”是否向量? 答:不是。因为零上零下也只是大小之分。 例:与是否同一向量? 答:不是同一向量。 例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。 三、向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:a ∥b ∥c 规定:0与任一向量平行 2.相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= a b c

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

相关主题