搜档网
当前位置:搜档网 › 高炉轴流风机防喘振控制系统优化及实验讲解

高炉轴流风机防喘振控制系统优化及实验讲解

高炉轴流风机防喘振控制系统优化及实验讲解
高炉轴流风机防喘振控制系统优化及实验讲解

高炉轴流风机防喘振控制系统优化及实验

摘要:针对萍钢4#高炉鼓风机存在的问题,阐明了防喘振控制优化的方案,包括工况点沿防喘线精确控制,入口温度对喉部差压、出口压力的补偿,提出了控制优化的具体实施方法,优化达到了预期目标。

【关键词】轴流风机防喘振优化实施

一、前言

高炉鼓风机是高炉炼铁生产的关键动力设备,为确保鼓风机的安全稳定运行,在其控制系统中必须配备防喘振自动控制,并应兼顾高炉生产、机组安全、节能降耗等各方因素,高炉作为鼓风机供风的负载,炉内状况瞬息万变,鼓风阻力发生扰动,控制系统将使防喘振阀动作,就会在高炉意外崩料和风机喘振之间处于两难的境地,本文以萍乡钢铁公司4#高炉鼓风机的防喘振控制优化为例,阐述控制系统在防喘振调节过程中如何保证送风压力的稳定性,在安全运行前提下充分发挥风机能力,进而为高炉稳产、高产奠定基础。

二、存在的问题

萍乡钢铁公司4#高炉采用AV45-13全静叶可调式轴流风机,由于防喘振控制侧重于保护鼓风机,加之防喘振控制品质不高,2010年投产以来,防喘振控制系统运行状况不甚理想,主要表现在以下几方面:

1)防喘阀开度基本在10%左右,轴流风机经常处于放风状态,造成大量无谓能量损失,放风噪声污染严重。

2)防喘振的控制品质有待提高:一旦高炉路况不顺,鼓风阻力增大使风机工况点进入调节区时,通常是采用人工紧急干预打开防喘阀使工况点回到稳定工作区,保守的安全意识使工况点总是远离防喘振线。

3)不同入口温度对风机喘振性能有较大影响,采用固定的喘振性能曲线不能真实地反映风机喘振性能,一方面可能影响风机的安全、稳定运行,另一方面可能制约风机供风能力的充分发挥。

三、防喘振控制优化方案

1.防喘振控制优化的先决条件

为了实现防喘振控制的优化,必须借助于性能优良的PLC系统。PLC的高速运算性能可使用户程序的扫描周期在10毫秒级,为有效克服鼓风阻力瞬变扰动成为可能;PLC丰富的运算和编程功能可以实现各种先进控制算法,达到预期的控制效果;PLC的高可靠性,实现风机控制系统的安全运行进而确保风机的安全可靠运行。4#高炉鼓风机采用西门子S7-400H PLC,配备冗余414CPU可很好地实现各项控制任务。

为了实现防喘振控制的优化,必须借助于性能优良的防喘振阀。防喘振阀具有可靠的快开性能,当一旦压力过高,可释放由于喘振引起的压力波动;防喘振阀应

具有良好的调节性能,当运行点接近防喘振线时,能充分调节流量以防止起浪点;防喘阀应具备灵敏的阶跃响应,超调应限制在最小,可满足风机在启动和停车时的压力、流量变化。4#高炉鼓风机采用的fisher防喘阀可以较好地满足上述要求。

2. 工况点沿防喘线精确控制

(1)防喘振的基本控制方法以喉部差压为横坐标、以出口压力为纵坐标,建立了运行工况画面,画面包含喘振线(红线)、喘振报警线(黄线)和防喘振控制线(蓝线),黄线和蓝线分别设在红线下方97%和93.5%处,以实际运行工况下的喉部差压和出口压力坐标建立运行工况点,如下图所示。根据当前喉部差压(补偿后),在防喘线上查询对应的出口压力,作为防喘振控制的给定值SP,以当前风机出口压力作为防喘振控制的测量值PV,二者之偏差西门子STEP7的PID模块FB41进行控制运算,当工况点接近或越过蓝线时,PLC控制防喘阀打开一定角度,来减小压缩机出口的阻力,使工况点回到稳定工作区,以避免轴流风机喘振现象的发生。

在工况点接近喘振线时,要求轴流风机的防喘阀必须动作迅速,但防喘阀动作速度太快、动作幅度过大,势必会使风机出口压力、流量产生大幅度波动,影响高炉炉况的稳定。由于防喘振控制是以风机吸入气体流量和排气压力为调节对象,二者的变化都具有极强的瞬时性,而信号测量、计算输出、执行机构动作及工艺过程都不可避免会产生一定的时间滞后,在这样一个瞬时性非常强的闭环控制回路里,以滞后的测量信号为计算依据,采用的常规的PID运算,虽然可以在工况点跃过防喘线时迅速地打开放空阀,但无法使工况点在响应线附近被稳定控制,难以实现精确控制。

工况点沿防喘线精确控制图

(2)变比例和变积分相结合为了解决快速防喘动作和稳定高炉风压之间的矛盾,采用非对称控制的快开慢关来控制防喘阀的动作。当风机工况点处于防喘振线的右下侧的稳定运行区域时,PID控制器的比例增益Gain较小,积分时间TI 较大,控制器使防喘阀处于全关状态。当风机工况点一旦接近或超越了防喘振线,PID控制器的比例增益Gain增大,积分时间TI减小,且超过防喘振线越多,比例增益越大,积分时间越小,响应速度加快,这就实现了防喘阀的快开。当工况点返回稳定工作区时,偏差e减小,比例增益减小,积分时间增大,响应速度变慢,实现了防喘阀的慢关。西门子的PID功能块本身具有抗积分饱和功能,当工况点处于稳定工作区时,虽然偏差一直存在,防喘阀全关,但控制器积分部分不会饱和。

如果单纯采用变比例增益的PID控制,由于积分作用跟不上将降低系统的稳定性;如果单纯采用变积分时间的PID控制,由于不变比例作用使系统响应速度变慢,影响到系统的快速性。防喘振控制优化将变比例增益与变积分时间相结合,同时改变控制器的比例增益和积分时间,既保证工况点越过控制线时防喘阀动作有较好的快速性,又保证了工况点在接近控制线时系统调节的稳定性。见图1,这样兼顾了防喘振调节的快速性和高炉送风压力的稳定性,风机工况点沿防喘线精确控制,自动“钉”在防喘振线上而无需人工操作防喘阀。

3.入口温度对防喘振的补偿

(1)喉部差压与入口温度在实际设计中,由于风机入口空间有限,没有足够长的直管段安装入口流量计,因而风机入口流量不能直接测出,能测到的只是间接反应入口流量的喉部差压,这就需要求得喉部差压和入口流量的关系,考虑到入口绝对压力(约为大气压力)基本上是个常量,因此入口流量与喉部差压的关系式为

F=K(ΔPT1)? (1)

式中 K--流量系数;

△P--喉部差压,单位为MPa;

T1-入口温度,单位为℃。

在同一流量F下,如果入口温度由T1变为T1'时,得到的喉部差压ΔP'的补偿算式为

ΔP'=(T1/T1') ΔP(2)

式中 T1、T1'--绝对温度;

ΔP'--经入口温度补偿后的喉部差压,单位为MPa。

(2)出口压力与入口温度优化之前4#高炉鼓风机防喘振控制只是对喉部差压进行入口温度补偿,在不同气温下风机喘振性能的变化不能被准确地反映。在不同

气温下,即使在同一喉部差压时,其喘振点的出口压力也存在差异。增大防喘线裕量无疑可以保证风机运行安全,但不能充分发挥风机的真实能力,还会造成无谓的放风;如果盲目减小防喘线裕量,一旦气温较高时就会有喘振的安全隐患。因此,在对喉部差压进行入口温度补偿的同时,还要对出口压力进行入口温度的补偿。

在这里利用能量头的概念,能量头是指单位质量的被压缩气体,压缩前后的能量差,它反映了单位质量被压缩气体所做的功。气体经风机所获得的能量头可通过热力学第一定律和理想气体的状态方程推导出来。

根据推导出来的能量头算式分别得到入口温度为T1和T2时的能量头,将轴流风机的入口温度由T1变为T2视为绝热过程,我们在这里将讨论入口温度变化对出口压力(压比)的影响,考虑轴流风机的入口温度由T1变为T2时其压缩能量头不变的情况,由此求得入口温度为T2时的压比,入口压力为大气压力,故由此就可得到了出口压力P2'。

(3)随气温变化的喘振性能曲线通过上述工作,可以分别计算出补偿后的喉部差压和出口压力,这正是喘振性能曲线的横、纵坐标,在初始试验数据的基础上,在不同气温下对喉部差压和出口压力进行补偿后,得到了随不同气温(入口温度)而变化的可动喘振线。这样的变化曲线更真实地反映了设备性能,保证在一年四季不同的气候条件下,喘振线和防喘线的准确无误,并在确保安全运行的前提下,充分地发掘风机的供风能力。

四、方案实施

1. 准备工作

在高炉休风前,准备好YB-150型、0~1.0MPa、0.4级精密压力表一台;内径

8mm、承压>2.OMPa、长约50m的红色耐压橡胶软管一根。关闭压力表阀门,拆除现场出口排气压力表,装上一个软管接头。用橡胶软管将出口排气压力引至主控室的精密压力表,橡胶软管两端用固定夹固定。精密压力表安装于主控室的“安全运行”按钮旁。

接到高炉休风指令后,鼓风机组进入休风状态,送风阀关闭,静叶22°,防喘阀全开。先用手持式压力校准仪校准喉部差压和出口压力变送器。

将静叶开启一定角度(30°),缓慢将防喘阀关小到一定开度(85%),按“安全运行”按钮,风机应进入安全运行。

试验前安排有关人员各就各位;事先准备好表格,以便记录喘振试验的数据。2.喘振试验

根据JB/T 3165-1999,为获取风机喘振性能的有关数据,对轴流风机做开式进出气试验。试验前将原运行工况画面的喘振曲线(三条线)拉开;安排专人站在“安全运行”按钮旁盯住精密压力表显示的风机出口压力;安排专人(操作工)在

操作站操作静叶和防喘阀开度;一人在操作站观察试验状况并读取试验数据;另安排一人记录试验的数据。以上人员由试验负责人统一指挥。

操作工操作静叶和防喘阀,将静叶角度开到30°,缓慢关小防喘阀,此时盯风机出口压力精密压力表的人必须全神贯注,随着防喘阀的关小,排气压力逐渐上升,一旦压力表指针发生向零位的回摆,立刻拍击“安全运行”按钮,使风机进入安全运行状态(判断喘振初期现象的依据是观察连接出口管路中精密压力表的变化,在风机出口压力不断上升的过程中,当压力表指针迅速回摆时,可认为风机进入了喘振区,即发生了喘振初期现象)。在操作站的记录曲线中读取安全运行前时刻的出口压力、喉部差压、入口温度等参数,记录在预先准备的表格中。用同样的方法分别对静叶角度为40°、50°和60°情况下,做喘振试验,记录各点的参数。注意:高炉休风后,在风机未停机时保持风机在热态下进行这项试验。

以上试验有了四个喘振点的数据,更高的喉部差压和出口压力的喘振数据宜采用有关算式计算推定,构成较完整的喘振线。

3.调试

将防喘振控制优化的程序在实验室进行充分的仿真调试,尽可能发现并解决程序中的问题,这是在高炉休风前必须完成的重要工作。喘振试验完成后,将预先编好的控制程序下载到PLC中,将试验数据置入程序相应的功能块中,按照鼓风机组试车方案的要求进行机组启动、停机、正常运行、联锁停机及安全运行等项目的试车。

基本的试车项目完成后,还要进行工况点沿防喘线精确控制试验,这个试验是模拟进行的,即压低防喘振线,使工况点接近防喘振线进行模拟防喘振试验,观察其控制效果。具体做法是:当风机在安全运行时,将防喘阀关小至一定开度,此时风机处于稳定工作区,修改(主要是减小防喘线各拐点的出口压力值)并下载防喘振线各点的参数,实现压低防喘振线,然后缓慢开大静叶角度使工况点接近压低的防喘振线,观察其贴线运行的效果,包括超调和进入稳定区后防喘阀的动作稳定性,据此适当调整防喘控制的变比例和变积分参数。这些当然应在实验室进行充分的仿真试验基础上来进行。

至于喘振曲线的入口温度补偿效果,可以在测温元件输入端加适当的信号观察曲线移动情况,这项工作可以在实验室做,如果实验室对该项工作做得充分,到现场后可以不进行这项调试。

五、结语

通过萍乡钢铁公司4#高炉鼓风机的防喘振控制的优化工作,防喘阀在通常情况下得以关闭,吨铁鼓风电耗下降;防喘阀关闭,消除了放风噪声;增大了风机运行范围,充分利用风机潜力,为提高高炉产量奠定基础;全自动快速响应,提高风机运行的安全性。

查阅优化前的运行数据,防喘阀平均开度在10%左右,平均运行风压290kPa,根据热力学计算,平均放风流量至少在78m3/min,换算成标态流量为200m3/min。改造完成后,风机长期在防喘阀全关的状态下运行,防喘阀放风量降为0,据以往改造结果推算,平

均电流消耗将降低40A,消耗功率平均下降360kW,每小时节电360kW·h,按0.6元/ kW·h计算,每小时创造经济效益220元,年创效180万元。

高炉风机防喘振先进控制技术

高炉风机防喘振先进控制技术 高炉鼓风机是炼铁过程中的核心动力设备,对于整个钢铁企业而言,鼓风机的运行状态与企业的产量、效益、安全息息相关,防喘振控制作为高炉风机控制中最重要的一环,其控制效果完善与否,在很大程度上决定了能否充分发挥鼓风机的潜能,为高炉提供一个安全、稳定、高效的风源,保证高炉达到理想的利用系数。 一、目前在炼铁行业高炉风机防喘振控制技术中普遍存在的问题 1.“保风机”与“保高炉”之间的矛盾: 在防喘振控制回路中,由于缺少完备的数学算法,在工况点接近喘振线时,“保风机”和“保高炉”往往成为一对不可调和的矛盾。防喘振动作的速度主要由调节器的增益值来决定,在调试过程中,往往对增益值如何设定感到两为其难:如增大数值,防喘振阀在动作时打开得过快、过大势必会产生较大的流量和压力波动,这种波动是高炉正常生产中无法接受的。如减小数值,又不能保证在工况点上升较快的情况下保证风机不进入喘振区。产生这一矛盾根本的原因是防喘振控制回路设计的出发点是保护风机本体,对如何在保护风机的同时又保护高炉的正常生产缺少必要的考虑。目前普遍应用的防喘振控制效果的现实情况是:一旦工况点越过防喘振线,防喘振阀进行调节动作,工况点在2~3秒钟内由接近喘振区域被向下拉至距离防喘线以下,风机出口压力的波动至少会超过40kPa,在高炉憋压比较突然的情况下,压力的波动甚至可能达到100~150kPa,这样幅度的波动远远超过了高炉操作所允许的范围。一般来说,导致来自高炉的阻力增大、风机工况接近喘振线的原因可能是以下几种:在热风炉切换的过程中操作不慎、高炉炉料下落、炉顶煤气压力控制不稳等,这些原因都可能导致炉料料层透气性下降、高炉工况恶化。从维持高炉工况的角度出发,在这种情况下,最需要的就是高炉风机能够保证稳定的送风压力,使高炉工况得以好转,而由于防喘振控制的局限性,往往恰是在这一时候,供风压力最不稳定,导致和加剧了高炉座料,而高炉工况一旦变坏后往往需要几天的时间才能逐渐恢复,由此给炼铁企业造成巨大的经济损失。 2.AV系列轴流风机尚未发挥出最大效益: 由于目前普遍应用的防喘振控制过分侧重于风机本身,使AV(静叶可调式)系列轴流风机无法在最大工况点上稳定工作。工况点一旦达到或越过防喘振线,防喘阀就会在调节器的作用

2020年轴流通风机安全操作规程

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020年轴流通风机安全操作规 程 Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

2020年轴流通风机安全操作规程 (一)许可运转条件 1.必须安设反风装置; 2.电动机需安设电压表和电流表。 (二)开车前检查项目 1.在工作中不准擅自离开工作岗位,更不得将设备交给其它人操作,必须按操作规程进行操作; 2.运转前的检查项目 (1)主机部分 1)机体各部螺丝及联轴器是否松动; 2)叶轮和叶片是否松动; 3)机件有无裂纹及腐蚀情况。 (2)润滑系统

1)滑动轴承油量是否合适,甩油圈是否良好; 2)滚动轴承油量是否充足。 (3)电气部分 1)检查油开关,配电箱是否断开位置; 2)电阻器,电磁开关等是否在启动位置; 3)滑动短路环是否在起动位置,接头是否良好; 4)开关各部接点和熔断丝是否良好; 5)电流表指针是否在零位。 (4)附属部分 1)反风装置的动作是否灵活; 2)联结管是否严密,有无漏风现象。 3.开车的操作顺序 (1)运转前应按运转检查项目进行检查; (2)带有闸板阀的扇风机,应适当关闭闸板阀; (3)搬车试验二、三转后,转动圆滑无阻时,再行起动;(4)起动时应注意电动机及机器各部的音响是否正常;

防喘振控制原理及方法

4.2 离心压缩机防喘振控制 4.2.1 离心压缩机的喘振 1.离心压缩机喘振现象及原因 离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。此时可看到气体出口压力表、流量表的指示大幅波动。随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。如不及时 采取措施,将使压缩机遭到严重破坏。例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。 下面以图 4.2-1 所示为离心压缩机的特性曲线 来说明喘振现象的原因。离心压缩机的特性曲线显 示压缩机压缩比与进口容积流量间的关系。当转速 n 一定时,曲线上点c 有最大压缩比,对应流量设 为P Q ,该点称为喘振点。如果工作点为B 点,要 求压缩机流量继续下降,则压缩机吸入流量 P Q Q < ,工作点从C 点突跳到D 点,压缩机出口 压力C P 从突然下降到D P ,而出口管网压力仍为 C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到 D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重 复上述过程,出现工作点从B A D C B →→→→的反复循环, 由于这种循环过程极迅速,因此也称为“飞动”。由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。 2.喘振线方程 喘振是离心压缩机的固有特性。离心压缩机的喘振点与被压缩机介质的特性、转速等有关。将不同转速下的喘振点连接,组成该压缩机的喘振线。实际应用时,需要考虑安全余量。 喘振线方程可近似用抛物线方程描述为: θ 2 121Q b a p p += (4.2-1) 式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流 量和温度;b a 、是压缩机系数,由压缩机厂商提供。喘振线可用图4.2-2 表示。当一台离心压缩机用于压缩不同介质 气体时,压缩机系数会不同。管网容量大时,喘振频率低,喘 振的振幅大;反之,管网容量小时,喘振频率高,喘振的振幅 小。 图4.2-2 离心压缩机的喘振线

防喘振

1. 压缩机的防喘振控制方案 以往方案大致可分为固定极限流量和可变极限流量防喘振控制两类。但到目前为止,对于不同摩尔质量、温度、压力的压缩气体,还没有一种切实可行的方法来有效、精确地计算压缩机的喘振线,通常都是建立一个较大的额外安全空间,保证机组在可预设的最佳工作状况下安全运行,但这种方法使得压缩机的工作效率大为降低,因此有关的专业技术人员一直在寻找更有效的方法来解决防喘振控制过程中的安全与效率问题。TS3000 系统的成功应用, 就较好地解决了此问题。 2. 喘振线作图的基本方法 压缩机防喘振控制系统的基本原理,如图2 所示。 图中:Yl=Y2/Y3=Pd/Ps=(PT2+ 1.0332)/(PT1+1.0332); SP=Y4=V(Pd/Ps)+K(给定);Y5= h/Ps=FT5/(PT1+1.0332)(测量)采用Pd/Ps 和c·h/Ps 做喘振曲线,其基本形状为抛物线,而采用Pd/Ps 和(c· h/Ps )2作图时得到的喘振线则在工作点附近基本呈直线形状(简化后,C2h/Ps)。 其关系式如下: h/Ps=V·(Pd/Ps)+K式中,Pd—压缩机出口压力(绝压),kPa;Ps—压缩机入口压力(绝压),kPa;C—常数(由孔板尺寸决定),m2;h—孔板差压(与流量的关系式为Q2=H),kPa 3. 工艺控制方案 (1)压缩机防喘振调节画面组成

(a)防喘振动态示意图,将压缩机实际工作点在防喘振示意图上相应显示。 (b)动态数据,将实际工作点数据在ESD 画面相应处显示。 (c)点击ESD 流程图上相应调节阀,可弹出PID 画面,可在线修改设定值或输出值。 (2)调节防喘振电磁阀设定3 种状态,正常运转状态下,可设定自动调节,开停工或异常状态下, 可设定手动调节或强制调节。 (3)报警 利用声光报警及画面报警提示。 (4)控制要点 (a)开压缩机前,应先将防喘振阀强制打开至100%。 (b)当压缩机实际工作点靠近防喘振线时,应提高压缩机转速,维持正常生产,若压缩机 转速已达最大,则应打开防喘振阀,并适当降低装置负荷,保证压缩机的正常运行。 (c)当压缩机进入喘振区,ESD 声光报警时,应立即打开防喘振阀,并相应降低装置生产 负荷,消除喘振,使压缩机回到正常工作区运转,避免压缩机损坏或故障。 (5)机组喘振线及防喘振线示意图 见图3。

矿用防爆对旋轴流式局部通风机安全操作规程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.矿用防爆对旋轴流式局部通风机安全操作规程正式 版

矿用防爆对旋轴流式局部通风机安全 操作规程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 一.对局部通风机操作人员的基本要求 1.操作人员必须经过专门培训并持合格证后方可操作设备,否则不允许检修通风机设备。 2.局部通风机操作人员必须熟记局部通风机操作规程。 3.操作人员应熟悉通风机一般构造、工作原理、技术特征、各部性能,供电系统和控制回路。 4.局部通风机在运行期间,加强巡回检查,做好各种运行记录。 5.严格遵守劳动纪律。

6.起动前检查风电闭锁完好情况,启动后应监听风机运转声音一段时间,出现异常声音及时停机处理 二、进入现场 1.局部通风机操作人员必须熟悉自己的工作环境,对煤尘、噪音、顶板等可能存在的危害有着充分的认识,有熟练的操作技能。 2.操作时必须佩戴齐全个人防护用品 三、.操作准备 1.仔细检查风机各紧固件有无松动,如有松动及时紧固。 2.检查风机、风筒有无漏风现象,如有应及时进行处理。 3.检查配电装置是否完好,运行是否正

高炉轴流风机防喘振控制系统优化及实验

高炉轴流风机防喘振控制系统优化及实验 摘要:针对萍钢4#高炉鼓风机存在的问题,阐明了防喘振控制优化的方案,包括工况点沿防喘线精确控制,入口温度对喉部差压、出口压力的补偿,提出了控制优化的具体实施方法,优化达到了预期目标。 【关键词】轴流风机防喘振优化实施 一、前言 高炉鼓风机是高炉炼铁生产的关键动力设备,为确保鼓风机的安全稳定运行,在其控制系统中必须配备防喘振自动控制,并应兼顾高炉生产、机组安全、节能降耗等各方因素,高炉作为鼓风机供风的负载,炉内状况瞬息万变,鼓风阻力发生扰动,控制系统将使防喘振阀动作,就会在高炉意外崩料和风机喘振之间处于两难的境地,本文以萍乡钢铁公司4#高炉鼓风机的防喘振控制优化为例,阐述控制系统在防喘振调节过程中如何保证送风压力的稳定性,在安全运行前提下充分发挥风机能力,进而为高炉稳产、高产奠定基础。 二、存在的问题 萍乡钢铁公司4#高炉采用AV45-13全静叶可调式轴流风机,由于防喘振控制侧重于保护鼓风机,加之防喘振控制品质不高,2010年投产以来,防喘振控制系统运行状况不甚理想,主要表现在以下几方面: 1)防喘阀开度基本在10%左右,轴流风机经常处于放风状态,造成大量无谓能量损失,放风噪声污染严重。 2)防喘振的控制品质有待提高:一旦高炉路况不顺,鼓风阻力增大使风机工况点进入调节区时,通常是采用人工紧急干预打开防喘阀使工况点回到稳定工作区,保守的安全意识使工况点总是远离防喘振线。 3)不同入口温度对风机喘振性能有较大影响,采用固定的喘振性能曲线不能真实地反映风机喘振性能,一方面可能影响风机的安全、稳定运行,另一方面可能制约风机供风能力的充分发挥。 三、防喘振控制优化方案 1.防喘振控制优化的先决条件 为了实现防喘振控制的优化,必须借助于性能优良的PLC系统。PLC的高速运算性能可使用户程序的扫描周期在10毫秒级,为有效克服鼓风阻力瞬变扰动成为可能;PLC丰富的运算和编程功能可以实现各种先进控制算法,达到预期的控制效果;PLC的高可靠性,实现风机控制系统的安全运行进而确保风机的安全可靠运行。4#高炉鼓风机采用西门子S7-400H PLC,配备冗余414CPU可很好地实现各项控制任务。 为了实现防喘振控制的优化,必须借助于性能优良的防喘振阀。防喘振阀具有可靠的快开性能,当一旦压力过高,可释放由于喘振引起的压力波动;防喘振阀应具有良好的调节性能,当运行点接近防喘振线时,能充分调节流量以防止起浪点;防喘阀应具备灵敏的阶跃响应,超调应限制在最小,可满足风机在启动和停车时的压力、流量变化。4#高炉鼓风机采用的fisher防喘阀可以较好地满足上述要求。 2. 工况点沿防喘线精确控制 (1)防喘振的基本控制方法以喉部差压为横坐标、以出口压力为纵坐标,建立了运行工况画面,画面包含喘振线(红线)、喘振报警线(黄线)和防喘振控制线(蓝线),黄线和蓝线分别设在红线下方97%和93.5%处,以实际运行工况下的喉部差压和出口压力坐标建立运行工况点,如下图所示。根据当前喉部差压(补偿后),在防喘线上查询对应的出口压力,作为防喘振控制的给定值SP,以当前风机出口压力作为防喘振控制的测量值PV,二者之偏差西门子STEP7的PID模块FB41进行控制运算,当工况点接近或越过蓝线时,PLC控制防喘阀打开一定角度,来减小压缩机出口的阻力,使工况点回到稳定工作区,以避免轴流风机喘振现象的发生。 在工况点接近喘振线时,要求轴流风机的防喘阀必须动作迅速,但防喘阀动作速度太快、动作幅度过大,势必会使风机出口压力、流量产生大幅度波动,影响高炉炉况的稳定。由于防喘振控制是以风机吸入气体流量和排气压力为调节对象,二者的变化都具有极强的瞬时性,而信号测量、计算输出、执行机构动作及工艺过程都不可避免会产生一定的时间滞后,在这样一个瞬时性非常强的闭环控制回路里,以滞后的测量信号为计算依据,采用的常规的PID运算,虽然可以在工况点跃过防喘线时迅速地打开放空阀,但无法使工况点在响应线附近被稳定控制,难以实现精确控制。

轴流风机操作规程

A V45-12、A V50-12轴流压缩机操作规程 一、设备参数 1.1轴流压缩机 1.2变速器 1.3主电机

1.4机组运行参数 二、轴流风机启动前的检查与准备工作: 1、确认启动机组编号,对启动机组设备进行详细检查。 2、启动电动润滑油泵,调整油压在正常范围,缓慢打开去高位油箱的注油阀,待高位油箱视窗内有回油时,应立即关闭注油阀。 3、通过各轴承回油管路上的视窗检查,润滑系统畅通无阻,并无泄漏现象;同时检查油箱液位,不得低于最低值或报警值,油温应保持在25-30℃之间,否则应对其进行加热。 4、对电动润滑油泵进行自动联锁试验,确认正常后,一运一备。 5、启动电动盘车(或手动盘车),倾听机组内部应无异常声音,并确认部分转动灵活。 6、动力油系统检查:油箱液位不得低于最低值或报警值,油温不得低于25℃,否则应对油进行加热。 7、启动动力油泵,调整油压值在正常范围,并进行自动联锁试验,确认正常后,一运一备。 8、检查蓄能器内氮气压力,不得低于6.5 MPa,否则需冲氮,蓄能器一用一备;检查油冷却器,主电机空间冷却器的冷却水系统,应畅通并无泄漏现象。 9、检查气管路上所有阀门的手动部分是否灵活好用,送风管路上的阀门应关闭,并全开防喘振阀。 10、检查空气过滤器,确认其内部没有杂物。 11、按照AV45-12机组PLC开机画面要求进行操作试验,并确认正常。

三、机组的启动: 1、启动前停止电动盘车,并进行盘车装置分离确认。 2、启动机组前,同厂调度、所属变电站、配电室联系,经允许后,按启动机组按钮。 3、机组启动升速过程中,仔细侦听机组内部的声音,如发现不正常的声音或振动时,应立即采取措施,直至停车,排除故障后,再启动机组。 4、风机达到正常转速后,按照PLC画面操作要求,进行静叶释放等操作调整,并检查各参数及振动是否正常。 5、油冷却器出口油温达到45℃时,应打开油冷却器冷却水进出口阀门,调整冷却水流量,保持油冷却器出口油温在30-45℃,要求冷却器内水压低于油压。 6、调整主电机空间冷却器进出水阀,使电机温升低于105℃。 7、观察压缩机的定子、外壳在受热膨胀时,是否正常。 8、确认机组运行正常后,可以向高炉送风。 四、机组的送风操作: 1、送风时首先打开送风蝶阀,然后逐渐关闭旁通电动放风阀(1#机组为手动放风阀),调整防喘阀开度,注意观察逆止阀是否打开,按照微机运行工况画面进行工况调整,以满足高炉用风要求,以上操作应注意风压上升不宜过快,注意各参数的变化。 2、高炉发生放风时,操作人员应及时调整机组负荷,检查机组运行状况和各参数的变化情况。 3、高炉休风时,全开防喘振阀,同时调整静叶角度到26o-28o。 4、高炉憋风时,同高炉取得联系,适当打开防喘振阀,紧急情况下,可适当打开旁通电动放风阀(1#机组为手动放风阀),将风机工况点控制在安全区域(黄线以内)。 五、机组的停车: 1、接到高炉主控室允许停机的指令后,同所属的变电站、厂调度、配电工取得联系。 2、降低负荷,逐渐全开防喘振阀,电动放风(或手动放风阀),关闭送风蝶阀,调整静叶角度为26o-28o。 3、手动操作主电机停止按钮。 4、在停机过程中,要仔细观察机组的振动,并细听有无异常声音,记录机组的走时间。

循环气压缩机防喘振控制(内容充实)

循环气压缩机防喘振控制 摘要: 本文系统介绍TRICON系统在循环气压缩机机组防喘振控制的应用及控制原理。重点介绍防喘振系统的功能模块的构建,同时简述机组运行故障时的检修方法与分析思路。 关键词定义: 喘振机理喘振线防喘振控制安全裕量盘旋设定点 1、前言: 大型离心式压缩机组由于其高效,经济,在现代企业中应用广泛,成为工艺连续运行的“心脏”。但是由于其造价相对于往复式压缩机而言要高很多,控制系统复杂,而且占用的空间大等缺点,对于工艺成熟的企业一般不设置备用机组。喘振是离心式压缩机固有的特性,每一台离心式压缩机都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防止喘振的发生。本文以天利高新技术公司醇酮厂的循环气压缩机C41101(SVK1-H型)为例,详细介绍TRICON三重化控制系统如何构建机组防喘振系统,并简述防喘振仪表常见故障的处理方法。 2、离心式压缩机喘振机理: 离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线是指压缩机的出口压力与入口压力之比(或称压缩比)与进口体积流量之间的关系曲线P2/P1~Q的关系,其压缩比是指绝对压力之比,特性曲线如图所示: 图2.1 离心式压缩机喘振曲线 由图2.1可见,其特性曲线随着转速不同而上下移动,组成一组特性曲线,而且每一条特性曲线都有一个最高点。如果把各条曲线最高点联接起来得到一条表征喘振的极限曲线,如图中虚线。所以,图中还有阴影部分称为喘振(或飞动)区;在虚线的右侧为正常工作区。实线与虚线之间是临界区,压缩机可以运行,但太靠近喘振区,应尽量避免长期工作。

图2.2固定转速机下的特性曲线 图2.2是一条某一固定转速机下的特性曲线,喘振时工作点由A-B-C-D-A反复迅速的突变。 喘振是一种危险现象,发生喘振时,可发现在入口管线上的压力表指针大幅度摆动,流量指示仪表也发生大幅度的摆动.喘振现象会损坏压缩机的各部件,轴承和密封也将受到严重损害,严重时造成轴向窜动,甚至打碎叶轮,烧轴,使压缩机遭受破坏。 喘振是离心式压缩机固有的特性,每一台都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防喘振的发生。 3、工艺流程简介: 醇酮装置是利用环己烷(C6H12)在铁系催化剂的催化作用下与贫氧空气(氧含量:10%)中的氧组分发生氧化反应,生成环己醇(分子式:C6H11OOH)、环己酮(分子式:C6H10O)、还己基过氧化物(可分解为环己醇、环己酮),前两者合称醇酮。另外,由于反应温度、氧气含量的不同,会产生甲酸、二元酸等付产品。 循环气压缩机组是用于反应尾气的重复利用,与来自新鲜空气压缩机C41102的新鲜空气配制贫氧空气(氧含量:10%)。循环气机组部分的实时工艺流程如图3.1,流程说明如下: 4.5MPa中压蒸汽自管网来,经过减温减压后至4.1MPa,用于驱动汽轮机(杭汽大陆产:B0.3-4.1/1.1型)C41101/2,蒸汽凝结水直接排入地沟。汽轮机通过齿轮变速箱升速后驱动贫氧空气压缩机C41101/1,使之达到18831r/min。 经过醇酮反应器贫氧催化反应消耗掉贫氧空气中氧组分的尾气,通过洗涤工艺后主要成分为氮气(N2:95.52%),氧气(O2:3.44%)、微量CO、CO2、环己烷蒸汽等。经过贫氧空气压缩机入口气液分离器分离出凝结液体后进入压缩机升压,经出口气液分离后进入气气混合器R41103,与来自新鲜空气压缩机的新鲜空气混合调配成氧含量为不大于10%的贫氧空气,送往醇酮反应器进行贫氧催化反应。

主通风机司机安全技术操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 主通风机司机安全技术操作规程(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2935-66 主通风机司机安全技术操作规程(正 式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、上岗条件 1、司机必须经过培训,考试合格,持证上岗操作。 2、应熟知《煤矿安全规程》的有关规定,熟悉通风机一般构造、工作原理、技术特征、各部性能、供电系统和控制回路,以及地面风道系统和各风门的用途,以及矿井通风负压情况,能独立操作。 3、司机应没有妨碍本职工作的病症。 二、安全规定 1、上班前禁止喝酒,上班时不得睡觉,不得做与本职工作无关的事情。严格执行交接班制度和工种岗位责任制,遵守本操作规程及《煤矿安 全规程》的有关规定。 2、当主要通风机发生故障停机时,备用通风机必

须在lO分钟内开动,并转入正常运转。 3、当矿井需要反风时,必须在l O分钟内完成反风操作。 4、主通风机司机应严格遵守以下安全守则和操作纪律: (1)不得随意变更保护装置的整定值。 (2)操作高压电器时应用绝缘工具,并按规定的操作顺序进行。 (3)协助维修工检查维修设备工作,做好设备日常维护保养工作。 (4)地面风道进风门要锁固。 (5)除故障紧急停机外,严禁无请示停机。 (6)通风机房及其附近20米范围内严禁烟火,不得有明火炉。 (7)开、闭风闸门,如设置机动、手动两套装置时,须将手动摇把取下以免伤人。 (8)及时如实填写各种记录,不得丢失。 (9)工具、备件等要摆放整齐,搞好设备及室内

高炉轴流风机喘振分析及防喘振控制系统研究

高炉轴流风机喘振分析及防喘振控制系统研究 张红庆 陕西维远科技有限公司 710054 摘要:本文介绍了轴流风机喘振现象的形成机理、不同气温条件下喘振曲线的动态补偿方法,分析了常见的传统防喘振控制工艺中存在的不足,以及先进防喘振控制技术应用于高炉轴流风机的优化控制策略。 关键词:轴流鼓风机;防喘振;优化控制 引言 目前静叶可调式轴流风机在钢铁企业400~2000m3的高炉上已普遍使用。在高炉风机的控制系统中,防喘振控制系统是最核心的控制环节,必须综合考虑高炉生产、机组安全、节能降耗等多方面需求,如果在控制工艺中采用常规的简单、粗放的设计方法,不仅能耗浪费严重,也是极大的安全隐患。本文介绍的高精度防喘振控制系统,不仅可以更有效地保证机组和安全和稳定,同时也可以充份发挥机组的最大性能范围,对高炉安全性和产量的提高起到显著的促进作用。 轴流风机喘振现象的本质 为了更好地理解和设计防喘振控制系统,有必要对轴流压缩机形成发生喘振现象的本质原因加以说明。 轴流风机转子的叶片呈多级排列,每一级叶片环绕转子形成一组叶栅。空气流经过多级叶栅逐级压缩传递,最终经末级叶栅到达出口。在一定的静叶角度下,气体的流量与风机出口的压力有关,压力越高,流量越低。喘振是指风机达到出口压力极高、流量极低极限后的工况突变。

气流冲角及叶片背面表层气流脱离失速现象 气流沿轴向进入叶栅时,气流方向与风机叶片之间的夹角称为气流冲角。随着压力的增高,入口流量愈小,气流冲角也就愈大。当气流冲角增大到一定程度时,沿叶片的非工作面将发生气流脱离现象。这种现象称为脱流或失速。失速是叶轮式轴流输送设备都会遇到的一种现象,失速又叫旋转脱流,即由于气体对叶片的冲角过大而使得气流的流线脱离叶片表面,结果叶片表面处的气流变为紊流,同时可导致叶片颤振。失速区沿叶栅旋转传递和不断扩展,就会引起压缩机的工况突变,即喘振。 气流冲角增大至一定程度后,沿叶片背面形成气流脱离现象示意图 当风机发生喘振时,整个风机的管网系统气流周期性振荡现象,这时,轴流风机虽然仍在旋转,但对气体所做的功却不能提高风机的流量和压力,而是基本上转化为空气热能。风机的气动参数(流量、压力)将作大幅度的纵向脉动,且发出低沉的异常声音和震动。在轴流风机发生喘振时,纵向推力来回振荡会导致

防喘振阀简介

FISHER防喘振阀简介防喘振阀技术的关键在于其可靠性和最佳性能。 其重要特点: 一、保护压缩机 1、阀门必须快开与完全可靠; 2、阀门流量充分以防止起浪点; 3、避免噪音和振动所产生的压缩机和管道损害。 二、起动和停车时的敏感控制 1、阀门应随阶跃响应而活动,超调应限制在最小; 2、阀门备有正反馈位置; 3、阀门仪表附件调整简单。 典型气路图如下:

概述:整个气路的功能在正常情况下实现精确的阀位控制,快开慢关;在紧急情况(失气、失电)下快速打开阀门以保护压缩机。 正常情况(即调节控制)下,两个电磁阀带电,对三通电磁阀,3和2通;两通电磁阀,1和2断开。这时经过过滤减压后的空气分成三路,一路经单向阀到四通,然后到2625、储气罐、377的F口;一路经三通电磁阀后,到377的SUP口,来自SUP口的气体压缩377内部弹簧,这样在377内部气路中,A口和B口通,D口和E口通;另一路到DVC6020的SUP口,作为DVC的气源。当控制信号(控制系统DCS/PLC输出到DVC6020的4-20MA 信号)增大时,定位器A口输出增大,B口输出减小;增大的A口气压经377A-B口、快排阀后作用在汽缸(1061执行机构)上腔;B口的气压经377D-E口作为气路放大器2625的输入信号,控制2625输出到汽缸(1061执行机构)下腔的压力;这时,汽缸活塞上部的压力》下部的压力+管道

风压作用在碟板上的力+机构摩擦力,活塞往下运动,由铭牌上ACTION:PDTC(PUSH DOWN TO CLOSE,意思就是活塞往下运动时,阀门关闭)可知,阀门开口度减小。反之,控制信号减小,定位器A口输出减小,B口增大,这时由于有快排阀和气路放大器2625的作用,活塞快速往上运动,阀门实现快开。 当电磁阀失电,对三通电磁阀,1和2通,两通电磁阀1和2通; 这时,377SUP口的压力经三通电磁阀1口卸掉,377在其内部弹簧的作 用下,气路发生转换,B口和C口通,E口和F口通;储气罐的气加上 气源的气经377F-E口后作为气路放大器2625的控制信号,由于这时储 气罐的气压很高(等于减压阀出口压力),使2625主阀口开得很大,储 气罐里的气和气源的气以最大流量经2625进入汽缸下腔,汽缸上腔的 气经快排阀、两通电磁阀快速排向大气,阀门快速打开。 当失气时,由于有单向阀的存在,使得储气罐的压缩空气不致倒流。 整个原理同失电一样,只是使阀门快速打开的只有储气罐里的压缩空气。 储气罐里的压缩空气除了在气源失气时使阀门快速打开外,正常情 况下起稳定气路压力的作用。 各个主要附件的功能简介: 一、过滤器262K 主要功能:除去气源中污垢、水垢和一些固体杂质。

喘振与失速区别

谁知道风机失速、喘振、抢风都什么意思,三者有什么关系?我在网上查过,但都没看太明白,望不吝赐教。 失速是风机本身特性引起的 喘振是风压由于管道压力的滞后导致与风机出口压力周期性变化,就来来回倒腾 抢风如这个词,两台风机不是你出力大就是我大,搞的最后两败俱伤。 我的理解 轴流风机的喘振与失速是不同的情况可以简单概括如下: 喘振一般发生在性能曲线带驼峰的轴流风机低负荷运行时; 失速一般发生在动叶可调轴流风机的高负荷区。主要是动叶指令太大导致,叶片进风冲角过大引起叶片尾部脱流产生风机失速带驼峰 抢风是当并联轴流风机中的一台发生喘振或失速时人们的一般性叫法。 喘振是指当风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。 避免喘振主要采用合适的调节方式 抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反 避免抢风主要有: 1。不采用不稳定性能风机 2.同时在低负荷运行时可以单台运行 3.采取动叶调节 4.开启旁路风

一、风机失速 图1:风机失速 轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w 的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。当风机流量减小时,w的方向角改变,气流冲角增大。当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。 由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。也就是说,脱流区是旋转的,其旋转方向与叶轮旋转方向相反。这种现象称为旋转失速。 与喘振不同,旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳损坏的重要原因。从风机的特性曲线来看,旋转失速区与喘振区一样都位于马鞍型峰值点左边的低风量区。为了避免风机落入失速区工作,在锅炉点火及低负荷期间,可采用单台风机运行,以提高风机流量 二、风机喘振: 图1:风机喘振 图2:风机喘振报警线

轴流通风机安全操作规程

编号:CZ-GC-08501 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 轴流通风机安全操作规程 Safety operation regulations for axial flow fans

轴流通风机安全操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重的会危及生命安全,造成终身无法弥补遗憾。 (一)许可运转条件 1.必须安设反风装置; 2.电动机需安设电压表和电流表。 (二)开车前检查项目 1.在工作中不准擅自离开工作岗位,更不得将设备交给其它人操作,必须按操作规程进行操作; 2.运转前的检查项目 (1)主机部分 1)机体各部螺丝及联轴器是否松动; 2)叶轮和叶片是否松动; 3)机件有无裂纹及腐蚀情况。 (2)润滑系统 1)滑动轴承油量是否合适,甩油圈是否良好;

2)滚动轴承油量是否充足。 (3)电气部分 1)检查油开关,配电箱是否断开位置; 2)电阻器,电磁开关等是否在启动位置; 3)滑动短路环是否在起动位置,接头是否良好; 4)开关各部接点和熔断丝是否良好; 5)电流表指针是否在零位。 (4)附属部分 1)反风装置的动作是否灵活; 2)联结管是否严密,有无漏风现象。 3.开车的操作顺序 (1)运转前应按运转检查项目进行检查; (2)带有闸板阀的扇风机,应适当关闭闸板阀; (3)搬车试验二、三转后,转动圆滑无阻时,再行起动;(4)起动时应注意电动机及机器各部的音响是否正常;(5)待电动机运转正常后,需将闸板阀全部打开。

CCC 压缩机防喘振控制技术

CCC 压缩机防喘振控制技术 作者:https://www.sodocs.net/doc/b77858143.html, 来源:本站发表时间:2010-6-5 17:27:55 点击:68 CCC 压缩机防喘振控制技术 1. 喘振现象 喘振是涡轮压缩机特有的现象,我们可以从下图的简单模型来解释这一特性,从图中可以看出,当容器中压力达到一定值时,压缩机运行点由D 沿性能曲线上升,到喘振点A ,流量减小压力升高,这一过程中流量减小压力升高,由A 点开始到B 点压缩机出现负流量即出现倒流,倒流到一定程度压缩机出口压力下降(B-C),又恢复到正向流动(C-D ),这样,气流在压缩机中来回流动就是喘振,伴随喘振而来的是压缩机振动剧烈上升,类似哮喘病人的巨大异常响声等,如果不能有效控制会给压缩机造成严重的损伤,喘振工况的发展非常快速,一般来讲在1-2 秒内就以发生,因而需要精确的控制算法和快速的控制算法才能实现有效的控制。 2. 喘振控制

通常压缩机都会有一系列的性能曲线图(如下图所示),其坐标是多变压头-入口流量,由于压缩机入口条件的不同(如温度、压力、分子量等)其喘振曲线是分散的多条曲线,给喘振的控制带来困难,CCC 根据压缩机的设计理论、喘振理论和自己的经验,开发出了一套计算方法和软件,可以将多变的入口条件的喘振曲线转化成与入口条件无关的曲线(如下图),这样就可以方便地确定喘振点,而一般来讲压缩机制造厂商提供的性能曲线,是计算值,会有一定偏差,特别是旧机组的性能会发生变化,或者没有性能曲线,为了精确控制,需要对喘振曲线做现场测试,传统的测试方法需要由经验丰富的测试工程师来进行测试,人为地判断压缩机是否到达喘振点,这样做带来了巨大的风险,因为人的判断无法保证100%的准确。而且由于到喘振点时,需要人来手动控制打开防喘振阀,往往会动作滞后或过早打开,难以避免给机组造成损伤或无法实现准确测量,CCC 的喘振算法和控制算法能够在自动状态下测量喘振曲线,从而避免了人为测量的风险,并能准确测量记录线,这一功能是CCC 的专利技术而且是世界独一无二的。

轴流风机的防喘振控制..

长岭分公司关键机组防喘振控制 长岭分公司机动处李晖 一概述 透平式压缩机是利用高速旋转的叶轮(叶片组)对气体作功,将机械能加给气体,使气体压力升高,速度增大。在叶轮后部一般设置有面积逐渐扩大的扩压元件(扩压器),高速气体从叶轮流出后再流经扩压器,使气体的流速降低,将气体的速度能(动能)部分转变为压力能,压力继续提高。透平式压缩机气体的吸入、压缩和流出均是在连续流动的状况下进行的。 透平式压缩机按气流运动方向可分为三类: 离心式—气体在压缩机内沿离心方向流动 轴流式—气体在压缩机内沿与转轴平行方向流动 混流式—气体在压缩机内的流动方向介于离心式和轴流式之间 长岭分公司的关键机组分二种:离心式压缩机和轴流式压缩机,它们的原动机有三种:电动机,烟气轮机和蒸汽轮机,压缩机的主要作用是压缩空气和富气等工艺介质,使之达到工艺所需的流量、压力。关键机组是生产中的关键设备,它们的运行工况对压缩机安全、稳定、经济地运行和生产装置的正常运行十分重要,而在关键机组的诸多自控回路中,其防喘振控制是一项重要的安全保护措施。 二防喘振控制系统 喘振是透平压缩机的一种固有特性。 1.喘振的产生

压缩机的运行工况任何时候都可以用性能曲线来表示,通过性能曲线可以反映压缩机各种运行参数之间的关系并确定其性能,如图1所示的是反映压缩机出口压力与入口流量之间关系的性能曲线(入口温度、压力和转速不变)。当压缩机的流量沿着性能曲线减少流量达到其驼峰点流量(喘振点)时,在排出管内出现时大时小、时正时负的不稳定工况,在叶轮及扩压器的某一通道内还会发生时出现时消失的边界脱离涡流区,并且依次传给相邻的管道,产生一种低频率、高振幅的气流脉动,从而引起严重的振动和吼叫声,严重时可能引起压缩机和管道系统遭到破坏。 2. 喘振的机理 由于叶轮与叶片扩压器的形状及安装位置不可能完全对称及气流的不均匀性,当进气流量减小到某一个值时,进入叶栅的气流发生分离,这种分离首先发生在一个或几个叶片的流道中,影响进入相邻的流道的气流方向,由于进气冲角的变化及气流的分离区沿叶轮逆流旋转,以比叶轮旋转速度小的相对速度移动,在绝对运动中分离区沿叶轮旋转方向并以比叶轮旋转速度小的速度进行,即产生旋转分离。当旋转分离扩散到整个管道,压缩机出口压力突然下降,后面管路(或容器)中的气流倒流至压缩机内,瞬时弥补了压缩机流量的不足,恢复机组的正常工作,把倒流至压缩机内的气体压出处,又使压缩机流量减小, 入口流量 出口压力 1 图1 压缩机性能曲线图

轴流通风机安全操作规程

轴流通风机安全操作规程 (一)许可运转条件 1.必须安设反风装置; 2.电动机需安设电压表和电流表。 (二)开车前检查项目 1.在工作中不准擅自离开工作岗位,更不得将设备交给其它人操作,必须按操作规程进行操作; 2.运转前的检查项目 (1)主机部分 1)机体各部螺丝及联轴器是否松动; 2)叶轮和叶片是否松动; 3)机件有无裂纹及腐蚀情况。 (2)润滑系统 1)滑动轴承油量是否合适,甩油圈是否良好;

2)滚动轴承油量是否充足。 (3)电气部分 1)检查油开关,配电箱是否断开位置; 2)电阻器,电磁开关等是否在启动位置; 3)滑动短路环是否在起动位置,接头是否良好; 4)开关各部接点和熔断丝是否良好; 5)电流表指针是否在零位。 (4)附属部分 1)反风装置的动作是否灵活; 2)联结管是否严密,有无漏风现象。 3.开车的操作顺序 (1)运转前应按运转检查项目进行检查; (2)带有闸板阀的扇风机,应适当关闭闸板阀; (3)搬车试验二、三转后,转动圆滑无阻时,再行起动;(4)起动时应注意电动机及机器各部的音响是否正常;(5)待电动机运转正常后,需将闸板阀全部打开。

4.开车的注意事项 (1)机器转动时应注意电流表指针是否正常,电机及机械部分是否正常; (2)操作开关、设备时,必须戴上胶皮手套和穿上绝缘胶鞋,并且要在起动装置的面前铺上胶皮垫; (3)工作场所应有适当照明; (4)严禁湿手操作电气设备。 (三)运行中的维护检查内容及注意事项 1.设备的重点检查内容 (1)主机部分 1)机体是否振动; 2)经常注意风机有无异常声音。 (2)润滑部分 1)经常用手试验轴承温度; 2)滑动轴承内的甩油圈是否带油。 (3)电气部分 1)检查电动机温度;

PLC 在压缩机防喘振控制系统中的应用

PLC在压缩机防喘振控制系统中的应用 前言 抚顺乙烯化工有限公司空分装置空压机防喘振控制系统原来采用FOXBORO盘前二次表来实现,并采用继电器实现其相关联锁逻辑功能,实现手段不仅落后,维护工作量大,而且还经常出现原因不明的意外停车,防喘振控制系统运行也不理想。该装置原控制系统发生爆炸事故之后,现在采用美国GE-Fanuc公司的90-30双机热备型PLC来实现空压机的防喘振功能和机组联锁保护,使用日本Digital公司的GP-470触摸屏来实现监视和操作功能。现在不仅操作直观方便、停车原因明确,也使空压机的防喘振系统设计更加完善,机组运行更加平稳。 空压机工艺简介 抚顺乙烯空分装置采用法国空气液化公司的专利,该装置以空气为原料,经过过滤、压缩、净化、精馏、蒸发等工序,最后分离出产品氧气和产品氮气。吸入的原料空气经过滤后除去灰尘和杂质,过滤后的空气由空气压缩机K601进行压缩,加压后送往下游净化岗位。空压机K601系离心式压缩机,由电机带动,分两级压缩,两级分置于电机两侧即K601A和K601B。空压机K601设计流量为31500 Nm3/h,功率为3200kw,转速为1450rpm,由法国苏尔寿(SULZER)公司制造。 喘振现象的产生 压缩机在工作过程中,当入叶轮的气体流量小于机组该工况下的最小流量(即喘振流量)限时,管网气体会倒流至压缩机,当压缩机的出口压力大于管网压力时,压缩机又开始排出气体,气流会在系统中产生周期性的振荡,具体体现在机组连同它的外围管道一起会作周期性大幅度的振动,这种现象工程上称之为喘振。 喘振是离心式压缩机的固有特性,当发生喘振时需采取措施降低出口压力或增大入口流量,尽量降低喘振时间。为了确保压缩机稳定可靠地工作,防止用量波动发生喘振,该装置设计了防喘振放空阀,当下游工艺设备空气用量减少或压缩机出现喘振时,可由放空阀减量放空来平衡。 防喘振方案的实施 防喘振控制系统描述 1.系统结构 本系统采用GE Fanuc 90-30 PLC 作数据采集和控制,为了保证系统的可靠性,控制部分采用双机热备结构,电源、CPU、通讯模块和通讯总线、以太网通讯模块等都是冗余的,通过

轴流风机的失速和喘振及预防

轴流风机的失速和喘振及预防 轴流式风机在运转时气流是沿着轴向进入风机室,空气在风机叶轮处受挤压,又沿着轴向流出的风机,空气在不断旋转的叶轮处获得能量。 轴流式风机负荷调节是根据控制系统发出指令,伺服机带动液压缸调节输入杆,液压缸缸体发生轴向位移,推力盘轴向位移,带动所有叶片同步转动角度,来调节风机的出力(一次风机主轴为中空轴,中间有一连接杆,连接前后两级推力盘,通过液压缸的带动,两级推力盘同步移动,从而两级叶片同步转动)。送风机叶片转动角度范围(-30~+10°),一次风机叶片转动角度范围(-30~+15°)。 液压缸调节原理:叶片需开大时,伺服机带动调节杆向开大的方向旋转一定角度,则伺服阀芯向后移动,液压油进入液压缸体后腔,前腔油通过回油管返回至油箱,液压缸体向后移动,叶片开大,此时和缸体连在一起的反馈杆也一同向后移动,而反馈杆带动伺服阀套向后移动相同的距离,从而堵住进油孔,停止进油,保持叶片在某一开度;若叶片需关小时,伺服机带动调节杆向关小的方向旋转一定角度,则伺服阀芯向前移动,液压油进入液压缸体前腔,后腔油通过回油管返回至油箱,液压缸体向前移动,叶片关小,此时和缸体连在一起的反馈杆也一同向前移动,而反馈杆带动伺服阀套向前移动相同的距离,从而堵住进油孔,停止进油,保持叶片在某一开度。液压缸调节头处各阀、轴封的微量泄漏油通过泄漏油管返回的油箱。 一、轴流风机的失速与喘振 1、轴流风机的失速 轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(气流方向与叶片叶弦的夹角α即为冲角)为零或很小,气流则绕过机翼型叶片而保持流线平稳的状态,如图1a 所示;当气流与叶片进口形成正冲角且此正冲角超过某一临界值时,叶片背面流动工况则开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1b所示;冲角α大于临界值越多,失速现象就越严重,流体的流动阻力也就越大,严重时还会使叶道阻塞,同时风机风压也会随之迅速降低。

相关主题