搜档网
当前位置:搜档网 › 立体几何中的截面(解析版)

立体几何中的截面(解析版)

立体几何中的截面(解析版)
立体几何中的截面(解析版)

专题13 立体几何中的截面

【基本知识】

1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。

2、正六面体的基本斜截面:

3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。

【基本技能】

技能1.结合线、面平行的判定定理与性质性质求截面问题;

技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;

技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;

技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。

例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能

...是()

分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。

例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:

①水的部分始终呈棱柱状;

②水面EFGH的面积不改变;

③棱A1D1始终与水面EFGH平行;

④当容器倾斜到如图5(2)时,BE·BF是定值;

其中正确的命题序号是______________

分析当长方体容器绕BC边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG,但EH与FG的距离EF在变,所以水面EFGH的面积在改变,故②错误;在转动过程中,始终有BC//FG//A1D1,所以A1D1//面EFGH,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为BC

BF

BE

V?

?

=

2

1

是定值,又BC是定值,所以BE·BF是定值,即④正确。所以正确的序号为①③④. 例3 有一容积为1 立方单位的正方体容器ABCD-A1B1C1D1,在棱AB、BB1及对角线B1C的中点各有一小孔E、F、G,若此容器可以任意放置,则该容器可装水的最大容积是()

A C

B

D

A .

21 B .87 C .12

11 D .4847

分析 本题很容易认为当水面是过E 、F 、G 三点的截面时容器可装水的容积最大图(1),最大值为

8

7

12121211=???-

=V 立方单位,这是一种错误的解法,错误原因是对题中“容器是可以任意放置”的理解不够,其实,当水平面调整为图(2)△EB 1C 时容器的容积最大,最大容积为1211

112121311=????-=V ,故

选C 。

例4 正四棱锥P ABCD -的底面正方形边长是3,O 是P 在底面上的射影,6, PO Q =是 AC 上的一点,过Q 且与, PA BD 都平行的截面为五边形EFGHL ,求该截面面积的最大值.

解:如图,连接, AC BD ,设截面与正四棱锥P ABCD -的底面相交于EL ,AC 与EL 相交于Q 点,由//BD 截面EFGHL 得//LE BD , //AP 截面EFGHL ,得//AP QG ,那么,EL 必定分别与, AB AD 相交于

, E L ,否则,截面将是三角形,则//AP EF ,//AP LH ,在正四棱锥P ABCD -中,BD AP ⊥,由

C 1 A B C

D A 1

D 1 B 1

E

G

F

图(2)

C 1

A

B

C

D A 1 D 1 B 1

E G

F 图(1)

//,//,

LE BD AP QG GQE

∠是异面直线BD与PA所成角,则QG EL

⊥,所以,GFEQ和GHLQ是两个全等的直角梯形.

设:()

2

2

2

03,36

22

AE x x AP

??

=<<=?+=

?

?

??

由//

AP EF得

3

93

2

EF x

-

=,故()

3

2

EF x

=-,而

2

AQ=,由//

AP QG得

32

2

932

2

x

QG

-

=,

于是1

6

2

x

QG

?

=-

?

??

,从而:

()()2

2

199

213929

2644

222

EFGHL

x

S x x x x

?

=?-+-=-+=--+

?

??

??

??

所以,当2

x=时,截面EFGHL的面积取得最大值9.

基本方法介绍

①公理法:用平面基本性质中的公理来作平面;

②侧面展开法:将立体图形展开为平面图形进行研究;

例5 能否用一个平面去截一个正方体,使得截面为五边形?进一步,截面能否为正五边形呢?

解:如图所示,我们可以用一个平面截一个正方体

1111

ABCD A B C D

-,使得截面为一个凸五边形.点I是1B B延长线上一点,使得1

1

2

IB BB

=,E为

11

A D的中点,F为

1

AA上的点,使得

1

1

3

AF

A F

=.则截面1

C EFGH为过直线EF与

1

C I(这里

1

//

EF C I)的平面与正方体

1111

ABCD A B C D

-相截所得的凸五边形截面.

用一个平面去截一个正方体所得截面不能是一个正五边形.事实上,若截面可以为一个正五边形,则此五边形的五条边分属于此正方体的五个不同的面.

我们将正方体的每两个相对的面作为一个抽屉,则上述包含正五边形的边的五个面中,必有两个面为

相对的平面,它们是平行的,利用平行平面的性质,可知此五边形中有两条边是平行的.但是正五边形的五条边是彼此不平行的,矛盾.

例6 已知一个平面截一个棱长为1的正方体所得的截面是一个六边形(如图所示),证明:此六边形的周长3 2.≥

证明:如图,我们将正方形的各个面依次展开,从正方形''

PQQ P 出发,依次为

'''''''''''',,,,,.PP Q Q Q QRR Q R S P R S SR S SPP PSRQ

从上述展开图可知截面六边形的周长大于等于'AA ,而'223332AA =+=这就是要证的结论.

【针对训练】

一、单选题

1.【江西省吉安市2019-2020学年高二上学期期末数学】

在正方体1111ABCD A B C D -中,F 为AD 的中点,E 为棱1D D 上的动点(不包括端点),过点,,B E F 的平面截正方体所得的截面的形状不可能是( ) A .四边形 B .等腰梯形

C .五边形

D .六边形

【答案】D

【解析】不妨设正方体的棱长为1,当1

02

DE <≤,截面为四边形BMEF ; 如图

特别的,当1

2

DE =

时,截面为等腰梯形1BFEC ;如图

1

12

DE <<截面为五边形BFENM ,不可能为六边形.如图

故选:D

2.【2020届辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校高三上学期期末】 如图圆锥PO ,轴截面PAB 是边长为2的等边三角形,过底面圆心O 作平行于母线PA 的平面,与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到其顶点E 的距离为( )

A .1

B .

1

2

C .

13

D .

14

【答案】D 【解析】

过底面圆心O 作平行于母线PA 的平面,与圆锥侧面的交线是以E 为顶点的抛物线的一部分,PA ?平面PAB, 平面PAB 与圆锥的侧面交于OE, 所以OE||PA. 因为OA=OB ,所以OE=1=OC, 因为OP ⊥底面ABC,所以OP ⊥OC, 因为OC ⊥OE,OP,OE ?平面PAB,OP ∩OE=0, 所以OC ⊥平面PAB,所以OC ⊥OB.

在平面CED 内建立直角坐标系.设抛物线的方程为22(0)y px p =>, 1(1,1),12,2

C p p ∴=∴=

, 所以该抛物线的焦点到其顶点E 的距离为1.4

故选:D

3.一个棱长为2的正方体被一个平面截去一部分后,剩余部分的三视图如图,则该截面的面积是( )

A .6

B .10

C .15

D .7

【答案】A

【解析】由三视图可知几何体是正方体在一个角上截去一个三棱锥, 其截面是等腰三角形ABC ,如下图:

由于正方体的棱长为2,所以522AC BC AB ===,,所以AB 边上高为3,所以

1

32262

==ABC S ???,

故选:A .

4.如图,在正方体1111ABCD A B C D -中,点E ,F ,G 分别是棱AB ,BC ,1BB 的中点,过E ,F ,G 三点作该正方体的截面,则下列说法错误的是( )

A .在平面11BDD

B 内存在直线与平面EFG 平行 B .在平面11BDD B 内存在直线与平面EFG 垂直

C .平面1//AB C 平面EFG

D .直线1AB 与EF 所成角为45? 【答案】D

【解析】由线面平行判定定理可得,当O 为BD 的中点时,1B O ∥平面EFG ,

考点81 空间几何体的截面问题

考点81 空间几何体的截面问题 1.(2018?新课标Ⅰ,理12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A B C D 【答案】A 【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长 ,α截此正方体所得截面最大值为:26=,故选A . 2.(2015?新课标Ⅱ,理19)如图,长方体1111ABCD A B C D -中,16AB =,10BC =,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 【解析】(1)交线围成的正方形EFGH 如图: (2)作EM AB ⊥,垂足为M ,则:10EH EF BC ===,18EM AA ==, ∴6MH ,10AH ∴=。 以边DA ,DC ,1DD 所在直线为x ,y ,z 轴,建立如图所示空间直角坐标系,则: (10A ,0,0),(10H ,10,0),(10E ,4,8),(0F ,4,8),∴(10,0,0),(0,6,8)EF EH =-=-。 设(,,)n x y z =为平面EFGH 的法向量,则:100680n EF x n EH y z ?=-=??=-=?? ,取3z =,则(0,4,3)n =, 若设直线AF 和平面EFGH 所成的角为θ,则:45sin |cos ,|1805AF n θ=<>==,∴直线AF 与平面α .

立体几何动点问题

立体几何与平面解析几何的交汇问题 在教材中,立体几何与解析几何是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几何是二维的,立体几何是三维的,因此,立体几何是由平面几何升维而产生;另一方面,从立体几何与解析几何的联系看,解析几何中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几何与立体几何有这么许多千丝万缕的联系,因此,在平面几何与立体几何的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空间也相当宽广,这一点,在高考卷中已有充分展示,应引起我们在复习中的足够重视。 一、动点轨迹问题 这类问题往往是先利用题中条件把立几问题转化为平面几何问题,再判断动点轨迹。 例1定点A 和B 都在平面α内,定点α?P ,α⊥PB , C 是α内异于A 和B 的动点,且AC PC ⊥。那么,动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点 B. 一个圆,但要去掉两个点 C. 一个椭圆,但要去掉两个点 D. 半圆,但要去掉两个点 例2若三棱锥A —BCD 的侧面ABC 内一动点P 到平面BCD 距离与到棱AB 距离相等,则动点P 的轨迹与△ABC 组成的图形可能是( ) ) 解:设二面角A —BC —D 大小为θ,作PR ⊥面BCD ,R 为垂足,PQ ⊥BC 于Q ,PT ⊥AB 于T ,则∠PQR =θ, 且由条件PT=PR=PQ·sinθ,∴ 为小于1的常数,故轨迹图形应选(D )。 二、几何体的截痕

例3:球在平面上的斜射影为椭园:已知一巨型广告汽球直径6米,太阳光线与地面所成角为60°,求此广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为S=πab ,其中a,b 为长、短半轴长)。 解:由于太阳光线可认定为平行光线,故广告球的投影 椭园等价于以广告球直径为直径的圆柱截面椭园:此时 b=R ,a= =2R ,∴离心率 , 投影面积S=πab=π·k·2R=2πR 2=18π。 三、动点与某点(面)的距离问题 , 例4.正方体1111D C B A ABCD -中,棱长为a ,E 是 1AA 的中点, 在对角面D D BB 11上找一动点M ,使AM+ME 最小.a 23. 四、常见的轨迹问题 (1) 轨迹类型识别 此类问题最为常见,求解时,关注几何体的特征,灵活选择几何法与代数法. 例5、(北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交 α于点C ,则动点C 的轨迹是( ) A .一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支 【解析】直线l 运动后形成的轨迹刚好为线段AB 的垂面,由公理二易知点C 刚好落在平面α与线段AB 的垂面的交线上,所以动点C 的轨迹是一条直线.选择 A. 总结:空间的轨迹最简单的一直存在形式就是两个平面的交线,处理问题中注意识别即可. 例6、如图,在正方体ABCD A 1 B 1C 1D 1 中,若四边形A 1BCD 1 内一动点P 到AB 1和 BC 的距离相等,则点P 的轨迹为( ) … A .椭圆的一部分 B .圆的一部分 C .一条线段 D .抛物线的一部分 O E 例4题图 A % C D A 1 C 1 D 1 B 1 M - C D B C P O

立体几何中的截面(解析版)

专题13 立体几何中的截面 【基本知识】 1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。 2、正六面体的基本斜截面: 3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。 【基本技能】

技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题; 技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等; 技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。 例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能 ... 是() 分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。 例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题: ①水的部分始终呈棱柱状; ②水面EFGH的面积不改变; ③棱A1D1始终与水面EFGH平行; ④当容器倾斜到如图5(2)时,BE·BF是定值; 其中正确的命题序号是______________ A C B D

分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为 BC BF BE V ??= 2 1 水是定值,又BC 是定值,所以BE ·BF 是定值,即④正确。所以正确的序号为①③④. 例3 有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是( ) A . 21 B .87 C .12 11 D .4847 分析 本题很容易认为当水面是过E 、F 、G 三点的截面时容器可装水的容积最大图(1),最大值为 8 7 12121211=???- =V 立方单位,这是一种错误的解法,错误原因是对题中“容器是可以任意放置”的理解不够,其实,当水平面调整为图(2)△EB 1C 时容器的容积最大,最大容积为1211 112121311=????-=V , 故选C 。 例4 正四棱锥P ABCD -的底面正方形边长是3,O 是P 在底面上的射影,6, PO Q =是 AC 上的一点,过Q 且与, PA BD 都平行的截面为五边形EFGHL ,求该截面面积的最大值. C 1 A B C D A 1 D 1 B 1 E G F 图(1) C 1 A B C D A 1 D 1 B 1 E G F 图(2)

立体几何轨迹与截面问题

轨迹与截面(二) 1.如图,在正方体中,是的中点,为底面内一动点,设 与底面所成的角分别为均不为.若,则动点的轨迹为() A. 直线的一部分 B. 圆的一部分 C. 椭圆的一部分 D. 抛物线的一部分 2.正方体棱长为4,,分别是棱,的中点,则过三点的平面截正方体所得截面的面积为() A. B. C. D. 3.已知球O的半径为2,圆M和圆N是球的互相垂直的两个截面,圆M和圆N的面 MN=() 积分别为2π和π,则|| A.1 B3.2 D5 4.如图,在四棱锥P﹣ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD ⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的

轨迹为( ) A . B . C . D . 5.如图,记长方体1111ABCD A B C D -被平行于棱11C B 的平面EFGH 截去右上部分后剩下的几何体为Ω,则下列结论中不正确... 的是( ) A .EH ∥FG B .四边形EFGH 是平行四边形 C .Ω是棱柱 D .Ω是棱台 6.如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( ) 11 A 1 B 1 P D C A.直线 B.圆 C.双曲线 D.抛物线

7.如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面 11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( ) A.直线 B.圆 C.双曲线 D.抛物线 8.如图所示,最左边的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是( ) A .①② B .②③ C .③④ D .①⑤ 9.如图,正方体1111ABCD A B C D -的棱长为3,以顶点A 为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于( ) A . 56π B .23π C .π D .76 π 10.(2015秋?河南期末)如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,若∠A 1AB=∠A 1AD=60°,且A 1A=3,则A 1C 的长为( )

立体几何截面问题

立体几何中的截面问题剖析 用平面去截一个几何体,截面的情况可以帮助我们更好地认识几何体,对于一个几何体不同切截方式,所以得截面可能出现不同的情况. 以正方体为例:平面截正方体的截面图形 三角形: 四边形 五边形 六边形 类型一:与截面有关的求值问题 1、在棱长为2的正方体1111ABCD A B C D -中,M 是棱11A D 的中点,过1C ,B ,M 作正方体的截面,则这个截面的面积为( ) A .35 B .35 C .92 D .98 2、 体积为216的正方体1111ABCD A B C D -中,点M 是线段11D C 的中点,点N 在线段11B C 上,//MN BD ,则正方体1111ABCD A B C D -被平面AMN 所截得的截面面积为( ) A. 2717 B .2117 C .1517 D .1317

正三棱柱111ABC A B C -中,所有棱长均为2,点,E F 分别为棱111,BB A C 的中点,若过点,,A E F 作一截面,则截面的周长为( ) A .425133+ B .225133 + C .2513+ D .13252 + 反馈练习: 1、在棱长为2的正方体1111D C B A ABCD -中,E 是正方形C C BB 11的中心,M 为11D C 的中点,过M A 1的平面α与直线DE 垂直,则平面α截正方体1111D C B A ABCD -所得的截面面积为( ) A .23 B .26 C .225 D .3 2、如图,在正方体````ABCD A B C D -中,平面垂直于对角线AC ,且平面截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S ,周长为l ,则( ) A .S 为定值,l 不为定值 B .S 不为定值,l 为定值 C .S 与l 均为定值 D .S 与l 均不为定值 类型二:与截面有关的最值问题 1、已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .433 B .332 C .423 D .2 3

立体几何中的最值

立体几何最值问题 姓名 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A. 5 5 B. 5 5 2 C. 2 D. 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。 三、展成平面求最值 例 3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图3-1 四、利用向量求最值 例4. 在棱长为1的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的 最小值为_______。

一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, α O C B A E A

高中数学专题讲义-空间几何体. 截面与距离问题

棱锥、棱台的中截面与轴截面 【例1】 正四棱锥的侧棱长是底面边长的k 倍,求k 的取值范围. 【例2】 正四棱锥的斜高为2,侧棱长为5,求棱锥的高与中截面(即过高线的中点且平 行于底面的截面)的面积? 【例3】 正四棱台的高为17,两底面的边长分别是4和16,求这个棱台的侧棱长和斜高. 【例4】 已知正六棱台的上,下底面的边长和侧棱长分别为a ,b ,c ,则它的高和斜高分 别为 【例5】 已知正三棱锥S ABC -的高SO h =,斜高SM l =,求经过SO 的中点且平行于底面 的截面111A B C ?的面积. M O C 1 B 1 A 1 C A 【例6】 如图所示的正四棱锥V ABCD -,它的高3VO =,侧棱长为7, ⑴ 求侧面上的斜高与底面面积. ⑵ 'O 是高VO 的中点,求过'O 点且与底面平行的截面(即中截面)的面积. 典例分析 板块二.截面与距离问题

H O'O D C B A V 【例7】 如图,已知棱锥V ABC -的底面积是264cm ,平行于底面的截面面积是24cm ,棱锥 顶点V 在截面和底面上的射影分别是1O 、O ,过1O O 的三等分点作平行于底面的截面,求各截面的面积. C A 圆锥、圆台的中截面与轴截面 【例8】 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是14∶,母线长10,求 圆锥的母线长. 【例9】 一圆锥轴截面顶角为120?,母线长为1,求轴截面的面积. 【例10】 圆台的母线长为2a ,母线和轴的夹角为30?,一个底面半径是另一个底面半径的2 倍,求圆台的高与上下两底面面积之和. 【例11】 圆台两底半径分别是2和5,母线长是,求它的轴截面的面积; 【例12】 圆台侧面的母线长为2a ,母线与轴的夹角为30?,一个底面半径是另一个底面 半径的2倍,则两底面半径为 .

高中数学-空间几何体与截面三视图

高中数学-立体几何知识点与截面三视图 三.球的截面 .圆柱的截面 .圆锥的截面四.三棱锥的截面

五.正方体的截面(需补充两面截 图) 正方体的戡面图

立体几何基础知识点与考点三垂线定理(及逆定理): PA丄面,AO为P0在内射影,a 面,则 a丄OA a丄PO; a丄PO a丄AO 线面垂直: a丄b, a丄c, b, c 面面垂直: a丄面,a 面 面丄面, a丄面,b丄面 ,b c O a 丄 丄 l,a ,a 丄l a 丄a// b // 三类角的定义及求法 (1)异面直线所成的角e, 0 °

空间角:如图,正四棱柱ABCD —A I B I C I D I中 对角线BD i = 8, BD i与侧面B i BCC i所成的为30° ①求BD i和底面ABCD所成的角; ②求异面直线BD i和AD所成的角; ③求二面角C i—BD i—B i的大小。 (① arcsin —:② 60°:③ arcsin —6)4 3 空间距离:点与点,点与线,点与面,线与线, 线与面,面与面间距离。 将空间距离转化为两点的距离,构造三角形, 解三角形求线段的长(如:三垂线定理法, 或者用等积转化法)。 如:正方形ABCD —A i B i C i D i中,棱长为a,则: (1)____________________________________ 点C到面AB i C i的距离为; (2)____________________________________ 点B到面ACB i的距离为 (3)____________________________________ 直线A i D i到面AB i C i的距离为 (4)____________________________________ 面AB i C与面A i DC i的距离为

空间立体几何图形的截面

空间立体几何图形的截面 江苏省前黄高级中学许云峰 教学背景 本课为以立体几何的截面图为核心,让学生借助《几何画板》的实际模拟和探索功能进行学习,由学生自我探究,进行知识迁移,通过类比,自己去尝试并最终解决问题。教师在此过程中进行必要的总结和在学生出现困难时进行指导,由此培养学生思维的独立和发散性,使学生真正成为学习的主体。 教学目标: 1.认知目标:整合几何体的截面情况,形成完整的认知体系。 2.能力目标:学生利用《几何画板》探索问题的能力,以培养学生知识迁移能力,发散思维和类比思维能力。 3.情感目标:培养学生探索创新能力,激发学生学习的热情和积极性。 重点与难点 重点:空间几何体的截面图的作法;空间旋转体的截面作法。 难点:空间几何图形的交点的作法;由极限思想作出空间旋转体的截面图的作法。 教学策略与教法设计 策略:教师提出问题,然后逐层展开,分步进行研究(需学生进行探索和分析),然后学生进行分组讨论和实际操作,通过自主学习、探究学习、合作学习达到认知的意义建构。 教法 1.演示法:把制作的课件展示给学生,便于学生对知识的深层次的把握,并从中获得启发,从而解决问题。这同时也给学生制作作品提供了模板,让学生明白作品需达到的要求。 2.谈话法:在教师指导下,由全班或小组成员围绕某一中心问题发表自己的看法,从而进行相互学习、合作学习,集思广益。 3.成果展示法:将学生制作的作品有选择的展示(以小组为单位进行制作,每个小组推荐1~2个进行演示),让学生获得成功的喜悦和认同,从而激发学生后续学习的热情。 4.讨论法:就学生探索所得成果,各小组可自由提问,或者师生共同评价,最后总结成整体观点。 教学过程设计 先期准备 在《几何画板》中建立立体几何的图形工具包,方便学生在最快的时间内作出准确的立体几何图形,以方便学生进行探究性学习,避免在作图上花费过多时间和精力;同时可以给学生以示范,让学生学会如何作出形象的立体几何直观图。 教学目标提出 探究空间几何图形上过任意三点的截面 1.分三个小组对多面体进行协作探究:第一小组:柱体;第二小组:锥体;第三小组:台体。主要探究任意三点的位置和截面的形状。 2.探究圆锥的截面。 分组探究,层层推进,把问题推向纵深 通过发挥学生自主学习的特点,并根据几何体的特征可以分类,故我们采取分组进行自我探索,相互协作,小组讨论,师生共同总结等方法进行教学。在此过程中,老师作为主导者,主要为学生提供必要的帮助和方向指引,而学习的过程主要靠学生自我完成。 学生进行分组协助学习。 每小组的探索活动都可分为三个层次进行: 以最简单的图形出发,即三棱柱、三棱锥、三棱台研究任意三点的位置的取法。 随后作出过三点的截面(作法依据:公理及其推论),并拖动三点,观察截面的变化情况,从而得出结论,并进行组内交流,形成小组统一观点。

高中数学-空间几何体与截面三视图

高中数学-立体几何知识点与截面三视图 一.圆柱的截面 二.圆锥的截面 三.球的截面 四.三棱锥的截面

五.正方体的截面(需补充两面截图)

立体几何基础知识点与考点 知识点应用

空间角:如图,正四棱柱ABCD —A 1B 1C 1D 1中 对角线BD 1=8,BD 1与侧面B 1BCC 1所成的为30° D C C 1 11 ①求BD 1和底面ABCD 所成的角; ②求异面直线BD 1和AD 所成的角; ③求二面角C 1—BD 1—B 1的大小。 (①;②;③)arcsin arcsin 346063 o 空间距离:点与点,点与线,点与面,线与线, 线与面,面与面间距离。 将空间距离转化为两点的距离,构造三角形, 解三角形求线段的长(如:三垂线定理法, 或者用等积转化法)。 A 如:正方形ABCD —A 1B 1C 1D 1中,棱长为a ,则: (1)点C 到面AB 1C 1的距离为__________; (2)点B 到面ACB 1的距离为___________; (3)直线A 1D 1到面AB 1C 1的距离为______; (4)面AB 1C 与面A 1DC 1的距离为_______; (5)点B 到直线A 1C 1的距离为_________。

正棱锥的计算集中在四个直角三角形中: Rt SOB Rt SOE Rt BOE Rt SBE ????,,和 它们各包含哪些元素? S C h C h 正棱锥侧·(——底面周长,为斜高)= 1 2 '' V 锥底面积×高= 1 3 球中的计算问题: ()球心和截面圆心的连线垂直于截面122r R d =- (2)球面上两点的距离是经过这两点的大圆的劣弧长。 为此,要找球心角。 (3)如图,θ为纬度角,它是线面成角;α为经度角, 它是面面成角。 (),球球444 3 23S R V R == ππ (5)球内接长方体对角线是球的直径。正四面体的外 接球半径R 与内切球半径r 之比为R :r =3:1。

截面问题

几何体截面问题 ①定义:一个几何体和一个平面相交所得到的平面图形(包含它的内部)叫做这个几何体的截面. 截面不唯一,好的截面应包含几何体的主要元素! ②画法:常通过“作平行线”或“延长直线找交点”作出完整的截面,作截面是立体几何非常重要的研究课题. ③思想:作截面是研究空间几何体的重要方法,它将陌生空问题转化为熟悉的平面问题! 技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题; 技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等; 技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。 1.【云南省昆明市2019-2020学年高三下学期1月月考数学】 某同学在参加《通用技术》实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个 棱长为为4π,则该球的半径是( ) A .2 B .4 C . D . 【答案】B 【解析】设截面圆半径为r ,球的半径为R ,则球心到某一截面的距离为正方体棱长的一半即截面圆的周长可得42r ππ=,得2r =, 故由题意知(2 2 2 R r =+,即(2 2 2 216R =+=,所以4R =, 故选:B . 2.如图,已知三棱锥V ABC -,点P 是VA 的中点,且2AC =,4VB =,过点P 作一个截面,使截面

平行于VB 和AC ,则截面的周长为( ) A .12 B .10 C .8 D .6 【答案】D 【解析】 如图所示,设AB 、BC 、VC 的中点分别为D,E,F ,连接PD,DE,EF,PF. 由题得PD||VB,DE||AC, 因为,PD DE ?平面DEFP,VB,AC 不在平面DEFP 内, 所以VB||平面DEFP,AC||平面DEFP, 所以截面DEFP 就是所作的平面. 由于11||,||,,22 PD VB EF VB PD VB EF VB ===, 所以四边形DEFP 是平行四边形, 因为VB=4,AC=2,所以PD=FE=2,DE=PF=1, 所以截面DEFP 的周长为2+2+1+1=6. 故选:D 3.【2020届广东省东莞市高三期末调研测试理科数学试题】 已知球O 是正四面体A BCD -的外接球,2BC =,点E 在线段BD 上,且3BD BE =,过点E 作球O 的截面,则所得截面圆面积的最小值是( )

立体几何体的截面及三视图

立体几何专题(部分内容) 一.圆柱的截面 用一个平面去截(分三种情形:①用与圆柱的底面平行的平面去截;②用与圆柱的底面垂直的平面去截;③用与圆柱的底面不垂直的平面去截.),观察图1,很容易得出它们分别是:圆、长方形、椭圆. 图1 二.圆锥的截面 用一个平面去截一个圆锥体,圆、三角形、椭圆. 图2 三.球的截面 用一个平面去截一个球体 图3 四.三棱锥的截面 请同学们尝试用一个平面去截一个三棱锥,试判断所截得的平面图形是什么?观察图4 图4 五.正方体的截面(需补充两面截图)

补充:三视图或投影经典考题 公式: 空间几何体的表面积 棱柱、棱锥的表面积:各个面面积之和 圆柱的表面积 :2 22S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+ 圆台的表面积:22 S rl r Rl R ππππ=+++ 球的表面积:24S R π= 扇形的面积公式2211 =36022 n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积 柱体的体积 :V S h =?底 锥体的体积 :1 3 V S h = ?底 台体的体积 : 1 )3 V S S S S h =+ +?下 下上上( 球体的体积: 34 3 V R π=

空间几何体的三视图和直观图:正俯长相等、正侧高相同、俯侧宽一样 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 1、线线平行的判断: (1)、平行于同一直线的两直线平行。 (3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 (12)、垂直于同一平面的两直线平行。 2、线线垂直的判断: (7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。 补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 3、线面平行的判断: (2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 (5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。 判定定理: 性质定理: 4、线面垂直的判断: ⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 ⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 判定定理:

高三数学选择填空难题突破_立体几何中最值问题

高三数学选择填空难题突破立体几何中最值问题 一.方法综述 高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。 二.解题策略 类型一距离最值问题 AB=,若线段DE上存在点P 【例1】如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且2 ⊥,则边CG长度的最小值为() 使得GP BP A. 4 B. 43 C. D. 23 【答案】D

又22002B G a (,,),(,,) ,所以2,2,,,2,.22ax ax BP x GP x a ? ??? =--=-- ? ????? () 24022ax ax PB PG x x a ??=-++ -= ??? .显然0x ≠且2x ≠.所以2 2 1642a x x =--. 因为()0,2x ∈,所以(]2 20,1x x -∈.所以当221x x -=, 2a 取得最小值12.所以a 的最小值为23. 故选D. 【指点迷津】利用图形的特点,建立空间直角坐标系,设CG 长度为a 及点P 的坐标,求BP GP 与的坐标, 根据两向量垂直,数量积为0,得到函数关系式2 2 16 42a x x = --,利用函数求其最值。 举一反三 1、如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,点E 、F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是_____。 【答案】 3254 2?? ??

高考备考立体几何的逆问题截面问题学案

1. 在长方体中,作图作平面ABC 与平面DEF 的交线。 2. 3. 4. 7. 如图2,有一圆锥形粮堆,其主视图是边长为6 m 的正三角形ABC ,母线AC 的中点P 处有 一老鼠正在偷吃粮食,小猫从B 处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是 B A C D F E

F P D 1 C 1 B 1 A 1 D C B A m.(结果不取近似数) 8.一个圆锥形建筑物高1510米,母线PB 长40米,节日期间,计划从A 处开始绕侧面一周到母线PA 上的点C 处都挂上彩带.已知PC=10米,问需要彩带多少米(结果不取近似值。) 1.(2013昆明市市二统)如图,四棱锥P- ABCD 的底面ABCD 是矩形,侧面PAB 是正三角形,AB =2,BC =2, PC =6, (I )求证:PD ⊥AC ; (II )已知棱PA 上有一点E ,若二面角E —BD —A 的大小为45°,试求BP 与平面EBD 所成角的正弦值。 2. (2012昆明市市二统)如图长方体1111ABCD A B C D 中,P 是线段AC

上任意一点. (Ⅰ)判断直线1B P 与平面11AC D 的位置关系并证明; (Ⅱ)若AB BC =,E 是AB 的中点,二面角111A DC D --的余弦值是10 ,求直线1B E 与平面11AC D 所成角的正弦值. 3. (2013昆明市市二统)如图,四边形ABCD 是正方形,PD MA ∥, MA AD ⊥,PM CDM ⊥平面, 1 2 MA PD = . (Ⅰ)求证:平面ABCD ⊥平面AMPD ; (Ⅱ)若BC 与PM 所成的角为45,求二面角M BP C --的余弦值. 4.(2014届昆明市市二统)四棱锥P-ABCD的底面是正方形,每条侧棱的长都等于底面边长,AC∩BD=O,E、F 、G 分别是PO 、AD 、AB 的中点。 (1)求证:PC ⊥面EFG ; (2)求面EFG 与面PAB 所成的二面角的正弦值。 A B C D P M

立体几何存在性问题

立体几何存在性问题 未命名 一、解答题 1.在多面体中,底面是梯形,四边形是正方形,,,面面,。。 (1)求证:平面平面; (2)设为线段上一点,,试问在线段上是否存在一点,使得平面,若存在,试指出点的位置;若不存在,说明理由? (3)在(2)的条件下,求点到平面的距离. 2.如图,四棱锥中,底面是直角梯形,,,,侧面是等腰直角三角形,,平面 平面,点分别是棱上的点,平面平面 (Ⅰ)确定点的位置,并说明理由; (Ⅱ)求三棱锥的体积. 3.如图,在长方体中,,点在棱上,,点

为棱的中点,过的平面及棱交于,及棱交于,且四边形为菱形. (1)证明:平面平面; (2)确定点的具体位置(不需说明理由),并求四棱锥的体积. 4.如图2,已知在四棱锥中,平面平面,底面为矩形。 (1)求证:平面平面; (2)若,试求点到平面的距离. 5.如图,三棱锥的三条侧棱两两垂直,,,分别是棱,的中点. (1)证明:平面平面; (2)若四面体的体积为,求线段的长. 6.如图,在四棱锥中,,,,。

(1)求证:; (2)若,,为的中点. (i)过点作一直线及平行,在图中画出直线并说明理由; (ii)求平面将三棱锥分成的两部分体积的比. 7.如图1所示,在梯形中,//,且,,分别延长两腰交于点,点为线段上的一点,将沿折起到的位置,使,如图2所示. (1)求证:; (2)若,,四棱锥的体积为,求四棱锥的表面积. 8.如图,在四棱锥中,底面为矩形,平面平面,. (1)证明:平面平面; (2)若,为棱的中点,,,求四面体的体积.

9.如图,在梯形中,,,,四边形是矩形,且平面平面,点在线段上. (1)求证:平面; (2)当为何值时,平面?证明你的结论。 10.10.如图,已知菱形的对角线交于点,点为的中点。将三角形沿线段折起到的位置,如图2所示。 图1图2 (Ⅰ)求证:平面; (Ⅱ)证明:平面平面; (Ⅲ)在线段上是否分别存在点,使得平面平面?若存在,请指出点的位置,并证明;若不存在,请说明理由。

立体几何中的截面(解析版)教学文稿

立体几何中的截面(解 析版)

专题13 立体几何中的截面 【基本知识】 1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。 2、正六面体的基本斜截面: 3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。 【基本技能】 技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;

技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等; 技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。 例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能 ...是() 分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。 例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题: ①水的部分始终呈棱柱状; ②水面EFGH的面积不改变; ③棱A1D1始终与水面EFGH平行; ④当容器倾斜到如图5(2)时,BE·BF是定值; 其中正确的命题序号是______________ 分析当长方体容器绕BC边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG,但EH与FG的距离EF在变,所以水面EFGH的面积在改变,故②错 A C B D

立体几何轨迹与截面问题.

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。而到点 P 与到点N 的距离相等的点为线段 PC 的垂直平分面线段 PC 的垂直平分面与平面 AC 的交线是一直线考点:直线与平面垂直的性质;平面与平面之间的位置关系 5.D 【解析】试题分析:因为 EH∥ A1D1 , A1D1 ∥ B1C1 ,所以 EH∥ B1C1 ,又 EH?平面 BCC1B1 ,平面EFGH ∩平面 BCC1B1 =FG,所以 EH∥平面 BCC1B1 ,又EH?平面 EFGH,平面EFGH∩平面 BCC1B1 =FG,所以 EH∥FG,故 EH∥FG∥B1C1 ,所以选项 A、C 正确;因为 A1D1 ⊥平面 ABB1 A 1 ,EH ∥ A1D1 ,所以EH⊥平面 ABB1 A 1,又 EF?平面 ABB1 A 1 ,故 EH⊥EF,所以选项 B 也正确考点:线面垂直的判定;线面平行的判定 6.D. 【解析】如下图所示,连结 PC1 ,过 P 作 PH BC 于 H ,∵ C1 D1 面 BB1C1C , PC1 面 BB1C1C ,∴ PC1 C1D1 ,∴ PC 1 PH ,故点 P 的轨迹为以 C1 为焦点, BC 所在直线为准线的抛物线,故选 D. 【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力. 7.C 【解析】易得 BP / / 平面 CC1D1D ,所有满足PBD1 PBX 的所有点 X 在以 BP 为轴线,以 BD1 所在直线为母线的圆锥面上,∴点 Q 的轨迹为该圆锥面与平面 CC1D1D 的交线,而已知平行于圆锥面轴

线的平面截圆锥面得到的图形是双曲线,∴点 Q 的轨迹是双曲线,故选 C. 【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力. 8.D 答案第 2 页,总 5 页 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。【解析】试题分析:根据圆锥曲线的定义和圆锥的几何特征,分截面过旋转轴时和截面不过旋转轴时两种情况,分析截面图形的形状,最后综合讨论结果,可得答案解:当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时(1)符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时(5)符合条件;故截面图形可能是(1)(5),故选:D.考点:平面的基本性质及推论. 9.A 【解析】试题 分析:图中弧 EF 为过圆心的平面与球面相交所得大圆的一段弧, 因为A1 AE BAF 6 ,所以EAF 6 ,由弧长公式知弧 EF 的长为 2 6 3 ,弧 FG 为不过圆心的平面与球面相交所得小圆的弧,其圆心为 B ,因为球心到平面的距离 d 3 ,球半径 R 2 ,所以小圆半径 r R2 d 2 1 ,又GBF 2 ,所以弧 FG 的长为 1 2 2 ,两段弧长之和为 5,故选 A. 6 考点:1、球的截面性质;2、弧长公式. 10.A 【解析】试题分析:点 A1 在底面的投影 O 在底面正方形对角线 AC 上,过 A1 作 A1E⊥AB 于 E,求出 AE,连结 OE,则 OE⊥AB,∠EAO=45°,在 Rt△AEO,求出 OC,然后求解 A1O,即可求解 A1C.解:由已知可得点 A1 在底面的投影 O 在底面正方形对角线 AC 上,过 A1 作 A1E⊥AB 于 E,在 Rt△AEA1,AA1=3,∠A1AE=60°∴,连结 OE,则 OE⊥AB,∠EAO=45°,,,∴,在 Rt△AEO 中,在在故选 A.考点:空间两点间的距离公式. 11.C 【解析】试题分析:画出图形,利用折叠与展开法则同一个平面,转化折线段为直线段距离最小,转化求解 MP+PQ 的最小值.解:由题意,要求 MP+PQ 的最小值,就是 P 到底面ABCD 的距离的最小值与 MP 的最小值之和,答案第 3 页,总 5 页 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。 Q 是 P 在底面上的射影距离最小,展开三角形 ACC1 与三角形 AB1C1,在同一个平面上,如图,易知∠B1AC1=∠C1AC=30°, AM= = .故选:C.,可知 MQ⊥AC 时,MP+PQ

相关主题