搜档网
当前位置:搜档网 › 【性能】GH4105(GH105)高温合金

【性能】GH4105(GH105)高温合金

【性能】GH4105(GH105)高温合金
【性能】GH4105(GH105)高温合金

一、GH4105介绍:

GH4105是Ni-Cr-Co基沉淀硬化型变形高温合金,使用750-950摄氏度。合金的室温和高温强度较高,抗氧化性能良好,但热加工性能和焊接性能一般。

二、GH4105应用和特性:

GH4105适合用于发动机涡轮叶片、扇形封严件和高温螺栓等部件。

三、GH4105相近牌号:

高温新名称高温旧名称耐蚀新名称耐蚀旧名称国标牌号GH4105 GH105

日本JIS 美标ASTM 美标UNS、SAE 德标DIN 欧洲EN 四、GH4105化学成分:

碳C 硅Si 锰Mn 磷P 硫 S 铬Cr

0.12-0.17 ≤0.25≤0.4≤0.015≤0.0114-15.7 镍Ni 钴Co 铜Cu 铁Fe 铌Nb

余18-22 ≤0.2≤1-

硼B 钛Ti 铝Al 钒 V 钨W 铈Ce

0.003-0.01 1.18-1.5 4.5-5.5 - - ≤0.01

五、GH4105材质规格:

热扎棒10~100mm,锻制棒:100mm~350mm,冷扎薄板0.05mm-4.0mm,热扎板:4mm~14mm,带2mm-10mm,各尺寸规格锻件环件,库存个别牌号不定尺。

六、GH4105物理性能:

密度g/cm3磁性热导率/w电阻率比热容线胀系数

高温合金分为三类材料:760℃高温材料、1200℃高温材料和1500℃高温材料,抗拉强度800MPa。或者说是指在760--1500℃以上及一定应力条件下长期工作的高温金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性等综合性能,已成为军民用燃气涡轮发动机热端部件不可替代的关键材料。

按照现有的理论,760℃高温材料按基体元素主要可分为铁基高温合金、镍基高温合金和钴基高温合金。按制备工艺可分为变形高温合金、铸造高温合金和粉末冶金高温合金。按强化方式有固溶强化型、沉淀强化型、氧化物弥散强化型和纤维强化型等。高温合金主要用于制造航空、舰艇和工业用燃气轮机的涡轮叶片、导向叶片、涡、高压压气机盘和燃烧室等高温部件,还用于制造航天飞行器、发动机、核反应堆、石油化工设备以及煤的转化等能源转换装置。

760℃高温材料变形高温合金

变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。GH后位数字表示分类号即1、固溶强化型铁基合金2、时效硬化型铁基合金3、固溶强化型镍基合金4、钴基合金GH 后,二,三,四位数字表示顺序号。

1、固溶强化型合金

使用温度范围为900~1300℃,高抗氧化温度达1320℃。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为

85%,1000℃、30MPa应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。

2、时效强化型合金

使用温度为-253~950℃,一般用于制作航空、航天发动机的涡与叶片等结构件。制作涡的合金工作温度为-253~700℃,要求具有良好的高低温强度和抗疲劳性能。例如:GH4169合金,在650℃的高屈服强度达1000MPa;制作叶片的合金温度可达950℃,例如:GH220合金,950℃的拉伸强度为490MPa,940℃、200MPa的持久寿命大于40小时。

变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。

上海商虎具备交货及时,按需轧制,按需切割加工的供货能力,确保准确快速地为用户提供合格优质的高端产品。我们的特长是专业于高端进口材料的供应,无论是板材,带材,棒材,管材(焊管、无缝管),还是管件,法兰,钢板切割件(厚2-200mm),不论您是需要1公斤还是10吨,我们都有能力通过自有库存或空运,海运及时为您供货。我们提供的材料已广泛用于高温、强腐蚀等复杂环境,代表行业主要为:热处理、冶炼、环保、、造纸、压力容器、热交换、电炉、电力设备等。

合号

国外同

类合金

材料特点

GH 3030 эи435

合金在800℃以下有满意的热强性和高的塑性,具有良好的抗氧化、热疲劳、冷冲压和焊接工艺性能。

GH 4033 эи437

合金在700~750℃具有足够的高温强度,在900℃以下具有良好的抗氧化性,合金的冷热加工性能良好。

GH 33A

在GH33合金的基础上进一步合金化,使合金具有良好的综合性能,晶粒均匀细小,屈服强度高,易于热加工成型,使用温度在750℃以下。

GH 33B

在GH33A的基础上添加微量元素,进一步提高合金的塑性和持久寿命,了合金的缺口敏感性。

GH 37 эи617

合金在850℃以下使用具有高的热强性、良好的综合性能和组织稳定性。

GH 3039 Эи602合金在800℃以下有中等的热强性和良好热疲劳性能,1000℃以下抗氧化性能良好,长期使用组织稳定,还具有良好

的冷成型和焊接性能。

GH 3044 Эи868

固溶强化的抗氧化合金,在900℃以下具有高的塑性和中等热强性,具有优良的抗氧化性能和良好的冲压、焊接工艺性能,

长期使用组织性能稳定。

GH 4049 Эи929

合金为高合金化的镍基难变形高温合金,在1000℃以下具有良好的抗氧化性能,950℃以下具有较高的高温强度

GH 80A

Nimonic

80A

合金成分简单,性能与GH33合金相当,组织细小,热加工温度范围宽,热加工塑性好。

GH 98 Эп99

是一种高合金化、高热强性的弥散强化合金,使用温度高达1000℃,用于涡轮导向叶片,加力燃烧室材料。900℃以下有好

的抗氧化性能、冷热疲劳性能及焊接性能。。。

GH 99 эп693

高合金化的镍基时效合金,有较高的热强性,900℃以下可以长期使用,高工作温度可达1000℃,合金的组织稳定,具有

满意的冷热加工成型和焊接工艺性能。

GH 105

Nimonic

105

可制造航空发动机的高温涡轮叶片,对振动、燃气腐蚀、应力扭曲、弯曲等复杂应力的耐受能力好。

GH 128

合金具有高的塑性,较高的持久蠕变强度以及良好的抗氧化性和冲压、焊接性能。其综合性能优越,可在950℃以下长期使用。

GH 141 Rene41

合金在650~900范围内,具有高的拉伸和持久蠕变强度和良好的抗氧化性能,

GH 145

InconelX

-750

合金在980℃以下具有良好的强度,良好的抗腐蚀和抗氧化性能,而且也有较好的低温性能,成型性能也好,主要用作航空

和工业燃气轮机部件。

GH 163 C263

合金在800℃以下使用时具有较高的屈服强度和蠕变强度,良好的冷热疲劳性能,应变时效裂纹倾向性小。合金的塑性及冷

热加工成型性能、焊接性能好,在540~870温度范围内有极好

的强度。用于航空发动机及燃气轮机的燃烧筒、安装边及其他承

力部件。

GH 182

Hastello

yC4

合金在650~1040温度范围内具有好的高温稳定性,好的韧性和耐蚀性,其基本耐蚀性能与NS334相同

GH 199 эп199

该合金具有较高的高温强度,优良的抗氧化性能和一定的可焊性能,可在950℃下长期使用。

GH 202 эп202合金具有较高的强度和塑性,满意的成型性能和焊接性能,以及良好的耐腐蚀抗氧化性能,合金在-253~850℃范围内组织

性能稳定,是深冷和高温条件使用的多用途合金。

GH

220

эп220高合金化、高性能的镍基难变形合金

GH 230

固溶强化的抗氧化合金,在1200℃以下具有高的热强性,具有优良的抗氧化性能和良好的冲压、焊接工艺性能,长期使用组织性能稳定。是我国使用温度高的合金之一。

GH 500

Udimet5

00

合金采用高Al高Ti沉淀强化的时效合金,具有高的屈服强度和断裂强度,应用于直升机的发动机涡部分。

GH 520

Udimet5

20

该合金是一种合金化程度较高的沉淀强化镍基合金,可在980℃以下长期使用,在高温下具有良好的抗拉强度、较高的高

温硬度和好的抗氧化性能。

GH 536

Hastello

yX

合金性能水平与GH3044合金相当,适用于制作在900℃以下长期使用的航空发动机燃烧室及其它高温部件。

GH 586

为我国自行研制的难变形镍基高温合金,合金在-196℃~800℃范围内,具有高的屈服强度和持久蠕变强度和良好的抗氧化性能,现阶段国内综合性能好的涡材料。在1050℃以上对钠盐的耐蚀能力稍差。

GH 600

Inconel6

00

固溶强化的耐热耐蚀合金,具有良好的抗高温腐蚀性能、抗氧化性能、冷热加工性能、低温机械性能、冷热疲劳性能。650℃

下具有较高的强度,成型性好,易于焊接。

GH 625

Inconel6

25

合金具有良好的耐腐蚀和抗氧化性能,从低温到980℃具有良好的拉伸性能和疲劳性能,以及耐盐雾气氛下的应力腐蚀。

GH 648 эп648

高铬合金,在高温条件下具有良好的耐蚀性能和综合力学性能。

GH 698 эи698

>在550~800℃范围内具有高的持久强度和良好的综合性能,与Waspaloy合金性能水平相当。

GH 708 эп708

新型镍基时效合金,该合金具有较高的高温强度,优良的抗氧化性能和一定的可焊性能,可在900℃下长期使用。

GH 864

Waspall

oy

合金在540~815℃温度范围内具有良好的耐燃气腐蚀能力、较高的屈服强度和疲劳性能,工艺塑性良好,组织稳定。

GH 742 эп742ид

合金在750~950℃具有良好的高温性能,是目前变形高温合金中合金化程度高的涡材料,在大推力航空发动机上广泛应

用。

镍基高温合金性能

镍基高温合金 镍基高温合金是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。镍基高温合金的发展趋势见图1。

镍基高温合金的发展趋势 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B 型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。 镍基高温合金按强化方式有固溶强化型合金和沉淀强化型合金。 ·固溶强化型合金 具有一定的高温强度,良好的抗氧化,抗热腐蚀,抗冷、热疲劳性能,并有良好的塑性和焊接性等,可用于制造工作温度较高、承受应力不大(每平方毫米几公斤力,见表1)的部件,如燃气轮机的燃烧室。 ·沉淀强化型合金 通常综合采用固溶强化、沉淀强化和晶界强化三种强化方式,因而具有良好的高温蠕变强度、抗疲劳性能、抗氧化和抗热腐蚀性能,可用于制作高温下承受应力较高(每平方毫米十

高温合金的性能

高温合金是在高温下具有较高力学性能、抗氧化和抗热腐蚀性能的合金。高温合金按基体成分可分为镍基高温合金、铁镍基高温合金和钴基高温合金,其中镍基高温合金发展最快,使用也最广,铁镍基高温合金次之。按强化方式分为固溶强化合金和析出强化合金(或称时效沉淀强化合金)等。按成型方式和生产工艺分为变形合金、铸造合金、粉末冶金合金和机械合金化合金。 固溶强化高温合金的基体为面心立方点阵的固溶体,在其固溶度范围内通过添加铬、钴、钼、钨、铌等元素,提高原子间结合力,产生点阵畸变,降低堆垛层错能,阻止位错运动,提高再结晶温度来强化固溶体。固溶强化的效果取决于合金化元素的原子尺寸及加入量。原子半径较大、熔点较高的钼和钨具有较好固溶强化作用,两者总含量可达18%~20%。铬可防止高温氧化和热腐蚀,但含量过高会降低γ’相的固溶度,使合金的热强性下降。镍基固溶强化高温合金一般均具有优良的抗氧化、抗热腐蚀性能,塑性较高、焊接性能好,但热性相对较低。铁镍基固溶强化高温合金,虽然与镍基固熔强化高温合金相比在热强性、抗氧化和抗热腐蚀等方面略差一些,但仍具有良好的力学性能、较好冷热加工工艺性能和焊接性能。 析出强化高温合金是在固溶强化高温合金的基础上,通过添加较多的铝、钛、铌等元素而发展的。这些无元素除了强化固溶体外,通过时效处理,与镍结合形成共格稳定、成分复杂的Ni3(Al Ti)相(也就是γ’相,具有长程有序的面心立方结构)或Ni3(Nb AI Ti)相(也就是γ’’相,有序体心四方结构)金属间化合物,同时钨、钼、铬等元素与碳形成各种碳化物(如MC M6C M23C6等)由于γ’(γ’’)相和碳化物存在,使合金的热强性大大提高。此外,这类合金中还可以加入微量的硼、锆和稀士元素、形成间隙相,强化晶界。近年来发展的一些合金,往往采用固溶,析出和晶界多种方式强化,使合金具有优良的综合性能。随着AI Ti Nb 等γ’(γ’’)相形成元素含量的提高,其强化效果也增大,热强性提高,但合金的冷热加工性能和焊接性能随之下降。一般认为,AI+Ti含量大于6%(原子百分数)的高温合金焊接就很困难。镍基析出强化高温合金具有很好的热强性、抗氧化和抗腐蚀性能,正如前面所提到的冷热加工性能和焊接性能较固溶强化高温合金差。但是,在固溶状态下,有些镍基析出强化高温合金还是具有良好塑性和焊接性。铁镍基析出强化高温合金要中温下具有较高的热强性、良好的抗氧化和抗热腐蚀性能。在固溶状态下,冷热加工性能和焊接性能同镍 基析出强化高温合金相类似。无论镍基析出强化高温合金还是铁镍基析出强化高温合金,当加入更多的钼、钛、硼等强化元素时,使其冷热加工塑性下降,只能通过铸造成型,一般铸造合金的焊接较为困难。 氧化物弥散强化是在基体中加入一定量细小的弥散分布的氧化颗粒,对基体进行强化,使合金具有很高的强度和某些特性。合金TDNi TDNiCr是镍和镍铬基中加入2%左右氧化钍(ThO2)颗粒强化,由于这种合金中的氧化钍在高温下不易聚集长大、不溶于基体,同时合金的熔点高,晶粒极细,在1000~12000C下仍有较高的强度,抗疲劳性能高,缺口敏感小,室温塑性较好,可轧成棒和板材。氧化物弥散强化ODS合金是利用氧化物(如Y2 O3和AI2O3)强化的合金,这类合金的采用特殊的粉末冶金工艺生产,经锻压制成材。氧化物弥散强化合金,具有很高的持久蠕变性能,是很有发展前途的新型高温材料,其缺点是成功率低,塑性焊接性和耐蚀性差,有待解决。 高温合金性能主要取决于合金成分和它的组织结构,如前面所述,难熔金属元素Mo W以及CO起到固溶强化作用,AI Ti Nb 等γ’形成元素起到析出强化作用。一般认为,强化效果应该计算W+MO和γ’形成元素的总量,而CO和Cr居于次要地位,合金的持久强度随着合金元素总量的增加而提高。现在大量研究表明,高温合金中加入微量的B Zr Ce 和Mg等元素能显著改善晶界状况,提高合金的蠕变性能,但要注意这些元素的加入量一定要严格控制,否则就会产生有害的作用,如使合金脆化,形成低熔化合物等。

高温合金

1.高温合金的定义:高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定盈利作用下长期工作的一类金属材料。 2.高温合金的命名方法: 变形高温合金以“GH”加4位阿拉伯数字表示。前缀后第一位数字表分类号,1、2表铁基或铁镍基,3、4表镍基,5、6表钴基;1、3、5表固溶强化型合金,2、4、6表时效沉淀型合金。前缀后的第2、3、4位表合金编号。 铸造高温合金以“K”加3位阿拉伯数字表示。前缀后第一位数字表分类号,含义与变形合金相同,第2、3位表合金编号。 粉末高温合金以“FGH”加阿拉伯数字表示。 3.高温合金主要用于四大热端部件:导向器、涡轮叶片、涡轮盘、燃烧室。 4.常见的高温合金基体有哪几种?铁基镍基钴基 5.高温合金的固溶强化机制:固溶度小的合金元素较之固溶度大的合金元素,会产生更强烈的固溶强化作用,但其溶解度小却又限制其加入量。 6.合金元素的固溶强化能力排序:Cr

γ′粒子尺寸对定向凝固高温合金拉伸和持久性能的影响

Y/粒子尺寸对定向凝固高温合金拉伸 和持久性能的影响 吴昌新9孙传棋9李其娟 (北京航空材料研究院9北京100095 摘要研究了一种定向凝固高温合金析出V/粒子尺寸的控制规律O结果表明V/粒子尺寸随固溶处理后冷却速度提高而减小9抗拉强度和蠕变寿命随V/粒子尺寸增大而降低9而合金的拉伸塑性将随之提高O 关键词定向合金V/粒子尺寸强度与韧性冷却速度 中图分类号TG146.1+5文献标识码A文章编号1005-5053(2002 03-0001-04 定向柱晶和单晶高温合金叶片9由于消除了垂直于应力轴的横向晶界或全部晶界9其固有韧性和强度较高[1]可以通过高温固溶处理9充分均匀化减轻偏析9同时可在这基础上控制V/粒子的尺寸9调节合金的强度与韧性O我国自行研制的DZ4无铪定向凝固高温合金已经在多种型号发动机服役飞行十多年9合金在较多型号中强度与韧性匹配甚好9发挥了合金的较大效能9但在某一型号中发现9强度与韧性的匹配不是最佳状态9强度储备过多9而韧性的裕度比较紧张O本文就是为解决此问题而开展的应用研究O 1试验材料和方法 试验材料DZ4合金公称成分为(Wt%C 0.149Cr9.59CO6.09W5.39MO2.89A16.09Ti 1.89B0.0209Ni余[2]O在Ipsen真空热处理炉中进行1220 2 2.5h的固溶处理后在1220 1050 以不同速度冷却9再进行870 32h的时效处理9试样经加工后在拉伸试验机和蠕变持久试验机上测定中温~高温下的各不同冷却速度的拉伸和持久性能O同时在JSM5600VL扫描电镜上观察V/形态9并对每种冷却速度的V/粒子形态反复观察9再将不少于三个视场的枝晶干和枝晶间放大照相9对其测定V/立方体的边长和间距O 2结论和讨论 2.1冷却速度对析出V/粒子尺寸的影响及控制 DZ4合金固溶处理温度1220 保温2h后在 收稿日期2002-04-06 修订日期2002-06-08 作者简介吴昌新(1952- 9男9高级工程师O 12201050 的温度范围内分别以25 min9 42 min968 min和88 min速度冷却9不同冷却速度的V/相粒子形态见图19而V/相粒子尺寸依赖于冷却速度的关系见图2O从图192可以看出9随着冷却速度的降低9V/粒子尺寸明显变大9同时还可以看到9即使经过了1220 的固溶均匀化热处理9合金组织枝晶干和枝晶间的偏析还是存在的9在枝晶间的V/显得比枝晶干粗大和不均匀9V/粒子以不同尺寸的立方体弥散分布于V基体O 理想的固溶处理9必须使所有铸态V/相(共晶相和粗大V/相溶解9使合金成分完全均匀9再在从固溶处理温度冷却到V/全溶温度以下时9V/相将能相对均匀细小地在整个合金组织中析出9这是定向高温合金获得最佳力学性能的最好组织9因为含有共晶或粗大V/相的偏析组织是合金的薄弱区域9以及共晶和粗大V/实际上降低了有效V/体积分数9不能充分地对合金强度作出贡献O为了得到这一组织9合金必须加热到V/全溶温度以上9使铸态V/相溶解9加热温度又要限制在合金初熔温度以下9以防止合金熔化9熔化会导致凝固偏析9形成V/共晶和产生收缩疏松O而V/全溶温度和合金初熔温度都与合金成分有关9对于有低熔点共晶相比较多的合金9例如含~f合金9最好先在较低温度进行溶解共晶相的预备热处理9以便更容易使固溶温度保持在这两个临界温度之间9当V/相溶解于基体V后9它再以细小均匀形式析出O V/相粒子尺寸影响力学性能9为了控制其大小9必须控制从固溶温度到某一温度之间的冷却速度9低于这一温度V/将不会在短时间内粗化9对DZ4合金来说9这个温度不低于1050 9所以

高温合金循环蠕变实验

No3.2008工程与试验September 2008 [收稿日期] 2008-06-26 [作者简介] 关逊(1969-),女,助理工程师,从事蠕变实验工作。刘庆(1961-),男,工程师,从事蠕变实验工作。郭建亭(1938-), 男,研究员。博士生导师,从事高温合金与金属间化合物的研究。 高温合金循环蠕变实验 关 逊,刘 庆,郭建亭 (中国科学院金属研究所,辽宁沈阳110016) 摘 要:本文利用装配有EDC 数字控制器的高温电子蠕变试验机开展了一种镍基高温合金的循环蠕变实验。结果表明与恒载荷静态蠕变相比,两种方式(矩形波和锯齿波)载荷循环降低了合金蠕变寿命,但对蠕变塑性并没有影响。 关键词:高温合金;循环蠕变实验;循环载荷中图分类号:T G 132.3 文献标识码:A Cyclic Creep Experimentation of Superalloy Guan Xun ,Liu Qing ,Guo Jianting (I nstit ute of M et al Research ,Chi nese A cadem y of S ciences ,L i aoni ng S heny ang 110016)Abstract :The cyclic creep test s of a Nickel 2base superalloy has been conducted on a High Temper 2at ure Elect rical Creep Machine equipped wit h an External Digital Controler (EDC ).Compared wit h t he constant load creep ,t he cyclic load in t he square and sawtoot h waveforms reduces t he creep life ,but has no effect on t he creep ductility of t he testing alloy.K eyw ords :superalloy ;cyclic creep test ;cyclic load 1 引言 高温合金部件在高温服役期间,往往遭受静态 应力和循环应力的联合作用,实际变形过程既不同于静态载荷作用下的纯蠕变变形,也不同于完全循环载荷作用下的纯疲劳变形,而是蠕变与疲劳交互作用的复杂变形过程[1~2]。对这种循环应力作用下复杂变形行为的研究方法有两种。第一种方法是完全模拟部件实际工作条件下的受力情况进行实验,实验结果可直接应用于指导设计。第二种方法是进行特定循环载荷作用下的蠕变实验(称之为循环蠕变实验),并与恒载荷作用下的蠕变行为(称之为静态蠕变)进行比较,以了解循环载荷对蠕变变形影响的基本规律。高温循环蠕变性能是高温合金设计与安全应用的重要指标之一。 中国科学院金属研究所蠕变实验室引进装备有德国Doli 公司EDC (External Digital Cont roler )数 字控制器的高温电子蠕变试验机,能够实现载荷控 制、位移控制和变形控制。利用此试验机,本文开展了一种镍基高温合金的循环蠕变实验,进而评价循环载荷对合金蠕变行为的影响。 2 实验方法 211 实验合金 实验合金DZ417G 是一种具有中国特色的先进定向凝固高温合金,用作某先进航空发动机的涡轮叶片材料。有关该合金的成分、制备工艺、性能特点等见文献[3]。实验用母合金经真空感应炉熔炼后,在定向凝固真空炉内以快速凝固法(温度梯度是850 C/cm ,凝固速度是7mm/min )制备直径16mm ,长130mm 的定向凝固园棒试样。随后对园棒试样进行两级热处理,即1220℃/4h ,AC.的固溶处理和980℃/16h ,AC.的时效处理。热处理试样机加工 成标距100mm 的标准螺纹蠕变试样。 ? 42?

高温合金的基本知识和应用

高温合金的基本知识和应用 一、高温合金是指在600度以上的高温下承受复杂的应力,而能很好发挥它的力 学和化学性能的一种合金。 二、常用的高温合金牌号有GH3030、GH2132、GH3039、GH3044、GH3128、GH4169、 GH4145、GH333 三、化学成分另外附有表格。 四、几种最常用的高温合金的材质和力学性能: GH2132(GH132)时效硬化型铁基合金 产品牌号:GH2132(GH132/IncoloyA-286/S66286) 产品规格:Φ3-350mm 执行标准:ASTM B160,B164,B166,B408,B425,B574,GB14992 1、GH2132钢的特性 该合金是Fe-25Ni-15Cr基高温合金,加入钼、钛、铝、钒及微量硼综合强化。在650℃以下具有高的屈服强度和持久、蠕变强度,并且具有较好的加工塑性和满意的焊接性能。 1.GH2132相近牌号 A-286 P.Q.A286 UNSS666286(美国)、ZbNCT25(法国)、X5NiCrTi26-15、1.4980、 1.4944(德国) 2.GH2132生产执行标准

3.GH2132工艺性能与要求: 1)、该合金具有良好的可锻性能,锻造加热温度1140℃,终锻900℃。 2)、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。 3)、合金具有满意的焊接性能。合金于固溶状态进行焊接,焊后进行时效处理。 4.GH2132 金相组织结构: 该合金在标准热处理状态下,在γ基体上有球关均匀弥散的NI3(Ti,Al)型γ'相以及TiN,TiC,晶界有微量的M3B2,晶界附近可能有少量η相和L相。 2、GH2132 化学成份:(GB/T14992-1994)

镍基高温合金材料研究进展

镍基高温合金材料研究进展 姓名:李义锋1 镍基高温合金材料概述 高温合金是指以铁、镍、钴为基,在高温环境下服役,并能承受严酷的机械应力及具有良好表面稳定性的一类合金[1]。高温合金一般具有高的室温和高温强度、良好的抗氧化性和抗热腐蚀性、优异的蠕变与疲劳抗力、良好的组织稳定性和使用的可靠性[2]。因此,高温合金既是航空、航天发动机高温部件的关键材料,又是舰船、能源、石油化工等工业领域不可缺少的重要材料,已成为衡量一个国家材料发展水平的重要标志之一。 在整个高温合金领域中,镍基高温合金占有特殊重要的地位。与铁基和钴基高温合金相比,镍基高温合金具有更高的高温强度和组织稳定性,广泛应用于制作航空喷气发动机和工业燃气轮机的热端部件。现代燃气涡轮发动机有50%以上质量的材料采用高温合金,其中镍基高温合金的用量在发动机材料中约占40%。镍基合金在中、高温度下具有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,是最复杂的、在高温零部件中应用最广泛的、在所有超合金中许多冶金工作者最感兴趣的合金。镍基高温合金主要用于航空航天领域950-1050℃下工作的结构部件,如航空发动机的工作叶片、涡轮盘、燃烧室等。因此,研究镍基高温合金对于我国航天航空事业的发展具有重要意义。 镍基高温合金是以镍为基体(含量一般大于50 )、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金[2]。它是在Cr20Ni80合金基础上发展起来的,为了满足1000℃左右高温热强性(高温强度、蠕变抗力、高温疲劳强度)和气体介质中的抗氧化、抗腐蚀的要求,加入了大量的强化元素,如W、Mo、Ti、Al、Nb、Co等,以保证其优越的高温性能。除具有固溶强化作用,高温合金更依靠Al、Ti等与Ni形成金属问化合物γ′相(Ni3A1或Ni3Ti等)的析出强化和部分细小稳定MC、M23C6碳化物的晶内弥散强化以及B、Zr、Re等对晶界起净化、强化作用。添加Cr的目的是进一步提高高温合金抗氧化、抗高温腐蚀性能。镍基高温合金具有良好的综合性能,目前已被广泛地用于航空航天、汽车、通讯和电子工业部门。随着对镍基合金潜在性能的发掘,研究人员对其使用性能提出了更高的要求,国内外学者已开拓了针对镍基合金的新加工工艺如等温锻造、挤压变形、包套变形等。

高温合金教材重点要点

合金元素原 子 序 数 族原子量 主要化 合价 晶格类型合金性能其它特点 镍Ni 28 VIII A 58.71 +2、+3、 +4 FCC 近似银白色、硬而有延展性 并具有铁磁性的金属元素, 它能够高度磨光和抗腐蚀 能扩大奥氏体区域 钴Co 27 VIII A 58.933 +2、+3 HCP→FCC 熔点高、持久断裂曲线比较 平缓。优异的抗热腐蚀性能 和冷热疲劳性能,良好焊接 性。 降低基体的堆垛层错能。 钴加到镍基,降低Ti和 Al的溶解度 铁Fe 26 VIII A 55.845 +2、+3 BCC→FCC→ BCC 纯铁具有银白色金属光泽; 有良好的延展性、导电、导 热性能 加入钴基合金中,可扩大 奥氏体区 铬Cr 24 VI A 51.996 +2、+3 BCC 银白色金属,质极硬,耐腐 蚀铬具有很高的耐腐蚀性, 在空气中,即便是在赤热的 状态下,氧化也很慢。不溶 于水 Cr十分之一进入γ`相,还 有少量碳化物,大部分溶 于γ固溶体。C与活泼的 难熔金属Ti、Ta、Hf、Nb 生成MC化物。 钼Mo 42 VI B 95.94 +2、+4、 +6 银白色金属,硬而坚韧。Mo 明显增大Ni固溶体晶格常 数,并使屈服强度明显在增 大 由于Mo的加入,使合金 形成大量的M6C碳化物, 这些碳化物细小弥散。同 时也进入γ`相,改变基体 与γ`的晶格错配度。Mo 还能细化奥氏体晶粒。 铌Nb 41 V B 92.906 +2、+3、 +4、+5 灰白色金属。铌原子半径比 铁、钼大。 Nb主要溶于γ`相,在γ相 通常只占加入量的10%左 右。Nb还能降低γ固溶体 的平均晶粒尺寸,但过多 的Nb会引起Laves相的析 出 钽Ta 73 V B 180.947 钽的质地十分坚硬,钽富有 延展性,可以拉成细丝式制 薄箔。其热膨胀系数很小。 钽有非常出色的化学性质, 具有极高的抗腐蚀性 钽在镍基高温合金中约 80%进入γ`相,增强γ`相 的效果,,约10%至15% 形成富Ta的碳化物,只有 5%至10%左右进入γ相。 Ta也降低γ固溶体的堆垛 层错能。 钨W 74 VI B 183.84 +2、+3、 +4、+5 钢灰色或银白色,硬度高, 熔点高,常温下不受空气侵 蚀 明显降低γ基体层错能, 层错能降低有效的改善高 温合金的蠕变性能。进入 γ`相改变γ`和γ的晶格常 数及错配度 铼Re 75 VII B 186.207 +3、+4、 +6、+7 六角密集 外表与铂同,纯铼质软,有 良好的机械性能 铼原子进入γ固溶体,降 低其他合金元素的扩散速 率,阻止γ`相长大,细化 γ`相尺寸,而且提高γ∕γ` 错配度。但进入TCP相对 组织不利,加入过多偏析 严重。 钒V 23 V B 50.941 BCC 有延展性,质坚硬,无磁性。 具有耐盐酸和硫酸的本领。 主要分布在γ奥氏体约占 70%至80%,其次分布γ` 相约占14%至29%,在微 量相分布很少,仅占2%至 6%。钒对合金晶粒有细化 作用。 钌Ru 44 VIII 101.07 硬质的白色金属、化学性质主要溶于γ相中,使合金

高温合金是什么

高温合金是什么 高温合金是什么 凡在应力及高温(一般指600~650摄氏度以上)同时作用下,具有长时间抗蠕变能力与高的持久强度和高的抗蚀性的金属材料,称为耐热合金或高温合金。常用的有铁基合金、镍基合金、钴基合金,还有铬基合金、钼基合金及其他合金等。高温合金是制造燃汽轮机、喷气式发动机等高温下工作零部件的重要材料。 高温合金是在高温严酷的机械应力和氧化、腐蚀环境下应用的一类合金。随着科技事业的发展,高温合金逐渐形成六个较为完整的部分。 一、变形高温合金 变形高温合金是指可以进行热、冷变形加工,工作温度范围-253,1320?,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。 1、固溶强化型合金 使用温度范围为900,1300?,最高抗氧化温度达1320?。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000?拉伸强度为140MPa、延伸率为85%,1000?、30MPa应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。 2、时效强化型合金 使用温度为-253,950?,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。制作 ,700?,要求具有良好的高低温强度和抗疲劳性能。例如:涡轮盘的合金工作温度为-253

GH4169合金,在650?的最高屈服强度达1000MPa;制作叶片的合金温度可达950?,例如:GH220合金,950?的拉伸强度为490MPa,940?、200MPa的持久寿命大于40小时。 变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。 二、铸造高温合金 铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。其主要特点是: 1. 具有更宽的成分范围由于可不必兼顾其变形加工性能,合金的设计可以集中考虑优化其使用性能。如对于镍基高温合金,可通过调整成分使γ’含量达60%或更高,从而在高达合金熔点85%的温度下,合金仍能保持优良性能。 2. 具有更广阔的应用领域由于铸造方法具有的特殊优点,可根据零件的使用需要,设计、制造出近终形或无余量的具有任意复杂结构和形状的高温合金铸件。 根据铸造合金的使用温度,可以分为以下三类: 第一类:在-253,650?使用的等轴晶铸造高温合金这类合金在很大的范围温度内具有良好的综合性能,特别是在低温下能保持强度和塑性均不下降。如在航空、航天发动机上用量较大的K4169合金,其650?拉伸强度为1000MPa、屈服强度 850MPa、拉伸塑性15%;650?,620MPa应力下的持久寿命为200小时。已用于制作航空发动机中的扩压器机匣及航天发动机中各种泵用复杂结构件等。 第二类:在650,950 ?使用的等轴晶铸造高温合金这类合金在高温下有较高的力学性能及抗热腐蚀性能。例如K419合金,950?时,拉伸强度大于700MPa、拉伸塑性大于6%;950?,200小时的持久强度极限大于230MPa。这类合金适于用做航空发动机涡轮叶片、导向叶片及整铸涡轮。

GH4037高温合金工艺性能GH37

GH4037物理性能 GH4037(GH37)密度 ρ=8.4g/cm3 GH4037(GH37)熔化温度范围 1278~1346℃ GH4037合金特性 易加工性 在850℃时具有高的热强性、良好的综合性能和组织稳定性 在850℃时具有高抗氧化性,长期使用组织稳定 适宜于800~850℃以下长期使用的航空发动机涡轮工作叶片 良好的焊接性能 GH4037应用领域 由于在850℃以下具有中等的热强性和良好的热疲劳性能,可广泛应用于各种高要求的场合。 航空发动机 燃烧室

加力燃烧室零部件 酸性环境 涡轮工作叶片 GH4037金相组织结构 该合金在标准热处理状态的组织为奥氏体基体和弥散析出的γ相,晶界有少量的M23C6和M6C型碳化物,晶内有块状的MC型碳化物。 GH4037工艺性能与要求 1、该合金具有良好的可锻性能,锻造加热温度1140℃,终锻1100℃。 2、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。 3、叶片热处理时,需缓慢加热,采用阶梯式加热曲线升温至固溶温度,控温要严格。为使叶片性能稳定,应特别注意二次固溶时的冷却速度不能过快。 4、叶片机械加工之后,必要时为了消除表面层中的残余应力,最重成品零件应进行消除应力回火,其规范为:氩气中于950℃加热2h,在加热箱内冷却至700℃,然后空冷。随后再经800℃,时效8h,空冷。经此规范处理后,不仅可消除叶片表面残余应力,还可改善缺口敏感性。 GH4037主要规格: GH4037无缝管、GH4037钢板、GH4037圆钢、GH4037锻件、GH4037法兰、GH4037圆环、GH4037焊管、GH4037钢带、GH4037直条、GH4037丝材及配套焊材、GH4037圆饼、GH4037扁钢、GH4037六角棒、GH4037大小头、GH4037弯头、GH4037三通、GH4037加工件、GH4037螺栓螺母、GH4037紧固件。

相关主题