搜档网
当前位置:搜档网 › 各种高温合金特性的介绍

各种高温合金特性的介绍

各种高温合金特性的介绍
各种高温合金特性的介绍

高温合金概述

1.1 高温合金 1.1.1 高温合金及其发展概况 高温合金是指以铁、钴、镍为基体,能在600℃以上温度,一定应力条件下适应不同环境短时或长时使用的金属材料。具有较高的高温强度、塑性,良好的抗氧化、抗热腐蚀性能,良好的热疲劳性能,断裂韧性,良好的组织稳定性和使用可靠性。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用的可靠性,基于上述性能特点,且高温合金的合金化程度很高,故在英美称之为超合金(Superalloy)。 高温合金于20世纪40年代问世,最初就是为满足喷气发动机对材料的耐高温和高强度要求而研制的,高温合金的发展与航空发动机的进步密切相关,1939年英国Mond镍公司首先研究出Nimonic75,随后又研究出Nimonic80合金,并在1942年成功用作涡轮气发动机的叶片材料,此后该公司又在合金中加入硼、锆、钴、钼等合金元素,相继开发成功Nimonic80A、Nimonic90等合金,形成Nimonic合金系列。如今先进航空发动机中高温合金用量已超过50%。此外,在航天、核工程、能源动力、交通运输、石油化工、冶金等领域得到广泛的应用。高温合金在满足不同使用条件中得到发展,形成各种系列的合金,除传统的高温合金外,还开发出一批高温耐磨、高温耐蚀的合金。 高温合金是航空发动机、火箭发动机、燃气轮机等高温热端部件的不可代替的材料,由于其用途的重要性,对材料的质量控制与检测非常严格。高温合金的基本用途仍旧是飞行器的燃气轮发动机的高温部分,它要占先进的发动机重量的50%以上。然而,这些材料在高温下极好的性能已使其用途远远超出了这一行业。除了航空部件之外,规定将这些合金用于舰船、工业、陆地发电站以及汽车用途的涡轮发动机上。具体的发动机部件包括涡轮盘、叶片、压缩机轮、轴、燃烧室、后燃烧部件以及发动机螺栓。除了燃气发动机行业之外,高温合金还被选择用于火箭发动机、宇宙、石油化工、能源生产、内燃烧发动机、金属成形(热加工工模具)、热处理设备、核电反应堆和煤转换装置。

变形高温合金的特性、分类及用途

科技名词定义 塑性变形 科技名词定义 中文名称:塑性变形 英文名称:plastic deformation 定义:岩体、土体受力产生的、力卸除后不能恢复的那部分变形。 应用学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);土力学(水利)(三级学科) 本内容由全国科学技术名词审定委员会审定公布 塑性变形(Plastic Deformation),的定义是物质-包括流体及固体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的一种物理现象。

目录 介绍 机理 影响 介绍 机理 影响 展开 编辑本段介绍 材料在外力作用下产生而在外力去除后不能恢复的那部分变形 塑性变形 。材料在外力作用下产生应力和应变(即变形)。当应力未超过材料的弹性极限时,产生的变形在外力去除后全部消除,材料恢复原状,这种变形是可逆的弹性变形。当应力超过材料的弹性极限,则产生的变形在外力去除后不能全部恢复,而残留一部分变形,材料不能恢复到原来的形状,这种残留的变形是不可逆的塑性变形。在锻压、轧制、拔制等加工过程中,产生的弹性变形比塑性变形要小得多,通常忽略不计。这类利用塑性变形而使材料成形的加工方法,统称为塑性加工。 编辑本段机理 固态金属是由大量晶粒组成的多晶体,晶粒内的原子按照体心立方、面心立方或紧密六方等方式排列成有规则的空间结构。由于多种原因,晶粒内的原子结构会存在各种缺陷。原

塑性变形 子排列的线性参差称为位错。由于位错的存在,晶体在受力后原子容易沿位错线运动,降低晶体的变形抗力。通过位错运动的传递,原子的排列发生滑移和孪晶(图1)。滑移是一部分晶粒沿原子排列最紧密的平面和方向滑动,很多原子平面的滑移形成滑移带,很多滑移带集合起来就成为可见的变形。孪晶是晶粒一部分相对于一定的晶面沿一定方向相对移动,这个晶面称为孪晶面。原子移动的距离和孪晶面的距离成正比。两个孪晶面之间的原子排列方向改变,形成孪晶带。滑移和孪晶是低温时晶粒内塑性变形的两种基本方式。多晶体的晶粒边界是相邻晶粒原子结构的过渡区。晶粒越细,单位体积中的晶界面积越大,有利于晶间的移动和转动。某些金属在特定的细晶结构条件下,通过晶粒边界变形可以发生高达300~3000%的延伸率而不破裂。 编辑本段影响 金属在室温下的塑性变形,对金属的组织和性能影响很大,常会出现加工硬化、内应力和各向异性等现象。 加工硬化 塑性变形引起位错增殖,位错密度增加,不同方向的位错发 塑性变形力学原理 生交割,位错的运动受到阻碍,使金属产生加工硬化。加工硬化能提高金属的硬度、强度和变形抗力,同时降低塑性,使以后的冷态变形困难。

高温合金材料介绍

MONEL 400 /UNS N04400 The alloy has excellent corrosion resistance in hydrofluoric acid and fluorine gas, and is suitable for pipe fittings and valves etc for chemical industry, petroleum, atomic energy, marine development. 在氢氟酸和氟气中具有优异的耐蚀性,适用于化工、石油、原子能、海洋开发中用的管件、阀件等。 NICKEL 200 ( UNS N02200 / DIN. W.Nr. 2.4060 ) The alloy is from pure commercial (99.6%) nickel, has good mechanical properties and excellent corrosion resistance, high thermal conductivity, low gas content and low vapor pressure. Mainly used in food processing equipment, salt refining equipment, mining and ocean mining. High temperature above 300 DEG C for manufacturing industrial sodium hydroxide required equipment. 是纯商业性(99.6%)造成的镍,具有优良的力学性能和优良的耐腐蚀性,较高的热和电导率,低气体含量和低蒸汽压力。主要应用于食物加工处理设备、食盐提炼设备、采矿和海洋开采。在300℃以上的高温条件下制造工业氢氧化钠所需的设备。 NICKEL 201 ( UNS N02201 / DIN. W.Nr. 2.4060 ) The alloy is a commercially pure nickel with very low carbon content and has been approved for use in a high temperature environment of up to 1230 degrees Celsius. 是含碳量极低的纯商业性镍,已被批准用于服务高达1230℃的高温环境中。 INCONEL 600 ( GB NS312 / UNS N06600 / DIN W.Nr.2.4816 / DIN NiCrl 5Fe / BS NA14 / AFNOR NC23FeA ) The alloy has high corrosion resistance against various corrosive media, also has good anti creep rupture strength. Recommended for the above 700 C working environment, mainly used for corrosive alkali metal production and application, especially the use of sulfide in the environment. 对于各种腐蚀介质都具有耐蚀性,还具有很好的抗蠕变断裂强度。推荐用于700℃以上的工

GH4169 镍基变形高温合金资料

GH4169 镍基变形高温合金资料 中国牌号:GH4169/GH169 美国牌号:Inconel 718/UNS NO7718 法国牌号:NC19FeNb 一、GH4169概述 GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位, 并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。 该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。 1.1 GH4169 材料牌号 GH4169(GH169)

1.2 GH4169 相近牌号 Inconel 718(美 国),NC19FeNb(法国) 1.3 GH4169 材料的技术标准 1.4 GH4169 化学成分该合金的化学成分分为3类:标准成分、优质成分、高纯成分,见表1-1。优质成分的在标准成分的基础上降碳增铌,从而减少碳化铌的数量,减少疲劳源和增加强化相的数量,提高抗疲劳性能和材料强度。同时减少有害杂质和气体含量。高纯成分是在优质标准基础上降低硫和有害杂质的含量,提高材料纯度和综合性能。 核能应用的GH4169合金,需控制硼含量(其他元素成分不变),具体含量由供需双方协商确定。当ω(B)≤0.002%时,为与宇航工业用的GH4169合金加以区别,合金牌号为GH4169A。 表 1-1[1]%

基于CPFEM的TA15钛合金高温塑性变形研究

基于CPFEM的TA15钛合金高温塑性变形研究晶体塑性理论将晶体塑性变形的物理机制及变形几何学与单晶或多晶的弹塑性本构方程相结合,从介观尺度(即晶粒尺度)上解释材料的各种塑性变形行为。将晶体塑性理论与有限元方法相结合的方法称为晶体塑性有限元方法(Crystal Plastic Finite Element Method,CPFEM),该方法从材料变形的物理机制出发,可以较为准确的反映材料的微观特性。 目前晶体塑性有限元模拟已成为力学界和材料界的研究热点。钛与钛合金是一种重要的结构材料,以其优异的性能广泛应用在航空航天等领域。 钛有两种同素异构晶型:密排六方(HCP)点阵的α-Ti相和体心立方(BCC)点阵的β-Ti相,由于晶格类型不同,其变形机制差别较大。文中综合采用了有限元方法、晶体塑性理论、元胞自动机等现代科学技术方法。 从介观尺度出发,根据合金微观晶格结构的不同,研究新型近α型钛合金—TA15钛合金的高温塑性变形,研究在相变点温度以上及以下的TA15钛合金高温的高温塑性变形行为。文中采用元胞自动机方法得到了相变点上的TA15钛合金的初始晶粒形貌。 建立了适用于变形温度在相变点以上的TA15合金的高温塑性变形的晶体塑性有限元模型。模拟结果表明多晶体在塑性变形的过程中,晶粒与晶粒之间以及晶粒内部的应力分布存在着明显的差异,晶粒内部与晶粒外部的塑性变形非常不均匀。 通过对滑移系上的剪应变进行分析表明由于各晶粒的取向不同和晶粒间的取向差的差异,不同晶粒的滑移系开动情况差别很大;在同一晶粒内部,由于需要协调相邻晶粒的应变情况,因此滑移系开动的程度也不完全相同。建立了适用

高温合金切削特点

切削特点 a、切削力大:比切削45号钢大2~3倍。 b、切削温度高:比切削45号钢高50%左右。 c、加工硬化严重:切削它时的加工表面和已加工表面的硬度比基体高50~100%。 d、刀具易磨损:切削时易粘结、扩散、氧化和沟纹磨损。 刀具材料 a、高速钢:应选用高钒、高碳、含铝高速钢。 b、硬质合金:应采用YG类硬质合金。最好采用含TaC或NbC的细颗粒和超细颗粒硬质合金。如YG8、YG6X、YG10H、YW4、YD15、YGRM、YS2、643、813、712、726等。 c、陶瓷:在切削铸造高温合金时,采用陶瓷刀具也有其独特的优越性。 刀具几何参数 变形高温合金(如锻造、热轧、冷拔)。刀具前角γ0为10°左右;铸造高温合金γ0为0°左右,一般不鐾负倒棱。刀具后角一般α=10°~15°。粗加工时刀倾角λs为-5°~-10°,精加工时λs =O~3°。主偏角κr为45°~75°。刀尖圆弧半径r为0.5~2mm,粗加工时,取大值。 切削用量 a、高速钢刀具:切削铸造高温合金切削速度Vc为3m/min左右,切削变形高温合金Vc=5~10m/min。 b、硬质合金刀具:切削变形高温合金Vc:40~60m/min;切削铸造高温合金Vc=7~10m/min。进给量f和切削深度αp均应大于0.1mm,以免刀具在硬化后的表面进行切削,而加剧刀具磨损。 切削液 粗加工时,采用乳化液、极压乳化液。精加工时,采用极压乳化液或极压切削油。铰孔时,采用硫化油85~90%+煤油10~15%,或硫化油(或猪油)+CCl4。高温合金攻丝十分困难,除适当加大底孔直径外,应采用白铅油+机械油,或氯化石蜡用煤油稀释,或用MoS2油膏。 高温合金钻孔

TA15钛合金高温变形行为研究

TA15钛合金高温变形行为研究 TA15钛合金的名义成分为Ti-6.5Al-2Zr-1Mo-1V,属于高Al当量的近α型钛合金。该合金既具有α型钛合金良好的热强性和可焊性,又具有接近于α+β型钛合金的工艺塑性,是一种综合性能优良的钛合金,被广泛用于制造高性能飞机的重要构件。对金属热态加工过程进行数值模拟,需要确定材料对热力参数的动态响应特征,即材料的流动应力与热力参数之间的本构关系,这对锻造工艺的合理制定,锻件组织的控制以及成型设备吨位的确定具有科学和实际的指导意义。 中国船舶重工集团公司725所的科研人员以TA15合金的热模拟压缩试验为基础,研究了变形工艺参数对TA15合金高温变形时流动应力的影响,这些研究对制定合理的TA15合金锻造热加工工艺,有效控制产品的性能、提高产品质量提供了借鉴。 热模拟压缩试验所用材料为轧制态Φ55mmTA15合金棒材,相变点为995±5℃,将该棒料切割加工成Φ8mm×12mm的小棒料进行试验。研究结果表明:(1)TA15合金在高温变形过程中,流动应力首先随应变的增大而增加,达到峰值后再下降,最后趋于稳定值。同一应变速率下,随着变形温度的升高,合金的流动应力降低;同一变形温度下,随着应变速率的减小,合金的流动应力减小。(2)TA15合金属于热敏感型和应变速率敏感型材料。应变速率较小时,变形温度对稳态应力和峰值应力的影响较小;应变速率较大时,变形温度对稳态应力和峰值应力的影响较大。变形温度较低时,应变速率对稳态应力和峰值应力的影响较大;变形温度较高时,应变速率对稳态应力和峰值应力的影响较小。(3)建立了TA15合金高温变形时的流动应力本构方程,经显著性检验和相关系数检验,证明所建立的方程具有较好的曲线拟合特性,方程的计算值与实验数据吻合较好。

高温合金GH4169

常州市天志金属材料有限公司 一、GH4169 概述 GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。 该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。 1.1 GH4169 材料牌号 GH4169(GH169) 1.2 GH4169 相近牌号 Inconel 718(美国),NC19FeNb(法国) 1.3 GH4169 材料的技术标准 GJB 2612-1996 《焊接用高温合金冷拉丝材规范》 HB 6702-1993 《WZ8系列用GH4169合金棒材》 GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》 GJB 1952 《航空用高温合金冷轧薄板规范》 GJB 1953《航空发动机转动件用高温合金热轧棒材规范》 GJB 2612 《焊接用高温合金冷拉丝材规范》 GJB 3317《航空用高温合金热轧板材规范》 GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》 GJB 3020 《航空用高温合金环坯规范》 GJB 3167 《冷镦用高温合金冷拉丝材规范》 GJB 3318 《航空用高温合金冷轧带材规范》 GJB 2611《航空用高温合金冷拉棒材规范》 YB/T5247 《焊接用高温合金冷拉丝》 YB/T5249 《冷镦用高温合金冷拉丝》 YB/T5245 《普通承力件用高温合金热轧和锻制棒材》 GB/T14993《转动部件用高温合金热轧棒材》 GB/T14994 《高温合金冷拉棒材》 GB/T14995 《高温合金热轧板》 GB/T14996 《高温合金冷轧薄板》 GB/T14997 《高温合金锻制圆饼》 GB/T14998 《高温合金坯件毛坏》 GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》 HB 5199《航空用高温合金冷轧薄板》 HB 5198 《航空叶片用变形高温合金棒材》 HB 5189 《航空叶片用变形高温合金棒材》 HB 6072 《WZ8系列用GH4169合金棒材》

高温合金

1、高温合金简介 (1) 2、高温合金的主要类别 (1) 2.1变形高温合金 (2) 2.1.1固溶强化型合金 (2) 2.1.2时效强化型合金 (2) 2.2铸造高温合金 (2) 2.3粉末冶金高温合金 (3) 2.4氧化物弥散强化(ODS)合金 (3) 2.5金属间化合物高温材料 (3) 3、高温合金的强化机理 (3) 3.1固溶强化 (3) 3.2沉淀强化及第二相强化 (4) 3.3晶界强化 (4) 3.4碳化物强化及质点弥散强化 (5) 4、常用高温合金的分类 (6) 4.1铁基超耐热合金 (6) 4.1.1铁基高温合金的成分和性能 (6) 4.2镍基超耐热合金 (6) 4.2.1镍基高温合金的组织特点 (6) 4.3钴基超耐热合金 (7) 4.3.1钴基高温合金的成分 (7) 4.3.2钴基高温的高温性能 (7) 5、高温合金的几种制造工艺 (7) 6、高温合金的应用 (8) 7、参考文献 (8)

1、高温合金简介 高温合金分为三类材料:760℃高温材料、1200℃高温材料和1500℃高温材料,抗拉强度800MPa。或者说是指在760--1500℃以上及一定应力条件下长期工作的高温金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性等综合性能,已成为军民用燃气涡轮发动机热端部件不可替代的关键材料。 按照现有的理论,760℃高温材料按基体元素主要可分为铁基高温合金、镍基高温合金和钴基高温合金。按制备工艺可分为变形高温合金、铸造高温合金和粉末冶金高温合金。按强化方式有固溶强化型、沉淀强化型、氧化物弥散强化型和纤维强化型等。高温合金主要用于制造航空、舰艇和工业用燃气轮机的涡轮叶片、导向叶片、涡轮盘、高压压气机盘和燃烧室等高温部件,还用于制造航天飞行器、火箭发动机、核反应堆、石油化工设备以及煤的转化等能源转换装置。 2、高温合金的主要类别 2.1变形高温合金 变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。GH后第一位数字表示分类号即1、固溶强化型铁基合金2、时效硬化型铁基合金3、固溶强化型镍基合金4、钴基合金GH后,二,三,四位数字表示顺序号。 2.1.1固溶强化型合金 使用温度范围为900~1300℃,最高抗氧化温度达1320℃。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为85%,1000℃、30MPa 应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。 2.1.2时效强化型合金 使用温度为-253~950℃,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。制作涡轮盘的合金工作温度为-253~700℃,要求具有良好的高低温强度和抗疲劳性能。例如:GH4169合金,在650℃的最高屈服强度达1000MPa;制作叶片的合金温度可达950℃,例如:GH220合金,950℃的拉伸强度为490MPa,940℃、200MPa的持久寿命大于40小时。变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。 2.2铸造高温合金 铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。其主要特点是: 1.具有更宽的成分范围由于可不必兼顾其变形加工性能,合金的设计可以集中考虑优化其使用性能。如对于镍基高温合金,可通过调整成分使γ’含量达60%或更高,从而在高达合金熔点85%的温度下,合金仍能保持优良性能。

GH3030高温合金介绍

GH3030高温合金 GH30固溶强化型高温合金 80Ni-20Cr板 gh3030棒国军标 GH3030(GH30) 固溶强化型变形高温合金 GH3030特性及应用领域概述: 该合金是早期发展的80Ni-20Cr固溶强化型高温合金,化学成分简单,在800℃以下具有满意的热强性和高的塑性,并具有良好的抗氧化、热疲劳、冷冲压和焊接工艺性能。合金经固溶处理后为单相奥氏体,使用过程中组织稳定。主要用于800℃以下工作的涡轮发动机燃烧室部件和在1100℃以下要求抗氧化但承受载荷很小的其他高温部件。 GH3030相近牌号: GH30,Зи435,XH78T(俄罗斯) GH3030 化学成分:(GB/T14992-2005) GH3030物理性能:

GH3030力学性能:(在20℃检测机械性能的最小值) GH3030生产执行标准: GH3030 金相组织结构: 该合金在1000℃固溶处理后为单相奥氏体组织,间有少量TiC和Ti(CN)。GH3030工艺性能与要求: 1、该合金具有良好的可锻性能,锻造加热温度1180℃,终锻900℃。 2、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。 3、热处理后,零件表面氧化皮可用吹砂或酸洗方法清除。 GH3030主要规格: GH3030无缝管、GH3030钢板、GH3030圆钢、GH3030锻件、GH3030法兰、 GH3030圆环、GH3030焊管、GH3030钢带、GH3030直条、GH3030丝材及配套焊材、GH3030圆饼、GH3030扁钢、GH3030六角棒、GH3030大小头、GH3030弯头、GH3030三通、GH3030加工件、GH3030螺栓螺母、GH3030紧固件。 篇幅有限,如需更多更详细介绍,欢迎咨询了解。

金属高温力学性能.

第08章金属高温力学性能 1.解释下列名词: (1 )等强温度;(2) 约比温度;(3) 蠕变;(4) 稳态蠕变;(5) 扩散蠕变;(7) 持久伸长率; (8) 蠕变脆性;(9) 松弛稳定性。 2.说明下列力学性能指标的意义: (1) σtε;(2) σtδ/τ;(3) σtτ;(4)σsh 3.试说明高温下金属蠕变变形的机理与常温下金属塑性变形的机理有何不同? 4.试说明金属蠕变断裂的裂纹形成机理与常温下金属断裂的裂纹形成机理有何不同? 5.Cr—Ni奥氏体不锈钢高温拉伸持久试验的数据列于下表。 (1) 画出应力与持久时间的关系曲线。 (2) 求出810℃下经受2000h的持久强度极限。 (3) 求出600℃下20000h的许用应力(设安全系数n=3)。 6.试分析晶粒大小对金属材料高温力学性能的影响。 7.某些用于高温的沉淀强化镍基合金,不仅有晶内沉淀,还有晶界沉淀。晶界沉淀相是一种硬质金属间化合物,它对这类合金的抗蠕变性能有何贡献? 8.和常温下力学性能相比,金属材料在高温下的力学行为有哪些特点?造成这种差别的原因何在? 9.金属材料在高温下的变形机制与断裂机制,和常温比较有何不同? 10.讨论稳态蠕变阶段的变形机制以及温度和应力的影响。 11.蠕变极限和持久强度如何定义,实验上如何确定? 12.什么是Larson-Miller参数,它有何用处? 13. 提高材料的蠕变抗力有哪些途径? 14.应力松弛和蠕变有何关系?如何计算一紧固螺栓产生应力松弛的时间。 15.为什么许多在高温下工作的零件要考虑蠕变与疲劳的交互作用?实验上如何研究这种交互作用?应变范围分配法如何预测疲劳—蠕变交互作用下的损伤?

GH3039 镍基变形高温合金资料

GH3039 镍基变形高温合金资料 中国牌号:GH3039/GH39 俄罗斯牌号:ЭИ602/XH75MБГЮ 一、GH3039概述 GH3039为单相奥氏体型固溶强化合金,在800℃以下具有中等的热强性和良好的热疲劳性能,1000℃以下抗氧化性能良好。长期使用组织稳定,还具有良好的冷成形性和焊接性能。适宜于850℃以下长期使用的航空发动机燃烧室和加力燃烧室零部件。该合金可以生产板材、棒材、丝材、管材和锻件。 1.1 GH3039 材料牌号 GH3039(GH39) 1.2 GH3039 相近牌号ЭИ602,ХН75МБГЮ(俄罗斯) 1.3 GH3039 材料的技术标准 1.4 GH3039 化学成分见表1-1。 表 1-1%

注:1.合金中允许有Ce存在。 2.合金中ω(Cu)=0.20%。 1.5 GH3039 热处理制度热轧及冷轧板材和带材固溶处理:1050~1090℃,空冷。棒材及管材固溶处理:1050~1080℃,空冷或水冷。 1.6 GH3039 品种规格和供应状态可以供应各种规格的热轧板、冷轧板、带材、棒材、丝材、管材、和锻件。板材、带材和管材固溶处理和酸洗后交货。丝材于冷加工状态或固溶状态供应棒材不热处理交货。 1.7GH3039 熔炼和铸造工艺合金采用电弧炉熔炼、电弧炉或非真空感应炉加电渣重熔或真空电弧重熔以及真空感应炉加电渣或真空电弧重熔工艺。 1.8GH3039 应用概况与特殊要求用该合金材制作的航空 发动机燃烧室及加力燃烧室零部件,经过长期的生产和使用考验,使用性能良好。 二、GH3039 物理及化学性能 2.1 GH3039 热性能 2.1.1 GH3039 热导率见表2-1。 表 2-1[1]

GH2150变形高温合金GH150

GH2150沉淀硬化型变形高温合金GH150 GH2150概述: GH2150是Fe-Ni-Cr基沉淀硬化型变形高温合金,使用温度小于750℃。合金加入铬、钨和钼元素进行固溶强化,加入钛、铝和铌元素形成时效强化相,加入微量硼、锆和铈元素净化并强化晶界。合金的强度高、塑性好、膨胀系数低,长期使用组织稳定;合金的热加工塑性好,并具有满意的焊接、冷成形和切削加工性能。适用于制作在700℃以下工作的喷气发动机板材焊接承力结构件,以及在600℃以下长期工作的燃气轮机转子和压气机叶片。 GH2150应用概况及特性: GH2150已用于制作航空发动机燃烧室外套、安装边等高温部件。相近合金在国外用于喷气发动机燃烧室外套和在600℃以下使用的涡轮叶片等零部件。 GH2150在超过800℃使用时,析出μ相及γ相聚集长大,会导致合金的力学性能下降。 GH2150对应牌号: GH150(中), BЖ105,XH45MBTЮБР, ЭП718, GH2150化学成分:

GH2150执行标准: GB/T 14992-2005 GH2150其他特点: 这类合金铬、镍含量相对较低,故抗氧化的温度仅约800%,但是含弥散强化相形成元素(v、A1、Ti)量相对较高,在固溶体基体上可形成化合物强化相,所以常用热处理形式为固溶处理+时效。通过固溶处理,可以使合金固溶强化;通过时效处理,可以使合金析出细小强化相[VC、Ni3A1、Ni3Ti,Ni3(A1?Ti)],从而提高室温和高温强度。固溶并时效处理后的组织为奥氏体+弥散化合物。例如GH2132的化合物量为2.5%、GH2135的化合物量为14%这类合金通常应用于高温下受力的零件,如涡轮盘、螺栓和工作温度不高的转子叶片等。 GH2150热处理制度: 棒材、圆饼、环形件:(1040-1060)℃/AC+ 750℃±10℃*(16-24)h/AC 冷轧板材:(1040-1080)℃/AC+ 750℃±10℃*16h/AC 冷拉焊丝:1050℃±10℃/AC GH2150熔化温度范围: 1320℃-1365℃ GH2150密度: 8.26 GH2150主要规格: GH2150无缝管、GH2150钢板、GH2150圆钢、GH2150锻件、GH2150法兰、 GH2150圆环、GH2150焊管、GH2150钢带、GH2150直条、GH2150丝材及配套焊材、GH2150圆饼、GH2150扁钢、GH2150六角棒、GH2150大小头、GH2150弯头、GH2150三通、GH2150加工件、GH2150螺栓螺母、GH2150紧固件。 篇幅有限,如需更多更详细介绍,欢迎咨询了解。

高温合金材料的应用与发展

高温合金材料的应用与发展分析 李桃山王保山 南昌航空大学飞行器工程学院100631班:10号 南昌航空大学飞行器工程学院100631班:20号 摘要: 本文主要介绍高温合金材料的定义及加工特点,通过了解合金的使用范围及选择标准,使更好的发展运用在各个领域。随着工业技术的发展。要求使用具有耐更高温度下的疲劳、蠕变、热稳定性以及抗氧化性能的高温材料,以适应先进设备(主要是航空运用)的设计要求,因此近半个多世纪以来人们从未停止过对的各种高温合金材料研发。从我国高温材料的发展历程与现状分析认为,我们应该发扬民主, 军民结合, 发扬全国一盘棋的精神, 形成一个和谐的集体,使我国高温合金体系建立在一个更坚实的基础上。 关键字:高温合金材料合金分类应用合金发展前景选择标准 前言: 高温钛合金以其优良的热强性和高比强度,在航空发动机上获得了广泛的应用。类似的高温合金材料在未来很长的一段时间应该是王牌型材料,在科技日新月异的今天,对高温合金材料的研究与来发具有很高的实际意义与战略意义。未来的航空航天飞行器及其推力系统,要求发展比现有的Ti64和Ti6242合金的强度、工作温度和弹性模量更高,密度更小,价格更低的高温合金材料,因此,高温合金材料的是航空材料的发展主流。 一、高温合金材料的定义及加工特点 高温合金定义:高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定应力作用下长期工作的一类金属材料。并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用可靠性。 高温合金加工特点 对于镍合金、钛合金以及钴合金等高温合金来说,耐高温的特性直接提高了

镍基高温合金材料研究进展汇总-共7页

镍基高温合金材料研究进展 姓名:李义锋1 镍基高温合金材料概述 高温合金是指以铁、镍、钴为基,在高温环境下服役,并能承受严酷的机械应力及具有良好表面稳定性的一类合金[1]。高温合金一般具有高的室温和高温强度、良好的抗氧化性和抗热腐蚀性、优异的蠕变与疲劳抗力、良好的组织稳定性和使用的可靠性[2]。因此,高温合金既是航空、航天发动机高温部件的关键材料,又是舰船、能源、石油化工等工业领域不可缺少的重要材料,已成为衡量一个国家材料发展水平的重要标志之一。 在整个高温合金领域中,镍基高温合金占有特殊重要的地位。与铁基和钴基高温合金相比,镍基高温合金具有更高的高温强度和组织稳定性,广泛应用于制作航空喷气发动机和工业燃气轮机的热端部件。现代燃气涡轮发动机有50%以上质量的材料采用高温合金,其中镍基高温合金的用量在发动机材料中约占40%。镍基合金在中、高温度下具有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,是最复杂的、在高温零部件中应用最广泛的、在所有超合金中许多冶金工作者最感兴趣的合金。镍基高温合金主要用于航空航天领域950-1050℃下工作的结构部件,如航空发动机的工作叶片、涡轮盘、燃烧室等。因此,研究镍基高温合金对于我国航天航空事业的发展具有重要意义。 镍基高温合金是以镍为基体(含量一般大于50 )、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金[2]。它是在Cr20Ni80合金基础上发展起来的,为了满足1000℃左右高温热强性(高温强度、蠕变抗力、高温疲劳强度)和气体介质中的抗氧化、抗腐蚀的要求,加入了大量的强化元素,如W、Mo、Ti、Al、Nb、Co等,以保证其优越的高温性能。除具有固溶强化作用,高温合金更依靠Al、Ti等与Ni形成金属问化合物γ′相(Ni3A1或Ni3Ti等)的析出强化和部分细小稳定MC、M23C6碳化物的晶内弥散强化以及B、Zr、Re等对晶界起净化、强化作用。添加Cr的目的是进一步提高高温合金抗氧化、抗高温腐蚀性能。镍基高温合金具有良好的综合性能,目前已被广泛地用于航空航天、汽车、通讯和电子工业部门。随着对镍基合金潜在性能的发掘,研究人员对其使用性能提出了更高的要求,国内外学者已开拓了针对镍基合金的新加工工艺如等温锻造、挤压变形、包套变形等。

沥青混合料高温特性及其影响因素

沥青混合料高温特性及其影响因素 我国大多数地区夏季温度都很高,最高温度可达四十多度,由于沥青路面吸收阳光紫外线的作用,实际反映到路面的温度可到接近六十多度。通过衡量沥青路面的温度特性尤其是高温稳定性十分迫切。沥青路面的高温稳定性指抵抗荷载下车重大小的能力,文章论述了沥青混合料在高温下的几种损坏类型、产生这些病害的成因,并提出防治高温车辙的出现及采取的相应的对策来减小或避免高温病害。 标签:沥青混合料;高温特性;影响因素 1 概述 沥青路面直接作用于行车荷载大小及各种自然因素的影响,沥青混合料的各种物理以及力学性质也受到各种自然因素的影响(包括温度的高低、含水量的多少、阳光的辐射等)受气候因素与时间因素等),沥青混合料的温度特性包括高温稳定性、低温抗裂性[1,2]。沥青混合料面的抵抗破坏及抵抗变形的能力与温度有直接的关系,随着温度升高而减小,为了能使沥青路面在高温环境影响下,仍然具有良好的高温路用性能。不因行车荷载作用而产生各种车辙、推移、等病害,一般评价沥青混合料的高温性能是在室内实验室采用车辙指标来衡量其在荷载作用下抵抗变形的能力[3,5]。 2 破坏类型 通常指在高温环境下、慢速加载情况下及抵抗水平剪应力能力弱时,或者说低劲度模量下的沥青路面。破坏类型通常有一项几种:(1)推移、拥包等类型破坏:通常指由于沥青混合料的剪应力大小不能够抵抗横向水平车辆荷载力导致的破坏,这种破坏多半出现在表处、贯入、路拌中低级沥青路面(如沥青表面处治、沥青贯入式等类型路面)的平交道口和纵坡较陡的坡段。(2)车辙:对于分车道行驶道路类型的沥青路面而言,高温稳定性不足用车辙指标来衡量。随着重载交通量的增大,对于行车荷载作用下的沥青类路面,将产生车辙病害(塑形变形不断增加的结果),车辙的大量出现会严重影响路面的使用性能,尤其是路面的平整度;车辙的出现致使沥青面层厚度不均匀,影响层间结合及结构的整体性能,同时车辙的出现直接导致车辙处雨水的聚集,雨水不能得到及时的排除,水膜的形成导致路面的抗滑性能不足,也影响了在高速、超载超车及变向时的安全行车、使用寿命和服务质量的降低。(3)泛油:因沥青含量过高或沥青混合料间隙过小,在行车荷载作用下,沥青混合料不断加密、间隙不断减小,致使沥青暴漏在沥青混合料外表面的现象。这种破坏会使沥青路面出现光滑而使其抗滑性能降低,其实是在环境湿度大情况下更加弱化沥青路面抗滑性能。高温会使沥青路面加剧泛油的出现,优选高品质沥青会减小泛油的出现,如高粘度和高软化点的沥青。 3 形成原因

高温合金的基本知识和应用

高温合金的基本知识和应用 一、高温合金是指在600度以上的高温下承受复杂的应力,而能很好发挥它的力 学和化学性能的一种合金。 二、常用的高温合金牌号有GH3030、GH2132、GH3039、GH3044、GH3128、GH4169、 GH4145、GH333 三、化学成分另外附有表格。 四、几种最常用的高温合金的材质和力学性能: GH2132(GH132)时效硬化型铁基合金 产品牌号:GH2132(GH132/IncoloyA-286/S66286) 产品规格:Φ3-350mm 执行标准:ASTM B160,B164,B166,B408,B425,B574,GB14992 1、GH2132钢的特性 该合金是Fe-25Ni-15Cr基高温合金,加入钼、钛、铝、钒及微量硼综合强化。在650℃以下具有高的屈服强度和持久、蠕变强度,并且具有较好的加工塑性和满意的焊接性能。 1.GH2132相近牌号 A-286 P.Q.A286 UNSS666286(美国)、ZbNCT25(法国)、X5NiCrTi26-15、1.4980、 1.4944(德国) 2.GH2132生产执行标准

3.GH2132工艺性能与要求: 1)、该合金具有良好的可锻性能,锻造加热温度1140℃,终锻900℃。 2)、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。 3)、合金具有满意的焊接性能。合金于固溶状态进行焊接,焊后进行时效处理。 4.GH2132 金相组织结构: 该合金在标准热处理状态下,在γ基体上有球关均匀弥散的NI3(Ti,Al)型γ'相以及TiN,TiC,晶界有微量的M3B2,晶界附近可能有少量η相和L相。 2、GH2132 化学成份:(GB/T14992-1994)

变形高温合金的特性

变形高温合金的特性、分类及用途 高温合金是根据航空喷气发动机的需要而发展起来的一种金属材料,它可在600~1100℃的高温氧化和燃气腐蚀条件下,承受复杂应力,并长期可靠地工作。主要用于航空发动机的热端部件,也是航天火箭发动机、工业燃气轮机、能源和化工等工业的重要材料。在先进的航空发动机中,高温合金的用量占金属材料总用量的40%~60%。在先进工业国家,如美国,航空航天用高温合金占其总用量的85%左右。 高温合金是一种兼有热稳定性和热强性的合金。热稳定性是指金属材料在高温下抗氧化或抗气体腐蚀的能力;而热强性是指金属材料在高温下抵抗塑性变形和断裂的能力。金属的热稳定性常用称重法来评定,在高温下金属单位时间、单位面积上的失重或增重越大,表示抗氧化性越差,即热稳定性越差。热强性的评定指标包括蠕变极限、持久强度、高温瞬时强度、高温疲劳强度等。蠕变极限表征在高温、长期载荷作用下,材料抵抗塑性变形的能力;持久强度表征在高温、长期载荷作用下,材料抵抗断裂的能力;高温瞬时强度(σb和σ0.2)表征高温下材料在瞬时过载时抵抗塑性变形和断裂的能力;高温疲劳强度是指在规定循环次数下(一般为107次)不引起断裂的应力。 高温合金分为变形高温合金和铸造高温合金。变形合金按基体元素的不同,可分为铁基变形高温合金、镍基变形高温合金和钴基变形高温合金,按合金的高温性能、成形特点及用途的不同,变形高温合金又可分为热稳定变形高温合金和热强变形高温合金。热稳定变形高温合金的特点是热稳定性很高,通常在固溶状态下使用,强度虽不高,但塑性很好,可顺利地进行深冲压,主要用于受力不大而工作温度很高的零件,例如燃烧室火焰筒及加力燃烧室等。热强变形高温合金的特点是热强度较高,通常在淬火、时效状态下使用,主要用于高温下承受大载荷及复杂应力的零件,例如涡轮叶片、涡轮盘等。 我国的新标准规定,变形高温合金的牌号以汉语拼音字母“GH”后接四位阿拉伯数字来表示。“GH”后第一位数字表示分类号,其中1表示固溶强化型铁基合金;2表示时效强化型铁基合金;3表示固溶强化型镍基合金;4表示时效强化型镍基合金。“GH”后第二、三、四位数字表示合金的编号。例如GH2036,GH4033等,其相应的旧牌号为GH36,GH33等。 我国于20世纪50年代开始研制高温合金,到目前已有40多种变形高温合金。航空工业中常用的铁基、镍基变形高温合金的牌号、化学成分及使用温度,见表1和表2。 燃烧室用合金主要有GH3030、GH3039、GH1140、GH3044、GH1015、GH1016、GH22、GH163、GH2302、GH170等。涡轮工作叶片大多采用时效强化型变形合金,如GH4033、GH4037、GH4043、GH4049、GH151、GH143、GH2130、GH2302、GH738、GH118、GH220、GH710等。涡轮盘材料大多采用铁-镍基沉淀强化合金(750℃以下),如温度更高,则采用镍基合金或粉末涡轮盘材料。涡轮盘常用合金有GH2036、GH4033、GH2132、GH2135、GH901、GH4133、GH761、GH698、GH710等。

高温合金的性能

高温合金是在高温下具有较高力学性能、抗氧化和抗热腐蚀性能的合金。高温合金按基体成分可分为镍基高温合金、铁镍基高温合金和钴基高温合金,其中镍基高温合金发展最快,使用也最广,铁镍基高温合金次之。按强化方式分为固溶强化合金和析出强化合金(或称时效沉淀强化合金)等。按成型方式和生产工艺分为变形合金、铸造合金、粉末冶金合金和机械合金化合金。 固溶强化高温合金的基体为面心立方点阵的固溶体,在其固溶度范围内通过添加铬、钴、钼、钨、铌等元素,提高原子间结合力,产生点阵畸变,降低堆垛层错能,阻止位错运动,提高再结晶温度来强化固溶体。固溶强化的效果取决于合金化元素的原子尺寸及加入量。原子半径较大、熔点较高的钼和钨具有较好固溶强化作用,两者总含量可达18%~20%。铬可防止高温氧化和热腐蚀,但含量过高会降低γ’相的固溶度,使合金的热强性下降。镍基固溶强化高温合金一般均具有优良的抗氧化、抗热腐蚀性能,塑性较高、焊接性能好,但热性相对较低。铁镍基固溶强化高温合金,虽然与镍基固熔强化高温合金相比在热强性、抗氧化和抗热腐蚀等方面略差一些,但仍具有良好的力学性能、较好冷热加工工艺性能和焊接性能。 析出强化高温合金是在固溶强化高温合金的基础上,通过添加较多的铝、钛、铌等元素而发展的。这些无元素除了强化固溶体外,通过时效处理,与镍结合形成共格稳定、成分复杂的Ni3(Al Ti)相(也就是γ’相,具有长程有序的面心立方结构)或Ni3(Nb AI Ti)相(也就是γ’’相,有序体心四方结构)金属间化合物,同时钨、钼、铬等元素与碳形成各种碳化物(如MC M6C M23C6等)由于γ’(γ’’)相和碳化物存在,使合金的热强性大大提高。此外,这类合金中还可以加入微量的硼、锆和稀士元素、形成间隙相,强化晶界。近年来发展的一些合金,往往采用固溶,析出和晶界多种方式强化,使合金具有优良的综合性能。随着AI Ti Nb 等γ’(γ’’)相形成元素含量的提高,其强化效果也增大,热强性提高,但合金的冷热加工性能和焊接性能随之下降。一般认为,AI+Ti含量大于6%(原子百分数)的高温合金焊接就很困难。镍基析出强化高温合金具有很好的热强性、抗氧化和抗腐蚀性能,正如前面所提到的冷热加工性能和焊接性能较固溶强化高温合金差。但是,在固溶状态下,有些镍基析出强化高温合金还是具有良好塑性和焊接性。铁镍基析出强化高温合金要中温下具有较高的热强性、良好的抗氧化和抗热腐蚀性能。在固溶状态下,冷热加工性能和焊接性能同镍 基析出强化高温合金相类似。无论镍基析出强化高温合金还是铁镍基析出强化高温合金,当加入更多的钼、钛、硼等强化元素时,使其冷热加工塑性下降,只能通过铸造成型,一般铸造合金的焊接较为困难。 氧化物弥散强化是在基体中加入一定量细小的弥散分布的氧化颗粒,对基体进行强化,使合金具有很高的强度和某些特性。合金TDNi TDNiCr是镍和镍铬基中加入2%左右氧化钍(ThO2)颗粒强化,由于这种合金中的氧化钍在高温下不易聚集长大、不溶于基体,同时合金的熔点高,晶粒极细,在1000~12000C下仍有较高的强度,抗疲劳性能高,缺口敏感小,室温塑性较好,可轧成棒和板材。氧化物弥散强化ODS合金是利用氧化物(如Y2 O3和AI2O3)强化的合金,这类合金的采用特殊的粉末冶金工艺生产,经锻压制成材。氧化物弥散强化合金,具有很高的持久蠕变性能,是很有发展前途的新型高温材料,其缺点是成功率低,塑性焊接性和耐蚀性差,有待解决。 高温合金性能主要取决于合金成分和它的组织结构,如前面所述,难熔金属元素Mo W以及CO起到固溶强化作用,AI Ti Nb 等γ’形成元素起到析出强化作用。一般认为,强化效果应该计算W+MO和γ’形成元素的总量,而CO和Cr居于次要地位,合金的持久强度随着合金元素总量的增加而提高。现在大量研究表明,高温合金中加入微量的B Zr Ce 和Mg等元素能显著改善晶界状况,提高合金的蠕变性能,但要注意这些元素的加入量一定要严格控制,否则就会产生有害的作用,如使合金脆化,形成低熔化合物等。

相关主题