搜档网
当前位置:搜档网 › 基于物联网的水质在线监测系统设计_贾桂林

基于物联网的水质在线监测系统设计_贾桂林

基于物联网的水质在线监测系统设计_贾桂林
基于物联网的水质在线监测系统设计_贾桂林

2012年 / 第12期 物联网技术

81

0 引 言

为了彻底解决传统人工水质监测及DCS 、现场总线方式在管理及应用上存在的布线困难、成本高等不足,本文提出了以智能水质传感器、无线传感器网络、专家库数据库为核心的物联网水质在线监测系统。本系统通过分布式动态组网,可实现大范围、24 h 不间断的监测,同时通过布设在水源地具有定位功能的无线传感器节点,能够侦测到饮用水源的污染情况,从而提高管理效率、保障供水安全,解决饮用水及养殖业水质在线监测和管理问题。1 系统结构及工作过程

本系统的组成图如图1所示。系统在水源地布置多个水上节点(水质参数采集节点、远程视频采集节点、水质参数调节节点、ZigBee+GPRS 无线网关),然后通过水质参数采集节点实时采集PH 值、水温、水位、溶氧量等水质参数,并通过ZigBee Endpoint 上传给无线网关的ZigBee Coordinator ,再由后者经串口送入GPRS 传送到服务器;同时通过IP Camera(网络摄像机)采集水面视频信息,

由3G 方式送入(移动)服务器。运行于服务器上的信息管理系统将对数据进行统计、分析,并根据饮用水用水管理要求实时预警、告警,自动下发控制指令到GPRS 无线网关,然后由ZigBee 网络下发指令到水质参数调节节点,启动增氧机或PH 值调节设备、水泵等,实时调节用水参数。管理人员则可通过PC 、平板电脑或PDA 等方式获取实时水质数据,并对设备进行远程控制。

感知层

图1 基于物联网的水质在线监测系统的组成

基于物联网的水质在线监测系统设计

贾桂林,刘美岑,曾宝国,程远东

(四川信息职业技术学院,四川 广元 628017)

摘 要:针对传统水质监测方案布线困难、成本高等不足,设计了一种基于物联网的水质在线监测系统,实现了对溶解氧、PH 值、温度等多参数的采集、传输、处理。该方案便于远程监测,适用于饮用水及养殖业水质监测等领域。

关键词:传感器;水质监测;ZigBee ;GPRS

中图分类号:

TP393 文献标识码:A 文章编号:2095-1302(2012)12-0081-03Design of online water quality monitoring system based on Internet of Things

JIA Gui-lin, LIU Mei-cen, ZENG Bao-guo, CHENG Yuan-dong

(Sichuan Institute of Information Technology, Guangyuan 628017, China)

Abstract : To solve the problems of complex wiring and high cost in traditional water quality monitoring programs, a water quality monitoring system based on Internet of Things is designed to achieve the purpose of the acquisition, transmission and processing of multiple parameters, including dissolved oxygen, PH value, and temperature. The scheme is suitable for remote monitoring, and applicable to monitoring the quality of drinking water and water for the aquaculture industry.

Keywords : sensor; water quality monitoring; ZigBee; GPRS

————————————————

收稿日期:2012-10-18

基金项目:四川省经济和信息化委员会2011年自然科研基金 (2011XM065)

水位、溶氧量、温度等五项基本参数进行监测。本系统选用北京联创与中国农大开发的、具有测温和温度补偿功能的PH10、TS10、WL10、DO10四类智能传感器来对水的PH值、浊度、水位、溶氧量、温度等五项参数进行监测。四类传感器均可通过RS485总线接收来自外部MCU的控制指令,然后返回测量原始值、温度值、工程值等三个参数,因而可以大大简化感知层的设计工作。

2.2 CC2530节点的接口电路设计

本系统的ZigBee节点选用成都感智信息技术有限公司的CC2530节点,该类节点带有CC2591增益放大模块,最远通讯距离可达1 km。由于CC2530不支持RS485通讯,因而需要设计RS485转3.3 V TTL电路,图2所示就是CC2530无线节点与RS485传感器的接口电路[2]。其中,5.0 V直流电压主要为传感器供电,3.3 V直流电压为CC2530节点供电。通讯接口转换芯片选择MAXIM公司的MAX13487,光耦T1、T2用于CC2530与RS485总线的隔离,R8、R9用于采样电源电压以便服务器端能实时判断节点的供电情况,R5、R6、R7、C5、C6、D1、D2、D3、L1、L2等为RS485总线匹配电路。

2.3 增氧机控制电路设计

系统中的增氧机控制电路如图3所示,CC2530节点通过P0.1控制光耦T1,并驱动Q1控制继电器J1,从而控制增氧机电源的通断,达到启动/

停止增氧机的目的。

图3 增氧机控制电路太网接口。

3 软件设计

本系统的软件由感知层WSN软件子系统、传输层ZigBee/GPRS软件子系统和应用层水质信息管理系统等三部分构成。

3.1 感知层WSN软件子系统

感知层WSN软件子系统是根据表1所示的通讯协议,基于ZigBee 2007Pro开发的具有自组网功能的星型网络。其中,帧类型主要有节点入网、获取网络参数、获取传感器参数、调节水质参数等。表1所列是系统的WSN数据帧格式。表2和表3所列是其水质传感器的通讯帧格式。只要在下行链路中下发指定格式的指令,便可通过上行链路获取到如表3所列的返回数据,进而提取出原始值、温度值、工程值等参数。

3.2 传输层ZigBee/GPRS无线网关软件子系统

ZigBee/GPRS无线网关用于完成管理控制、协议转换以及数据转发功能,可以支持WSN网络数据协同和汇聚,并支持ZigBee及GPRS接入,从而桥接WSN与互联网[4]。

3.3 应用层水质监控信息管理系统

应用层水质监控信息管理系统采用B/S架构设计,通过WebService提供面向ZigBee/GPRS网关和

用户的服务。WebService服务接口提供的主要服务

接口如表4所列。

应用层数据决策由专家数据库系统实现,它由知识库、推理机、解释器、人机界面、数据库管理

系统等组成。主要子系统包括水质环境监控子系统、

专家决策及知识查询子系统、系统配置子系统、在

线技术支持子系统等[5]。

表1 WSN数据帧格式

项目帧头帧类型

物理

地址

网络

地址

数据包

连接

质量

备用和校验内容&WSN???????

字节数4382121101

顺序0-34-67-1415-1617-282930-3940

备注-功能码默认填0

表2 水质传感器下行链路数据帧格式

帧头方向长度帧代号功能码地址段数据CRC帧尾

88FB FA08040101FF DC010648FC FC

图2 CC2530无线节点与RS485传感器的接口电路

物联网技术 2012年 / 第12期

82

2012年 / 第12期 物联网技术

83

表4 应用层WebService 服务接口

接口名称接口功能

接口名称接口功能

addData 向数据库添加采集信息的记录

addContro 向数据库添加控制信息的记录updateControlStat 修改传感器状态getUserInfo 查询数据库中是否存在此用户getCollectLocations 查询出传感器部署的地址集getCollectTypes 返回传感器采集的类型集

writeFeedBackInfo 将传感器反馈的信息写入

SensorControl表

addType 增加传感器类型addSensorinfo 注册传感器信息getMaxValue 获取类型的最大值updateSensorPhyAddr 通过传感器的ID来更新SensorConfig表的物理地址addType 获取类型的最小值updateSensorNetworkAddr

通过传感器的ID来更新SensorConfig表的物理地址

getTypeUnit

查询传感器记录类型的单位

4 结 语

本文基于水质传感器、GPRS 、ZigBee 等技术手段设计了一套水质实时监测系统,能对大范围水面进行PH 值、浊度、水位、温度、溶解氧等水质参数的监测。在感知层中,本系统提供有开放的协议进行扩展,只要在CC2530节点上配置以不同的传感器,便可对系统的监测进行扩展;而在传输层,则利用3G 网络和ZigBee/GPRS 网关的开放性,来实现数据的透明传输;在应用层中,系统通过WebService 提供面向ZigBee/GPRS 网关和用户的服务,同时,本系统还可以方便地进行传感器的配置、增减和数据展示。

参 考 文 献

[1] 周娜,祝艳涛.传感器在水质监测中的应用探讨[J].环境科学导刊,

2009(28):119-123.

[2] 苏燕,周士龙.RS232-RS422/RS485/TTL 信号转换器设计[J].山东商业职业技术学院学报,2012(12):92-94.

[3] 陈琦,韩冰,秦伟俊,等.基于Zigbee/GPRS 物联网网关系统的设计与实现[J].计算机研究与发展,2011(48):367-372.

[4] 王翥,郝晓强,魏德宝.基于WSN 和GPRS 网络的远程水质监测系统[J].仪表技术与传感器,2010(1):48-52.

[5] 张红燕,袁永明,贺艳辉,等.水产养殖专家系统的设计与实现[J].中国农学通报,2011(27):436-440.

素。随着国际与国内标准化组织相关RFID 标准的制定、各图书馆相关机构制定一些实施办法、实施细节以及RFID 技术和生产工艺的发展,实施RFID 的风险正在不断降低,在物联网相关技术的支持下,泛在图书馆的实现已为期不远。

参 考 文 献

[1] 冯小桓.RFID 技术在南京邮电大学图书馆应用中的问题与对策[J].

农业图书情报学刊,2012,24(3):103-107.

[2] 苏帆.RFID 在图书馆应用存在的问题及前景分析[J].图书情报论

坛,2011(93):45-48.

[3] 蔡孟欣.图书馆RFID 研究[M].北京:国家图书馆出版社,2010.[4] 宁焕生.RFID 重大工程与国家物联网[M].北京:机械工业出版社,2010.

[5] 田建华,周凤珍,吕土寨,等.基于RFID 技术的图书ATM 在高职高专图书馆的开发应用[J].物联网技术,2011(10):59-61.

作者简介: 撖立军 男,1978年出生,硕士研究生,讲师。主要研究方向为后勤信息化。

(上接第80页)

上海纳普工业物联网解决方案

上海纳普工业物联网解 决方案 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

上海纳普信息科技公司

目录 1.公司简介............................................................... 2.组网架构............................................................... .组网方案............................................................ .系统结构............................................................ .产品组成............................................................ 资源层.......................................................... 数据层.......................................................... 呈现层.......................................................... .用户准备............................................................ 3.产品介绍............................................................... .适配器(APRUS)..................................................... 功能介绍........................................................ 产品特点........................................................ .基础数据云服务系统(GARDS)......................................... 功能介绍........................................................ 产品特点........................................................ .柔性信息与数据集成系统(Fidis)..................................... PC端............................................................ APP端........................................................... 大屏端.......................................................... 产品特点........................................................ .大数据分析(INDASS)................................................ 4.方案优势............................................................... .中立的第三方........................................................ .可靠性.............................................................. .安全性.............................................................. .灵活性.............................................................. .整体性.............................................................. 5.系统功能............................................................... 远程设备监控.............................................................. 设备综合管理.............................................................. 报警及预警功能............................................................ 报表分析.................................................................. 操作记录统计.............................................................. 配件管理.................................................................. 生命周期管理.............................................................. 在线体检.................................................................. 权限管理................................................................. 业务管理.................................................................. 历史数据.................................................................. 6.成功案例...............................................................

物联网智能环境监测系统

《传感器与物联网技 术》 综合报告 题目:智能环境与物联网技术 专业: 学号: 姓名: 提交日期:二О一六年六月 摘要

环境与所有人的日常生活都息息相关,而物联网技术也随着计算机技术,信息技术,以及智能技术的发展越来越多的开始被应用到我们的日常生活中来。本文主要针对物联网技术应用到环境监测中的相关问题进行了分析与探讨。 智能环境利用各种传感器技术,移动计算,信息融合等技术对空气环境,海洋环境,河,湖水质,生态环境,城市环境质量进行全面有效地监控,通过构建全国各地环境质量的检测实现对全国范围内的环境进行实时在线监控和综合分析,建立全国性的污染源信息综合管理系统,为采取环境治理措施和污染预警提供更客观,有效的依据。 关键字:智能环境物联网技术传感器

目录 1引言 (4) 1.1 物联网简介 (4) 1.2智能环境研究的目的和背景 (4) 2需求分析 (4) 2.1智能环境功能需求分析 (5) 2.2各子系统需求分析 (5) 2.2.1大气污染监测子系统需求分析 (5) 2.2.2海洋污染监测子需求分析 (5) 2.2.3水质监测子系统需求分析 (5) 2.2.4生态环境检测子系统需求分析 (5) 2.2.5城市环境检测子系统需求分析 (5) 2.3其他非功能需求分析 (6) 2.3.1可靠性需求 (6) 2.3.2开放性需求 (6) 2.3.3可扩展性需求 (6) 2.3.4安全性需求 (6) 2.3.5应用环境需求 (6) 3详细设计 (6) 3.1各环境监测子系统解决方案 (6) 3.2智能环境监测系统结构图 (5) 3.2.1各子系统环境监测拓扑结构图 (6) 4结论 (12) 参考文献 (13)

EMC物联网云平台系统使用教程

EMCP物联网云平台系统 1.EMCP物联网云平台简介——工业云组态 EMCP是一个工业级,服务于工业、农业、商业用户的综合性物联网云平台,支持多用户、跨行业、跨设备无缝接入。企业通过EMCP平台无需编程,无需安装运行软件,无需聘请IT工程师,即可快速便捷的实现产品/系统的物联网升级,打造企业专属的物联网云平台。 通过EMCP平台的可实现手机版组态软件功能,用户只需关注自己产品(如仪表/设备/系统)的生产和研发,而无需关注网络侧如何实现的难题。术业有专攻,EMCP平台作为完整的物联网集合体将数据传输、处理、存储、展示、用户管理、报警等功能进行打包,用户只需登录平台进行二次开发即可,从而大大降低了用户在使用物联网技术的门槛。从而轻松易举的实现工业设备远程监控。 该平台的功能结构分为前台和后台两大类,其中前台的功能有:系统登录、设备列表,设备地图、数据展示等功能,后台则分为设备管理、模块管理、数据规则管理、账号管理等功能。其结构示意图如下所示: 普通账号管 理 员 账 号 模 块 查 看 新 增 模 块 删 除 模 块 远 程 配 置 设 备 显 示 设 备 查 看 查 看 设 备 新 增 设 备 修 改 设 备 删 除 设 备 查 看 设 备 位 置 进 入 设 备 列 表 展 示 组 态 展 示 查 询 数 据 规 则 新 增 数 据 规 则 删 除 数 据 规 则 操 作 数 据 规 则 查 询 账 号 新 增 账 号 删 除 账 号 修 改 账 号 账 号 授 权图1.1 EMCP功能结构示意图

2.EMCP前台功能介绍 2.1系统登录模块 本系统登录界面如图2.1所示,用户分为普通用户和运维用户。普通用户账号由运维用户分配,只具有前台访问的功能;而运维用户账号则由平台管理人员分配,具有前台访问功能和后台管理功能。 图2.1 系统登录界面 登录界面的顶部有一个语言切换的功能,可以实现中文和英文之间的一键互换,如果用户忘记密码则可以通过点击忘记密码来找回密码。具体操作流程如图2.2所示。

浅谈工业物联网云平台项目架构设计

浅谈工业物联网云平台项目架构设计 前言 早在1999年就已经有了“物联网”这个概念,但是直到十年之后的2009年,IBM提出“智慧地球”的概念,才推动很多国家把物联网研究和发展提升到战略层面。但是比较遗憾的是,直到现在的2015年,我国的物联网的发展依然主要靠政府项目来拉动,所以现在的发展似乎前景越来越不明朗。 政府似乎意识到这是个问题,在一些互联网公司的倡导和推动下,提出了“互联网+”的概念。虽然“互联网+”和“物联网”都是以网为主,但是发展的侧重有了本质区别。“互联网+”是以互联网为主,外围智能模块和传感器为辅,构建互联生态。而“物联网”却是以互联网为基础,重点在传感器数据采集,设备控制,远程监控为主。 但是现在很多互联网公司,做的是“互联网+“的事,却以”物联网“的名义来宣传。所以现在的人越来越搞不清”物联网“的真实定位了。 我一直认为从技术角度来看,所谓“物联网“就是传统工控网的一个外延。传统的工业现场,考虑到生产安全,都是内部网络。另外实施和维护的代价相对较高。而在互联网和移动互联网越来越完善的今天,在各个领域都有了远程测控的要求。比如目前比较典型的农业大棚监控、森林防火监控、鱼塘监测和养殖管理等等。 “互联网+”和“物联网”由于发展的侧重点不同,在做架构设计上肯定有所不同。“互联网+“的项目,其实更看重的是用户数,通信数据流量,这是衡量一个”互联网+“项目成功的标志,当然这是也是那些做云平台为主的互联网公司最看重的,用户数和通信数据流量正是他们的利益点所在。 而以中小项目为主的“物联网”项目,其实更看重的,一是系统稳定可靠,能保证系统长期稳定的运行,因为有些监控点往往部署在人迹罕至的地方,系统的可靠性成为关键。二就是系统便于开发和维护,因为基于不同行业,不同工艺需求的,很难开发出像民用领域的通用产品,需要根据现场实际调整相关的业务逻辑和监控画面,所以是否易于开发很关键。当然维护更为重要,因为偏工业级的“物联网”项目一般设计至少是三年或更长的生命周期,所以项目维护难以避免,甚至系统还会根据

工业物联网监控管理系统

深圳市中晖盛大科技有限公司 SHENZHEN DVSONE TECHNOLOGY CO.,LTD 中晖工业物联网监测管理平台

中晖工业物联网的优势 1、工业物联网现状 2、中晖物联网的优势 3、锅炉远程监测平台说明 4、中晖S-ITMS 介绍

一、工业锅炉动态监测状况 ?目前,我国工业锅炉具有容量小、数量大、布点散等特点。其中监管部门:难以集中监管,各区域所有工业锅炉基本信息及动态监管数据难以获取;使用单位:司炉人员素质不高、责任心不强,对压力、温度、水位等动态参数监视不严,易导致锅炉事故的发生;检验机构:安全检验、能效检测工作都需人工现场进行,锅炉运行实时数据记录不连续、不完整、不精确,以致无法及时了解锅炉运行现状。 基于以上,工业锅炉安全与节能工作动态可视化方案,即实现工业锅炉远程动态在线监测功能,能够圆满解决上述问题,它能形成人机互补关系,减少锅炉安全事故,同时提高锅炉燃烧效率,促进节能减排。 ?

二、中晖锅炉物联网技术优势 ?中晖锅炉物联网通过宽带网络或3G/GPRS网络远程实时监控全国各地的锅炉设备使用状况,实时接收设备运行参数进行监控和故障诊断,并记录设备运行历史数据,通过分析运行数据给用户提供维护保养建议,能够自动接收锅炉设备的运行故障报警信号,推送报警信号(短信或语音)给相关负责人,并对报警信号作出及时处理。实现锅炉设备的无人化操作,为终端用户省去专业操作员,为用户节省大量的人力物力。通过分析历史数据,积累设备运行参数库,通过专业的大数据分析改进设备配置和运行参数,提高设备运行效率,促进安全生产和节能减排。 ?提高锅炉安全性刻不容缓,每年都发生大量的锅炉事故,最近三个月内的相关新闻不下几十条,锅炉事故触目惊心,造成巨大的财产损失和人身伤亡,同时给锅炉周边住民带来心理压力,还有部分安全隐患随时可能爆发。锅炉设备急切需要物联网技术来嫁接改造设备运维模式。实现锅炉运行的自动告警,提前预警,远程监控维护,提高安全性,大大降低事故率。 ?锅炉设备用户的需求正向自动无人值守,节能减排,自动告警,远程监控维护方向发展。 ?

水质监测系统解决方案

水质监测系统解决方案 一、系统概要 本综合管控云平台是一套基于云计算的物联网综合管控云服务平台。平台可适配于各种物联网应用系统,实时监控管理接入设备的状态与运行情况,并对设备进行远程操作,通过云平台对接物联网设备做到精确感知、精准操作、精细管理,提供稳定、可靠、低成本维护的一站式云端物联网平台。水质监测系统通过对现场水温、PH值、化学需氧量、悬浮物、电导率、溶氧等参数的数据采集,将参数数据远传至物联网云平台,实现现场各个设备的数据实时监测,用户可以通过电脑网页或是手机app实时查看,可以自由设置各个参数的标准值上下限,如果数据超限可以给相关的工作人员发送短信或是微信报警提醒,做到提前预警,避免造成不必要的损失,实现在远程就能值守现场设备。 二、拓扑图 现场传感器数据通过物联网中继器上传云平台,客户通过电脑网页或是手机app可以实时监控现场设备数据。

三、适用场景 1.水库 2.河川 3.渔业 4.自来水 5.工厂 6.净水厂 7.废水处理厂 8.游泳池 三、系统构成 3.1系统登陆 ①PC端登陆: 本系统采用B/S架构,PC端用户只需打开浏览器通过IP地址进入管理系统,凭管理员分配的用户名密码进行登陆管理。(登陆界面可定制企业logo及信息)如下图: ②手机端登陆: 用户可在任何有本地局域网信号的地方,通过IOS或Android版本APP登陆系统,登陆账号与PC端账号相同。IOS 版本APP请在Apple Store搜索“易云系统”进行下载,安卓版本请在“易云物联网系统”公众号或PC端系统中扫描二维码进行下载。

3.2数据监控 能够便捷监控实时数据,并且可通过数据变化自动启停其他设备,各项数据可用数值、图片、文字分别展示,并通过短信等功能向用户发送报警信息。另外,可设定不同的监控点,更直观的监测每个测温点实时情况,模拟真实的设备位置分布。如下图: 3.3报警功能 当设定参数超出设定的高低范围值、通讯异常等情况系统可自动向管理员发送短信等报警信息。管理员自行设定各部门的短信报警信息接收人(可添加多位),保证各个管理员在第一时间接收到报警信息。如下图:

物联网溯源云平台

随着经济的不断发展,市场上的产品种类也愈加丰富,产品种类众多,包装形式多种多样,等原因,极易导致不法商家趁虚而入,将各种假冒伪劣产品掺入市场,不仅会影响正规企业的形象,更会给消费者带来极大困扰,疫苗造假等问题,甚至严重影响了消费者的生命安全。无论是企业保护自身合法权益,还是消费者维护自身生命、财产安全,建立统一物品追溯体系,允许企业和消费者自由核查都已经是必须考虑的问题。 中易云基于物联网综合管理系统,采用物联网、云计算、RFID等相关技术,构建商品溯源平台,通过“一物一码”的形式,协助企业大家防窜,保护消费者舌尖上的安全。 系统功能: 1、商家入驻 中易云的溯源平台,允许接入商品从生产到销售过程中的过程,各个阶段的商家都可以入住系统,接受监督检查。对于多家分销商、代理商,也可以批量导入,并在按区域标注在地图上,以便寻找。 2、防伪码生成 防伪码中包含了每个产品批次的各种信息,是溯源系统中必不可少的部分。 系统支持自动生成、重新生成防伪码等功能,并且支持该防伪码下批次、产品鉴伪记录删除等功能。

3、产品管理 系统支持产品管理功能,用户可以对产品类别、批次等内容进行管理,可以想用户展示产品的生产的厂家、许可证号,规格、包装图片等信息。 用户可以在批次管理中查看批次产品的生产步骤和产品详情,步骤可以明确到执行人,产品详情可以生成防伪码,并显示鉴伪记录等。

4、全流程监控 系统支持视频功能,企业可以将各批次产品生产过程的视频上传到服务器上,或对接现场视频设备,展示实时状况,消费者可以通过扫码在手机上查看目标批次的生产视频或实时视频。

5、溯源数据统计 易云系统有强大的报表统计功能,用户将任意可统计数据生成报表,如产量、生产运输时温湿度数据、各阶段扫码次数等等。 用户只需在新建统计时为该报表添加所需的字段并配置好数据来源,即可将某一数据源的数据制成报表向企业或消费者展示。 6、仓储物流管理 系统支持产品库存和物流信息的统计管理,可以将厂家、中转仓库、物流、销售仓库的记录进行统计,让厂家、经销商可以一目了然地了解产品库存运输状况。

基于物联网的水质监测系统

? 30 ? 基于物联网的水质监测系统 安徽理工大学 都 康 唐 磊 张玉全 众所周知,生命的生存必须依赖水资源。不论是陆地生物还是海洋生物,需要的水资源中含有的物质含量是不同的,水中一些物质含量变化过大,就可能造成生物无法生存,水被污染,环境被破坏。物联网技术的出现虽说不能直接解决问题,但是通过物联网技术,对湖泊,海洋等安放各种不同作用的传感器,能够做到对水质的在线监测,能够实时的反映出水质的变化,使得我们对水质的保护以及污染的治理,有很重大的积极作用。 引言:当今世界水环境面临的两大难题,一时缺水,二就是水污染问题。这两个问题越来越受到世界各地的重视和关注。我国国土面积庞大,水资源储量十分丰富,但是由于我国人口高达14亿,平均下来的水资源量是很少的。我国是世界13 个严重缺水的国家之一,人均水资源尚不足世界人均水平的1/4(李伟.基于ARM 处理器的灌溉自动控制系统设计[J].农机化研究,2012(1):76-79)。并且我国从改革开放到现在,工业污水的排放污染了大量的水资源,农业和生活污水也对水污染造成的不小的影响。 我国的水质分为五类,作为饮用水源的仅为一、二、三类。 由图表数据不难看出,目前中国的水污染情况已经非常严重。目前中国的水体污染主要是重金属和有机物等污染物造成的严重水污染。 通过物联网技术的引用, 我们的水质监测手段得到了一个较好的扩充我们可以利用物联网技术实现一个在线的实时自动控制的水 质监测系统。整个系统可以利用互联网技术和物联网技术的综合运用,通过有效合理的硬件设计和选择, 然后再结合软件部分的有效控制和人为干预就实现了水质的实时在线监测(朱小红.基于物联网的水质在线监测系统设计[J].黑龙江科技信息,2014-07-253),这样做可以确保保持水质或恢复到理想水平。它的定期监测有助于评估性质和程度对污染控制的要求,以及有效性污染控制措施。 1.物联网概述 物联网这个名词最初是在1999年提出的。物联网(IoT )被定义为物理对象/物体的网络-设备,车辆,嵌入传感器的建筑物,微控制器和网络连接,使这些对象能够收集和交换数据。物联网可以被描述为一个巨大的嵌入式对象网络,其内置无线技术,可以在现有的互联网基础设施中进行监控,控制和链接。每个设备都有唯一的标识,必须能够自主捕获实时数据。物联网的基本构建模块包括传感器,处理器,网关和应用程序。据估计,到2020年,将有500亿“东西”连接到互联网。诸如Wi-Fi ,蓝牙,ZigBee ,RFID ,6LoWPAN (IPv6低功率无线个人区域网络)之类的无线技术允许 设备连接到互联网并相互连接。 云服务收集。互联网中拥有强大的云端,能够存储和分析传感 器收集的数据,并允许人们通过网络接入之后进行相应的查阅或者修改。由于智能手机的快速普及,移动数据管理应用正在增加智能手机现已成为计算和通信的平台中不可缺少的一部分了。智能手机/平板电脑比体积更大的个人电脑更便宜,更易于使用,并且可以用于多种类型的信息传输。移动数据应用以及传感器技术可以提高

基于物联网技术的水质监测系统

166 ?电子技术与软件工程 Electronic Technology & Software Engineering 数据库技术 ? Data Base Technique 【关键词】物联网 水质监测 自动控制 水质监测有覆盖区域大、监测指标多、设备折旧快的特点,本系统在原有的水质监测设备系统上融合物联网技术,水质监测设备的功能将从单一的数据采集向多元化发展。拥有水样采集、数据采集、数据分析、方案决策、快速响应、信息支持等多功能的智能水质自动监测系统,从而有效改善我国水质监测不足的现状。 1 系统介绍 基于物联网技术的水质监测系统是在现有水质监测系统硬件基础上,利用物联网技术构建的水质监测控制软件,实行对现场的监测系统进行自动化监测、控制和管理,从而能够对水质数据进行实时采集、智能分析,及时对水质做出评价,并将监测结果及时反馈到中心站,从而提高水质监测管理水平。 2 系统特点 2.1 智能化 该系统是一套智能化、实时、在线监测的水质监控系统,能自动实现相关连接物联网设备的数据采集、数据处理分析、设备控制、故障报警、断电保护、无线通信、自动打印报表等多项功能,能够在无人看守的环境下长期可靠运行。2.2 标准化 软件设计驱动、接口等均按照现有的标准,与无线通信均采用国标标准通信协议,能过无线网络与远程终端建立连接,通过互联网传输标准协议进行实时双向数据传输;对于数据的通讯格式、参数等,均按照水利监管等相关部门的标准定义。 基于物联网技术的水质监测系统 文/贺强1,2 杨璐1 蔚晨月1 赵素萍1 3 系统主要功能 3.1 在线监测 在线监测的主要功能是实时在线掌握监测水质参数动态变化。系统7×24小时不间断地监测出水质各种参数,同时监测整个系统的运行状态。监测参数有:PH 值、电导率、DO 、NH4+-N 、ORP 、COD 、浊度等。3.2 设备控制 系统可以控制所有的水质监测仪器,主要包括手动控制和自动控制。手动控制时,系统发送控制命令,对相应的仪器进行操作。自动控制时,只有满足相应的条件时,比如反冲、清洗等维护过程按照预设参数自动定期完成。3.3 报警功能 报警功能主要有监测水质参数超标报警功能、仪器设备异常状态报警功能。 当监测水域发生环境污染事故时,系统会立即显示水质参数指标异常,同时采取相应措施。首先系统会通过无线通信网络发送SMS 指标异常信息到水质监测人员,以便相关人员能够采取及时有效的措施;其次系统会记录报警的仪器具体情况,为进一步排查故障,并查询分析提供有效的相关水质信息数据。当水质监测系统相关仪器发生故障时,系统会立即进行仪器设备异常状态报警,同时也会通过无线通信网络发送故障信息到水质检测人员,让其进行设备检修和排查。触发报警的参数有:监测点水位过低或过高;水质参数超标;进口压力过小; 自动站泵、电子阀发生故障;火警、防盗报警;发生停电事件等。3.4 数据存储和查询 系统通过在线监测得到的水质数据信息,得出某时刻监测水域的水质状况。对于上级环境保护部门要求一段时间内的平均数据。因此,水质监测需要还需要五分钟数据、小时数据和天数据。 水质数据信息查询分析功能可以根据系统监测到的水质参数实时数据描绘出水质参数的某个期内的变化及趋势,可以进行多个参数的对比分析,并可以进行相关性分析。 历史水质信息数据对比分析可以对保存在数据库中的水质历史数据进行查询分析,以及多个参数的对比分析。 报警数据查询可以查询所有时间内的发生超限的参数数据,及发生超限报警时其他环境参数的信息。 日志数据查询是查询水质监控系统的运行信息的数据,主要包括:记录监测站点对各泵、阀等部件的操作;系统参数和故障报警参数设置;校准时间;远程中控中心对现场监测站的各种远程查询、控制和参数设置等;查询 PLC 工控机与设备的通讯过程;查询PLC 工控机发送SMS 的情况;仪器设备清洗次数。 事件数据查询要记录下系统软件运行时出现的一些故障状况,比如:烟雾防盗报警、系现场掉电、通信故障、统发生故障。3.5 参数设置 参数设置主要有:测量开始时间、结束时间的设置、设备测量周期;采样起始时间、采样量设置、工作方式; 设备初始状态设置;故障报警参数设置等。3.6 报表分析 水质监测报表按时间分为日表报、月报表、周报表和年报表。各个报表内容包括各个水质参数在某个时间段内的最大值、最小值、平均值,同时还提供根据这些水质指标做出水质质量评价,判断首要污染物有哪些。3.7 和中控室通信功能 中控室对其管辖范围内的一个和多个现场站有直接远程管理的权限。现场站与现场站间能够进行数据通讯,主要功能是:实时监测数据的传输;仪器状态信息的传输; 历史数据的传输; FTP 主动上传数据;Socket 通信等功能。 3.8 掉电保护 系统在复杂环境中长期工作时,需要考虑到现场的停电情况。如果系统在突然停电时不做好掉电保护,会对系统造成非常严重的破坏。系统通过安装不间断供电设备,可以有效解决此问题。当发生停电情况,系统能够监测到不间断供电设备发出的信号,系统可以自动进行相应的安全保护操作。 4 结束语 基于物联网技术的水质监测系统具有智能化和标准化的特点,能够在无人看守的环境下长期可靠运行;同时软件设计驱动、接口等均按照现有的国内、国际标准,方便数据接口的对接与网络的连接。该系统具有实时监测、预警报警、数据压缩和保存、报表生成、仪器控制、参数设置等功能。系统通过无线进行远程数据传输与控制,保证了数据质量和可溯源性,为实现水质监测提供了技术支撑。 作者简介 贺强,现供职于山西农业大学信息学院。 作者单位 1.山西农业大学信息学院 山西省晋中市 030800 2.太原市电子研究设计院 山西省太原市 030002

智慧农业物联网数据云平台解决方案

xx农业物联网+战略 ——基于大数据xx应用的解决方案目录 一、农业发展的几个阶段 (1) 二、智慧农业战略平台基本架构 (2) 三、平台的基本功能模块 (2) 四、平台的智能化控制 (3) 五、生产管理服务平台 (3) 六、农户智能管理系统 (3) 七、农产品溯源服务平台 (3) 八、移动可信查询终端 (4) 一、农业发展的几个阶段 1.农业 1.0时代(原始农业): 以人力为主,辅以简单的生产工具实现劳作。 2.农业

2.0时代(机械农业): 以大型农机具替代人力生产,提供效率。 3.农业 3.0时代(现代农业): 以自动化生产、规模化种植(养殖)增产增效。 4.农业 4.0时代(xx农业): 以物联网为依托,结合移动互联网实现大数据和云应用,通过精准把控风险、监管过程、追查结果来实现智慧农业的平台化战略。二、智慧农业战略平台基本架构 通过基础设备、核心技术、平台服务、服务范围和终端用户实现整体平台的假设。 1.基础设备包括物联网传感器、控制器、数据存储和通信单元实现对物联网感知层、传输层的假设。 2.核心技术包含标准化接口平台、数据安全加密传输存储、数据建模应用和服务器端、web端、PC端、手机端的客户端应用。 3.平台服务包括管理服务(种植管理、行政管理、加工管理、专家坐堂、决策分析)和监控服务(远程监控、自动化监控)。 4.服务范围包括种植业、林业、水利、畜牧业、渔业等。 5.终端用户包括行政管理端、生产种植端、产业链和消费端。 三、平台的基本功能模块 1.行政管理端可供政府机构、行业协会、企业使用,保护大数据采集监控平台,智能化控制平台。

2.生产种植端包括农业合作社、农户使用的农业生产管理服务平台和农户智能管理服务平台。 3.产业链在生产加工和仓储物流时使用的专家库云平台,政务管理服务平台。 4.消费端供渠道和消费者使用的农业溯源服务平台和移动可信查询终端。 四、平台的智能化控制 1.实现对特定设备的接管。 2.通过阈值配置及预案管理实现全自动化。 3.声光电一体化异常触发警报。 五、生产管理服务平台 1.合作社间独立账户,信息安全保密,可实现产供销业务流程,降低手工记账风险。 2.农机调度系统可实现农机实时位置监控和历史轨迹查询,农机手与指挥中心实时通讯,机手、地块、农机、作业动态绑定,根据实际任务完成情况进行绩效考核。 六、农户智能管理系统 1.农务信息自查。 2.常见病情回复。 3.疑难杂症会诊。 七、农产品溯源服务平台 1.溯源(静态溯源、实施溯源)。 2.检验报告。 3.各类证书。

基于物联网的在线水质监测系统设计

龙源期刊网 https://www.sodocs.net/doc/ba993872.html, 基于物联网的在线水质监测系统设计 作者:亓相涛周敢 来源:《电脑知识与技术》2016年第27期 摘要:随着社会经济的不断发展,水环境污染的问题也逐渐被重视起来。水质监测是防止水污染的重要方式。随着互联网产业的发展,无线实时水质监测技术将逐步取代传统水质监测方式。本文构想了一项在线水质监测系统,硬件端实时监测水质的各项数据,电量不足时自动上浮到水面借助太阳能电池板进行充电,充电完成后潜回原位,根据指令在水中变换位置,监测不同水域的各项数据。本文提出了利用互联网结合传感器实时的监测水质状态。可为环保机构、水务部门、水产行业提供安全可靠的水质监测和水质数据分析服务。 关键词:物联网;在线水质监测;传感器 中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2016)27-0185-03 据2009年环境状况公报统计,珠江、长江水质良好,松花江、淮河为轻度污染,黄河、辽河为中度污染,海河为重度污染。中国社会科学院环境与发展研究中心副主任郑易生指 出,中国发布的各种水环境质量检测报告,由于受布点数量和布点区域的限制,“并不能充分、真实地反映国内水污染现状”。目前的水质监测现状揭示了中国水污染的严重程度和水质监测的建设落后程度。 水质监测适用于源头水、国家自然保护区,集中式生活饮用水地表水源地一级保护区、珍稀水生生物栖息地、鱼虾类产卵场、仔稚幼鱼的索饵场;鱼虾类越冬场、洄游通道、水产养殖区等渔业水域及游泳区等静态水域。传统的水质监测,需要耗费大量的时间以及大量的人力,经过繁琐的步骤才得到数据,而在线水质监测系统可以实时的监测数据,自动进行设备的充电,用户登录App或者网站即可看到数据。 1系统总体的设计 在线水质监测系统如图1所示,水质监测系统整体分成三层,感知层、网络层以及应用层。感知层是系统的核心,是信息采集的关键部分;网络层对整个系统进行无线连接,通过 ①LoRa技术将所有的水质监测仪连接起来,LoRa数据接收端将数据通过互联网传输到服务器,服务器进行数据处理[1]。应用层位于三层的顶层,将服务器处理的数据通过App以及网站展现给用户,让用户可以直接地看到想要的数据以及与前几次对比所产生的差异。 2水质监测硬件设计 水质监测仪构想如图所示,是由CC2530控制了整个水质监测仪,数据的采集主要是通过传感器来完成,L9110S是用来控制电机的上浮下潜以及在水中游动,而SL1053是用于来管理太阳能,锂电池用于存储电量。

物联网私有云平台系统方案

物联网私有云平台系统解决方案

目录 第一章背景 (3) 1.1挑战 (3) 1.2机遇 (3) 第二章需求分析 (4) 2.1现状分析 (4) 2.2需求分析 (4) 第三章方案设计 (5) 3.1总体规划、分步实施 (5) 3.2立足现状、稳妥推进 (5) 3.3 滚动推进、持续改进 (5) 3.4 重点突出、以点带面 (5) 第四章方案设计 (6) 4.1物联网私有云系统架构 (6) 4.1.1系统架构 (6) 4.1.3系统数据流程 (7) 4.2方案详细设计 (7) 4.3数据传输 (8) 4.4数据规则引擎(定制) (9) 4.4数据存储 (9) 4.5数据分析处理 (10) 4.6前端web展示 (11) 4.6.1物联网私有云平台搭建 (11) 4.6.2用户中心 (19) 4.6.3日志及报警审计 (22) 4.7数据安全 (24) 4.7.1用户数据隐私 (25) 4.7.2访问许可验证 (25) 4.7.3用户数据分离 (26) 4.7.4攻击防范机制 (26) 4.7.5丰富的智能硬件接入方案 (26) 第五章案例解析 (26) 5.1成功案例 (26) 5.2方案优势 (28)

第一章背景 1.1挑战 物联网是指利用传感技术、RFID标签、嵌入式系统技术等,将各种信息传感设备与互联网结合起来而形成的一个巨大的网络,其目的是将所有物品与互联网连接在一起以用于识别和管理-----也就是目前国内市场热炒的“互联网+”的概念的一种具象化表现。物联网应用行业为多学科,多领域交叉产业,涉及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业检测等等。 随着市场经济的不断发展,市场对物联网行业的以来也越来越大。我国于2009年8月提出“感知中国”以来,物联网被正式列为国家五大新兴战略性产业之一,在中国受到了极大的关注。据预测,2020年全球物联网产业产值将是互联网的30倍,仅中国物联网产业产值将超过5万亿。目前,我国已形成从材料、技术、器件、系统到网络的完整产业链,物联网产业规模已达数千亿的规模。 虽然市场前景较好,但目前针对国内企业,物联网应用也面临着相当的困局,例如:企业内部生产业务与物流管理上下脱节,缺乏基本的信息互通及共享;目前大多数企业依然为劳动密集型企业,整个生产过程缺乏智能化管理(缺乏智能物料控制、生产设备监测,生产流程优化控制等);产品售后服务追踪机制缺乏,导致用户感知较差; 1.2机遇 机遇1加速发展机遇 通过建设现代化企业物联网管理体系来加速企业的发展,包括产品生产环节、成本控制环节、绩效优化环节、产品流转环节、产品售后环节等整个企业各部门。 机遇2管理机制提升机遇 在通过技术手段建设工作效率体系的前提下,从管理机制上进行一次变革。从而建立“技改+人改”的双效管理体系,从根本上改变原有的企业滞后、拖沓的现状。 机遇3服务提升机遇 通过建立企业物联网私有云管理体系,提高整体人员的精神面貌,从而“曲

工业设备物联网解决方案 菲利科

【菲利科】工业设备物联网一站式解决方案 关于物联网,我们了解到的是,随着智能设备的普及以及硬件成本的下降,物联网(loT)目前已经成为当下热门。据IDC研究数据表明,尽管有66%的元器件厂商和67%的加工厂商正在积极探索互联网领域,但其中只有分别不到半数和半数左右的厂商能够真正开始试点,大多数企业仍然在这一领域摸索前行。 随着企业成本的持续增长,工业领域对于移动化的潜在需求,设备联网、产品物联网化将成为必然趋势,从工业和企业角度来说,产品物联网化将从运营、销售、售后等各方面帮助提升企业的效率,为工业或企业在行业的洗牌中占据一定优势。 但目前的工业企业即使认识到物联网是必然的趋势,却很难找到合适自己的物联网道路。 首先一个很大的阻碍就是技术难度和投入成本的问题,开发团队需要横跨多个领域的人才,而组建自身研发团队或外包开发都需要投入大量资金。同时由于投入周期长,需要承担巨大时间成本,有可能错失业务转型和升级机会,难以在短时间内验证物联网化商业模式带来的益处。 在这一大背景下,菲利科选择从解决方案切入,致力于协助企业快速实现设备智能化升级,并打造设备管理一站式云平台。以设备接入、后台运营管理以及行业大数据,共同为企业和工业构建一整套的菲利科物联网服务。 适用企业: 各类规模的制造企业,以机械制造加工装配为主 以多品种小批量,多品种多批量为主的各种生产类型

研发和批产混合生产模式的制造企业 适应各类按库存、按订单生产的制造企业 生产管理模式寻求突破、创新,产品工艺复杂和状况多变的制造企业适用行业

方案系统 物联网运维系统由智能硬件接口设备、智能应用系统云平台套件以及大数据智能分析服务组成,通过智能采控终端采集设备,将各种数据上传到云平台,存储、整理、分析,通过智能应用系统实现时时在线监控、记录、查询、统计、分析、修改、报警等操作,实现远程智能化管理,提高企业智能化管理水平。 技术优势

农业物联网水质监测系统

农业物联网水质监测系统 随着工业化的发展,所带来的负面影响也愈发明显,污染问题受到越来越多人的关注,他关乎我们的生命安全与日常生活的维系。 农业种植用水其水质下降则可能造成作物的营养失调,导致徒长、倒伏,抗逆性差,易发生病害,成熟不良等问题,从而使品质恶化和作物减产。因此,好的水源是保证作物成熟以及优良品质的重要条件之一。 目前,我国农业种植水环境监测主要以实验室监测为主,分析方法全面、检测参数全面、数据准确度高,但响应时间长、检测频次低、自动化程度低、人力消耗量大,难以对水质进行整体有效评价。 2014年,泓森农业物联网仪器开始了水质在线监测系统的研究开发。 水质在线监测系统以先进的智能水质传感器、无线传输系统、无线通信、预警系统、智能管理系统等,对水质进行全方位远程监测管理,大量历史数据可进行保存与分析,指导生产管理,既可保证水产养殖的高产增收,又可提高种植农作物的品质,避免水污染造成的环境问题。 系统组成:

1、智能水质传感器 针对水质传感器多为电化学传感器,其输出受温度、水质、压力、流速等因素影响,传统传感器有标定、校准复杂,适用范围狭窄,使用寿命较短等缺点。采用IEEE1451智能传感器设计思想,使传感器具有自识别、自标定、自校正、自动补偿功能;智能传感器还具有自动采集数据并对数据进行预处理功能,双向通讯、标准化数字输出等其他功能。 本系统针对水产养殖对水质的要求,可同时监测温度、溶解氧、pH、电导率和浊度五个参数。所采用的传感器均为中国农业大学自主研发的水质传感器,,可靠性高、易于维护,适合水产养殖领域推广应用。 2、无线传感网络 无线传感网络可实现2.4GHz短距离通讯,现场无线覆盖范围3公里;采用智能信息采集与控制技术,具有自动网络路由选择、自诊断和智能能量管理功能。 3、增氧控制器 增氧控制器由RTU8400测控终端和电控箱等构成,是实现增氧控制的关键部分,它可以驱动叶轮式、水车式或微孔曝气空压机等多种增氧设备。SMC4800测控终端可以根据需要配置成无线数据采集节点及无线控制节点。 4、监控平台 用户通过监控平台可以实施监测水质参数,同时监控计算机对数据进行分析处理,做出控制决策,通过无线接入点向配电箱发送控制指令。 据悉,2015年我国基本建成国家水资源监控管理信息系统,对70%的许可取用水量实现水量在线监测、对80%的重要江河湖泊水功能区实现水质监测,对主要江河干流及一级支流省界断面实现水质监测全覆盖。 水质在线监测系统可以实现监测自动化、实现水污染的预警预报,对于防止污染事件的进一步发展可起到至关重要的作用;保障了农业用水的安全性。水质在线监测系统还可以实现水质信息的在线查询和共享,可快速为领导决策提供科学依据。

基于物联网的水质在线监测系统设计_贾桂林

2012年 / 第12期 物联网技术 81 0 引 言 为了彻底解决传统人工水质监测及DCS 、现场总线方式在管理及应用上存在的布线困难、成本高等不足,本文提出了以智能水质传感器、无线传感器网络、专家库数据库为核心的物联网水质在线监测系统。本系统通过分布式动态组网,可实现大范围、24 h 不间断的监测,同时通过布设在水源地具有定位功能的无线传感器节点,能够侦测到饮用水源的污染情况,从而提高管理效率、保障供水安全,解决饮用水及养殖业水质在线监测和管理问题。1 系统结构及工作过程 本系统的组成图如图1所示。系统在水源地布置多个水上节点(水质参数采集节点、远程视频采集节点、水质参数调节节点、ZigBee+GPRS 无线网关),然后通过水质参数采集节点实时采集PH 值、水温、水位、溶氧量等水质参数,并通过ZigBee Endpoint 上传给无线网关的ZigBee Coordinator ,再由后者经串口送入GPRS 传送到服务器;同时通过IP Camera(网络摄像机)采集水面视频信息, 由3G 方式送入(移动)服务器。运行于服务器上的信息管理系统将对数据进行统计、分析,并根据饮用水用水管理要求实时预警、告警,自动下发控制指令到GPRS 无线网关,然后由ZigBee 网络下发指令到水质参数调节节点,启动增氧机或PH 值调节设备、水泵等,实时调节用水参数。管理人员则可通过PC 、平板电脑或PDA 等方式获取实时水质数据,并对设备进行远程控制。 感知层 图1 基于物联网的水质在线监测系统的组成 基于物联网的水质在线监测系统设计 贾桂林,刘美岑,曾宝国,程远东 (四川信息职业技术学院,四川 广元 628017) 摘 要:针对传统水质监测方案布线困难、成本高等不足,设计了一种基于物联网的水质在线监测系统,实现了对溶解氧、PH 值、温度等多参数的采集、传输、处理。该方案便于远程监测,适用于饮用水及养殖业水质监测等领域。 关键词:传感器;水质监测;ZigBee ;GPRS 中图分类号: TP393 文献标识码:A 文章编号:2095-1302(2012)12-0081-03Design of online water quality monitoring system based on Internet of Things JIA Gui-lin, LIU Mei-cen, ZENG Bao-guo, CHENG Yuan-dong (Sichuan Institute of Information Technology, Guangyuan 628017, China) Abstract : To solve the problems of complex wiring and high cost in traditional water quality monitoring programs, a water quality monitoring system based on Internet of Things is designed to achieve the purpose of the acquisition, transmission and processing of multiple parameters, including dissolved oxygen, PH value, and temperature. The scheme is suitable for remote monitoring, and applicable to monitoring the quality of drinking water and water for the aquaculture industry. Keywords : sensor; water quality monitoring; ZigBee; GPRS ———————————————— 收稿日期:2012-10-18 基金项目:四川省经济和信息化委员会2011年自然科研基金 (2011XM065)

相关主题