搜档网
当前位置:搜档网 › 解圆锥曲线问题常用方法

解圆锥曲线问题常用方法

解圆锥曲线问题常用方法
解圆锥曲线问题常用方法

解圆锥曲线问题常用方法(二)

【学习要点】

解圆锥曲线问题常用以下方法: 4、数形结合法

解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。 如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2+y 2”,令d y x =+2

2

,则d 表示

点P (x ,y )到原点的距离;又如“23+-x y ”,令2

3

+-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率…… 5、参数法 (1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。除设P (x 1,y 1)外,也可直接设P (2y,-1,y 1) (2)斜率为参数

当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。

(3)角参数

当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。 6、代入法

这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。 【典型例题】

例1:已知P(a,b)是直线x+2y-1=0上任一点,求S=13642

2

+-++b a b a 的最小值。

分析:由此根式结构联想到距离公式, 解:S=2

2

)3()2(-++b a 设Q(-2,3),

则S=|PQ|,它的最小值即Q 到此直线的距离

∴S min 5

5

35|1322|=

-?+- 点评:此题也可用代入消元的方法转化为二次函数的最小值问题(注:可令根式内为t 消元后,它是一个一元二次函数)

例2:已知点P(x,y)是圆x 2+y 2-6x-4y+12=0上一动点,

求x y 的最值。

解:设O (0,0),则x y

表示直线OP 的斜率,由图可知,当直线OP 与圆相切时,x y 取得最值,设最值为k ,

则切线:y=kx,即kx-y=0

圆(x-3)2+(y-2)2=1,由圆心(3,2)到直线kx-y=0的距离为1得11

|23|2=+-k k ,

∴433±=k

∴43

3,433max

min

+=??? ??-=

?

?

? ??x y x y

例3:直线l :ax+y+2=0平分双曲线19

162

2=-y x 的斜率为1

的弦,求a 的取值范围.

分析:由题意,直线l 恒过定点P(0,-2),平分弦即过弦中点,可先求出弦中点的轨迹,再求轨迹上的点M 与点P 的连线的斜率即-a 的范围。

解:设A(x 1,y 1),B(x 2,y 2)是双曲线上的点,且AB 的斜率为1,AB 的中点为M(x 0,y 0) 则:

???????=-=-19

1619162

2222121y x y x

①-②得

019

16,0916002

2122212=?-=---y x y y x x 即

即M(X 0,y 0)在直线9x-16y=0上。

由 9x-16y=0 得C ???

?

?

?--79,716,D ???

? ?

?7

9,716

19

162

2=-y x

∴点M 的轨迹方程为9x-16y=0(x<-7716或x>7716) k PD =

16

729716

0792,16

7

29716

0792+=-

--=-=

+

+-PD k

由图知,当动直线l 的斜率k ∈???

? ?

?+????? ?

?-16729,169169,16729时,l 过

斜率为1的弦AB 的中点M ,而k=-a

∴a 的取值范围为:???

?

?

?--????? ?

?-+-16972,169169,16729

点评:此题是利用代数运算与几何特征相结合的方

法而解得的,由图得知,弦AB 中点轨迹并不是一条直线(9x-16y=0),而是这条直线上的两条射线(无端点)。再利用图形中的特殊点(射线的端点C 、D )的属性(斜率)说明所求变量a 的取值范围。

例4:过y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB 、AC 交抛物线于B 、C 两点。求证:直线BC 的斜率是定值。

分析:(1)点A 为定点,点B 、C 为动点,因直线AB 、AC 的倾斜角互补,所以k AB 与k AC 相反,故可用“k

参数”法,设AB 的斜率为k ,写出直线AB 的方程,将AB 的方程与抛物线方程联立,因A 为已知交点,则方程有一根已知故用韦达定理容易解出点B 坐标,同理可得点C 坐标,再求BC 斜率。 (2)因点B 、C 在抛物线上移动,也可用“点参数”法,设B (x 1,y 1),C(x 2,y 2),因x 1=y 12,x 2=y 22,即可设B (y 12,y 1),C(y 22,y 2)。再考虑k AB =-k AC 得参数y 1,y 2的关系。

解法1:设AB 的斜率为k ,则AC 的斜率为-k AB :y-2=k(x-4),与y 2=x 联立得: y-2=k(y 2-4),即ky 2-y-4k+2=0 ∵y=2是此方程的一解, ∴2y B=k

k

y

k k B

21,24-=

+- x B =y B 2=,

4412

2k

k k +- ∴B

???

? ??-+-k k k k k 21,44122

∵k AC =-k,以-k 代替k 代入B 点坐标得

C ???

? ?

?-+++k k k

k k 21,4412

2

∴k BC =

4144144121212

2

2-=+--

++--

+-

k k k k k k k k

k k 为定值

解法2:设B (y 12,y 1),C(y 22,y 2),则

k BC =1

2

2

12

2

12

1

y y y

y y y +=

-- ∵k AB =2

14

2,214222

221

1

21+=

--=

+=--y y y k

y y y AB

由题意,k AB =-k AC , ∴4

,21212

1

2

1

-=++-=+y

y y y 则

则:k BC =4

1-为定值。 点评:解法1运算量较大,但其方法是一种基本方法,因k 的变化而造成了一系列的变化,最终求出BC 的斜率为定值;解法2利用点B ,C 在抛物线上设点,形成含两个参数y 1,y 2的问题,用整体思想解题,运算量较小。

例5:在圆x 2+y 2=4

B ,

C (A ,B ,C 按逆时针排列),时,求△ABC 的重心的轨迹。分析:圆周角∠BAC=3π选用“角参数”,

令B (2cos θ,2sin θ)则C(2cos(θ+32π),2sin(θ+32π

))

则重心可用θ表示出来。

解:连OB ,OC ,∵∠BAC=3π,∴∠BOC=32π

设B (2cos θ,2sin θ)(0<θ<34π),则C(2cos(θ+32π),2sin(θ+32π))

设重心G (x ,y ),则:

x=)]32cos(2cos 22[31πθθ+++ y=)]3

2sin(2sin 20[31πθθ+++ 即: x=)]3

cos(1[32πθ++ )3

cos(123π

θ+=-x y=)3

sin(32π

θ+ )3

sin(23π

θ+=y

θ+)3

5,3(3π

ππ∈ ∴1)2

3

()

123(22

=+-y x 。(x<2

1) 即)2

1(94)

3

2(22

<=

+-x y x

点评:要注意参数θ的范围,θ+3π∈(3π,35π

)它是一

个旋转角,因此最终的轨迹是一 段圆弧,而不是一个圆。

例6、求直线3x-4y+10=0与椭圆1222

=+y a

x (a>0)有公共点

时a 的取值范围

分析:将直线方程代入椭圆方程消元得一元二次方程应有解,用判别式△≥0可求得a 的取值范围。也可考虑另一代入顺序,从椭圆方程出发设公共点P (用参数形式),代入直线方程,转化为三角问题:asinx+bcosx=c 何时有解。

解法一:由直线方程3x-4y+10=0得2

5

43+=x y 代入椭圆方程得1)2

5

43(122

2

=++x x

a ∴04

21

415)169

1(2

2=++

+x x

a

△ ≥0,得0)16

9

1(4214)

4

15(22

≥+??

-a 解得3

28

2

a

,又a>0,∴372≥a

解法二:设有公共点为P ,因公共点P 在椭圆上,利用椭圆方程设P (acos ?,sin ?)再代入直线方程得3acos ?-4sin ?+10=0 4sin ?-3acos ?=10。 16

910cos 16

93sin 16

942

2

2

+=

+-

+a a a a ??

令sin α=

16

932

+a a ,cos α=

16

942

+a ,

则sin(?-α)= 16

9102

+a ,

由1)sin(≤-α? 即sin 2(?-α)≤1得116

91002

≤+a ∴9a 2≥84,a 2

≥3

28(a>0) ∴a ≥3

212

点评:解法1,2给出了两种不同的条件代入顺序,

其解法1的思路清晰,是常用方法,但运算量较大,对运算能力提出较高的要求,解法2先考虑椭圆,设公共点再代入直线,技巧性强,但运算较易,考虑一般关系:“设直线l :Ax+By+C=0与椭圆

12

2

22=+b y a x 有公共点,求应满足

的条件”此时,若用解法一则难于运算,而用解法二,设有公共点P ,利用椭圆,设P (acos ?,bsin ?)代入直线方程得Aacos ?+Bbsin ?=-C 。 ∴1

2

2

2

2

≤+-b

B a A

C 时上式有解。 ∴C 2≤A 2a 2+B 2b 2

因此,从此题我们可以体会到条件的代入顺序的重要性。

【同步练习】

1、若实数x 、y 满足x 2+y 2-2x+4y=0,则x-2y 的最大值是( )

A 、5

B 、10

C 、9

D 、5+25 2、若关于x 的方程)2(12

-=-x k x 有两个不等实根,则实数k 的取值范围是

( )

A 、)33,33(-

B 、)3,3(-

C 、???

??-

0,33D 、???

?

??????? ??--33,2121,33

3、方程

3)1()3(22=+---++y x y x 表示的图形是( )

A 、椭圆

B 、双曲线

C 、抛物线

D 、以上都不对

4、已知P 、Q 分别在射线y=x(x>0)和y=-x(x>0)上,且△POQ 的面积为1,(0为原点),则线段PQ 中点M 的轨迹为( )

A 、双曲线x 2-y 2=1

B 、双曲线x 2-y 2=1的右支

C 、半圆x 2+y 2=1(x<0)

D 、一段圆弧x 2+y 2=1(x>22)

5、一个等边三角形有两个顶点在抛物线y 2=20x 上,第三个顶点在原点,则这个三角形的面积为

6、设P(a,b)是圆x 2+y 2=1上的动点,则动点Q(a 2-b 2,ab)的轨迹方程是

7、实数x 、y 满足3x 2+2y 2=6x ,则x+y 的最大值为 8、已知直线l :2x+4y+3=0,P 是l 上的动点,O 为坐标原点,点Q 分OP 为1:2,则点Q 的轨迹方程为 9、椭圆

19

162

2=+y x 在第一象限上一动点P ,若A(4,0),

B(0,3),O(0,0),则APBO

S

四边形的最大值为

10、已知实数x 、y 满足x+y=4,求证:2

25

)1()

2(22

-++y x

11、△ABC 中,A(3,0)2=BC ,BC 在y 轴上,且在[-3,3]间滑动,求△ABC 外心的轨迹方程。

12、设A 、B 是抛物线y 2=2Px(p>0)上的点,且∠AOB=90°(O 为原点)。求证:直线AB 过定点。

参考答案

1、B x-2y=b ,圆(x-1)2+(y+2)2=5,由(1,2)到x-2y-b=0的距离等于5得5541=-+b ,∴b=0或b=10

则b 的最大值为10,选B 。 或用参数法,令θθsin 52,cos 51+-=+=y x 代入得

)sin(55)sin 5

52cos 55(

55sin 52cos 552θαθθθθ-+=-+=-+=-y x 最大值

为10。选B

2、C 作图,知当??

?

?

?-∈0,33k 时,直线y=k(x-2)与半圆有两

交点, 选C 3、B 方程即

2

3

2)1()3(22+-?

=-++y x y x

令F(-3,1) P(x,y), l: x-y+3=0, PH ⊥l 于H 则2=PH PF

由双曲线第二定义知选B 。 4、B

用“点参数”法,设P(x 1,x 1)(x 1>0),Q(x 2,-x 2)(x 2>0) 则1

222

1

21=?x x ,∴x 1x 2=1,设M(x ,y),

则2x=x 1+x 2,2y=x 1-x 2,∴(2x)2-(2y)2=4x 1x 2 则

x 2-y 2=1(x>0)。选B

5、12003。 设此三角形为△OAB ,设A(x 1,y 1),B(x 2,y 2)由OB OA =得22

22

21

21

y x y x +=+,

∴2

22

1

21

2020x x x x +=+ (x 1-x 2)(x 1+x 2+20)=0,∵x 1>0,x 2>0 ∴x 1=x 2

则22

21y y =,y 1=-y 2,∴A 、B 关于x 轴对称,A 、B 在y=x 3

3±上

将x y 3

3=

代入y 2=20x 得A(60,203),∴B(60,-203)

边长为403面积为

31200)340(4

3

2= 6、x 2+4y 2=1

令a=cos θ,bsin θ,则Q(cos2θ,21sin2θ),设Q(x ,y) 则x 2+4y 2=1 7、

2

10

+1 3(x-1)2+2y 2=3, (x-1)2+1

3

22

=y

令x-1=cos ?,

y=23sin ?,则x+y=cos ?+2

3

sin ?+1 最大值为

12

10

1231+=++

8、2x+4y+1=0 设Q(x ,y),P(x 1,y 1),则2

1121

0,21121011++=++

=

y y x x

∴x 1=3x ,y 1=3y , ∵2x 1+4y 1+3=0 ∴2×3x+4×

3y+3=0即2x+4y+1=0

9、26 设P(4cos ?,3sin ?)(0

)4

(26)cos (sin 6cos 4321sin 3421π?????+=+=??+??=+=??sn S S S OBP

OAP APBO 四边形 当?=4

π时,APBO

S 四边形的最大值为26

10、证明:设P(x,y),A(-2,1)则2

2

2)1()2(PA

y x =-++

过A 作AH ⊥l 交于H ,其中l :x+y=4

则2

5

2412=

-+-=AH ∴25=≥AH PA ,则2

252

PA

当P 在H(2

7

,21)时取等号 ∴2

25)1()

2(22

-++y x

11、解:设C 在B 的上方,设B(0,t), 则C(0,t+2),-3≤t ≤1 设外心为M(x,y),因BC 的中垂线为y=t+1 ①

AB 中点为)2

,23(t

,3

t k

AB

-

= AB 的中垂线为)2

3

(32-=-x t t y ② 由①、②消去t 得)

22)(3

4

(62

≤≤--=y x y 这就是点M 的轨迹方

程。

12、解:设OA :y=kx ,代入y 2=2px 得k 2x 2=2px 则k p y k

p x 2,22

== ∴)2,2

(2

k p

k

p A 同理由OB :y=-k

1x 可得B(2pk 2,-2pk)

22

2

22111112222k k

k k k k

k

k pk k p pk k p k AB

-=-=-+=-+=

∴)

2(12:22

pk x k k pk y AB --=

令x=2p 得y=0,说明AB 恒过定点(2p ,0)

圆锥曲线全部公式及概念

圆锥曲线 1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ =??=? 离心率c e a == 准线到中心的距离为2a c ,焦点到对应准线的距离(焦准距)2b p c =. 通径的一半(焦参数):2 b a . 2.椭圆22 221(0)x y a b a b +=>>焦半径公式及两焦半径与焦距构成三角形的面积: 21()a PF e x a ex c =+=+,22()a PF e x a ex c =-=-;1221tan 2 F PF F PF S b ?∠=. 3.椭圆的的内外部: (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部2200221x y a b ?+<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部2200221x y b ?+>. 4.双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应准线 的距离(焦准距)2p c = 通径的一半(焦参数):2 b a 焦半径公式21|()|||a PF e x a ex c =+=+,2 2|()|||a PF e x a ex c =-=-, 两焦半径与焦距构成三角形的面积122 1cot 2 F PF F PF S b ?∠=. 5.双曲线的内外部: (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 6.双曲线的方程与渐近线方程的关系: (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上;0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b 7.抛物线px y 22 =的焦半径公式: 抛物线2 2(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x p x p x CD ++=+++=212122. 8.抛物线px y 22=上的动点可设为P ),2(2 y p y 或2 (2,2)P pt pt P (,)x y ,其中 22y px =. 9.二次函数22 24()24b ac b y ax bx c a x a a -=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a --=. 10.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切. 11.直线与圆锥曲线相交的弦长公式: AB = 1212||||AB x x y y ==-=-

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

圆锥曲线方法归纳

圆锥曲线方法归纳 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有 1342121=+y x ,1342222=+y x ;两式相减得()()03422 2 12221 =-+-y y x x ?()() ()() 3421212121y y y y x x x x +--=+-?AB k =b a 43- (ⅰ)涉及直线与圆锥曲线相交弦的中点和弦斜率问题时,常用“点差法”“设而不求”整体来求,借助于一元二次方程根的判别式、根与系数的关系、中点坐标公式及参数法求解.但在求得直线方程后,一定要代入原方程进行检验. (ⅱ)用“点差法”求解弦中点问题的解题步骤: 设点——设出弦的两端点坐标 ↓ 代入——代入圆锥曲线方程 ↓ 作差——两式相减,再用平方差公式把上式展开 ↓ 整理——转化为斜率与中点坐标的关系式,然后求解 1. 已知椭圆x 2+2y 2=4,求椭圆上以(1, 1)为中点的弦所在的直线方程?

2. 如果椭圆x 236+y 29=1的弦被点A (4, 2)平分,求这条弦所在的直线方程 3. 已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1 (a >b >0)相交于A , B 两点,且线段AB 的中 点在直线l :x -2y =0上,则此椭圆的离心率为 . 4. 过点M (1, 1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1 (a >b >0)相交于A , B 两点, 若M 是线段AB 的中点,则椭圆C 的离心率等于 . 5. 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A , B 两点,若 线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 . 6. 已知双曲线E 的中心为原点,F (3, 0)是E 的焦点,过F 的直线l 与E 相交于A , B 两点,且AB 的中点为N (-12,-15),则E 的方程为

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

圆锥曲线公式大全

圆锥曲线知识考点 一、直线与方程 1、倾斜角与斜率:1 21 2180<α≤0(tan x x y y --==) α 2、直线方程: ⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点) ,(),,(222211y x P x x P 其中),(2121 y y x x ≠≠: 121 121 y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b : 1x y a b += ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率B A k -=,y 轴截距为B C -) (6)k 不存在?a x b a x o =??=)的直线方程为过(轴垂直,90α 3、直线之间的关系: 222111:,:b x k y l b x k y l +=+= ⑴ 平行:{ ? ?≠=2121212 1//b b k k k k l l 且都不存在 , 2 1 2121C C B B A A ≠= ⑵ 垂直:{ ?? ⊥-=?-==2 121211 1.0 21k k k k k k l l 不存在,02121=+B B A A ⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax ⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为: 0=++n Ay Bx ⑸定点(交点)系方程:过两条直线 :,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为: 0)(2 2 2 1 1 1 =+++++C y B x A C y B x A λ 反之直线0)(2 2 2 1 1 1 =+++++C y B x A C y B x A λ中,λ取任何一切实

新课标人教A版选修圆锥曲线知识点整理

高二数学圆锥曲线知识整理 知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?? ???>=0e ,e d |PF ||P ,其中F 为定点,d 为P 到定直线的 距离,F ? ,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 ①定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 ②定量: 椭 圆 双 曲 线 抛 物 线 焦 距 2c 长轴长 2a —— 实轴长 —— 2a 短轴长 2b 焦点到对应 准线距离 P=2c b 2 p 通径长 2·a b 2 2p

圆锥曲线知识点全归纳完整精华版

圆锥曲线知识点全归纳 完整精华版 YUKI was compiled on the morning of December 16, 2020

圆锥曲线知识点全归纳(精华版) 圆锥曲线包括椭圆,双曲线,抛物线。其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 一、圆锥曲线的方程和性质: 1)椭圆 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。 标准方程: 1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1? 其中a>b>0,c>0,c^2=a^2-b^2. 2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1 其中a>b>0,c>0,c^2=a^2-b^2. 参数方程: X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r) 2)双曲线 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。 标准方程: 1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1? 其中a>0,b>0,c^2=a^2+b^2. 2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1. 其中a>0,b>0,c^2=a^2+b^2. 参数方程: x=asecθy=btanθ(θ为参数) 3)抛物线 标准方程: 1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px其中p>0 2.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px其中p>0 3.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py其中p>0 4.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py其中p>0 参数方程? x=2pt^2?y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0 直角坐标? y=ax^2+bx+c(开口方向为y轴,a<>0)x=ay^2+by+c(开口方向为x轴,a<>0) 圆锥曲线(二次非圆曲线)的统一极坐标方程为?

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

圆锥曲线专题复习.doc

锥曲线专题训练 一、定义 【焦点三角形】 1、已知椭圆一 +八=1的左右焦点为E、F2, P为椭圆上一点, 9 4 (1) 若NRPF2=90°,求△EPF?的面积 (2) 若ZF1PF2=60°,求的面积 2 2 2、已知双曲线土-匕=1的左右焦点为E、F2, P为双曲线上一点, (1) 若NRPF2=90°,求△EPF?的面积 (2) 若ZF1PF2=60°,求Z^PF?的面积 2 2 3、鸟,氏是椭圆二+七=1(〃>。>0)的两个焦点,以鸟为圆心且过椭圆中心的 a~ b~ 圆与椭圆的一个交点为M。若直线&M与圆鸟相切,求该椭圆的离心率。 Y2 v2 4、椭圆瓦+ *_ = 1的焦点为与、「2。点P为其上的动点,当PF2为钝角时。点P横坐标的取值范围为多少? V-2 V2V-2 V2 5、椭圆—+ J(。>。>0)和双曲线、- —(m, n> 0)有公共的焦点F】(- 。,0)、 a~ b~〃广 F2(C,0),P为这两曲线的交点,求|商|?|户尸2|的值. 二、方程 已知圆亍+y2=9,从圆上任意一点P向X轴作垂线段PPL点M在PP,上,并且两=2布,求点M的轨迹。 2.3【定义法】(与两个定圆相切的圆心轨迹方程) :—动圆与两圆:『+ ,,2 =]和尤2 * ,2 _8x+]2 = 0都外切,#1勃圆的圆心 的轨迹方程是什么?AA

题型1:求轨迹方程例1. (1) 一动圆与圆J + y2+6x+5 = 0外切,同时与圆x2 + r-6x-91 = 0内切,

求动圆圆心M的轨迹方程,并说明它是什么样的曲线。. (2)双曲线y-/ =1有动点、P,月,%是曲线的两个焦点,求APgE的重心M的轨迹方程。 3、给出含参数的方程,说明表示什么曲线。 已知定圆G: x2 + y2 =9,圆C2:x2+6x+y2 =0 三、直线截圆锥曲线得相交弦(求相交弦长,相交弦的中点坐标)(结合向量)直线与圆锥曲线相交的弦长计算(1)要熟练利用方程的根与系数关系来计算弦 长.弦长公式: (2)对焦点弦要懂得用焦半径公式处理;对中点弦问题,还要掌握“点差法”. 3. 圆锥曲线方程的求法有两种类型:一种是已知曲线形状,可以用待定系数法求解;另一种是根据动点的几何性质,通过建立适当的坐标系来求解,一般是曲线的类型未知.主要方法有: ?直接法、定义法、相关点法、参数法、几何法、交轨法等.在求轨迹方程中要仔细检查“遗漏”和“多余”. 4. 圆锥曲线是用代数方法来研究几何问题,也就是说,它是处于代数与几何的交汇处,因此要处理好其综合问题,不仅要理解和掌握圆锥曲线的有关概念、定理、公式,达到灵活、综合运用,还要善于综合运用代数的知识和方法来解决问题,并注意解析法、数形结合和等价化归的数学思想的应用. 1、已知椭圆= i,过左焦点k倾斜角为£的直9 6 线交椭圆于A、8两点。求:弦48的长,左焦点K到48 中点〃的长。 2、椭圆以2+如2=1与直线对尸住0相交于爪8两点,C是线段花的中点.若

圆锥曲线方法总结

圆锥曲线考点及方法总结(江苏)1 化斜为直:利用相似三角形将斜线段之比转化为直角边之比,然后再将直角边之比转化为坐标之比这就将几何量转化为代数值 2相关点法求曲线轨迹如求p的轨迹方程若知道A点所在的曲线方程L 只需找出P与A之间的坐标关系然后带入L即可 3设点、设线然后将问题向X1+X2、x1*x2、y1+y2、y1*y2 上转化,然后联立直线与曲线的方程,利用韦达定理,涉及最值或范围问题时注意带塔>0; 4圆锥曲线中的最值问题:通常构造函数转化为求函数最值(导数求解),也可以保留两个变量运用基本不等式求解,当然在设点时用圆锥曲线的参数方程,这样最值问题最终转化为三角函数最值问题 5几何性质:角平分线定理 6公式化法则 7焦半径公式 8极坐标方程(与焦半径有关的题目才能用) 9参数方程(涉及最值与定值问题时可尝试) 10直线的参数方程中的|t|的几何意义是直线上的点到定点的线段长度注意线段的方向性即t的正负(在涉及线段长度的题目中有效) 11注意利用点在曲线上这一基本条件许多

设而不求最终都会用到这一条件 12常见椭圆结论:k1*k2为定值(与椭圆对称点)点差法的到的结论椭圆切点出的切线方程椭圆是对称图形 13弦长公式 14 SOAB= 15代换技巧:如两直线过同一点只有K不一样,则算出k1的数据后用k2代换就能得到另一条线的数据(不只斜率K可以代换,点也可以代换)减少计算量 16当化简到非常复杂的式子时,考虑能否整体代换,将形式复杂的部分用一个变量代替 17利用三点共线列等式 18直线过定点问题 方法一;求出AB直线方程再求定点 方法二:取两个特殊位置的直线,解出交点C,验证交点C是否在直线AB上,只需算k1=k2即可 方法三,若能观察出定点在x轴上,解出AB方程令y=0,解出x为定值即可 19对设而不求方法的具体介绍:大胆设点,利用以下结论 一:点在曲线上 二:点满足一定条件(题目所给) 三:韦达定理 运用好这三点,就可以做到舍而不求

圆锥曲线弦长公式

圆锥曲线弦长公式 关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。解:连结,设,由椭圆定义得,由余弦定理得 ,整理可得,同理可求得,则弦长 同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距) 结论:椭圆过焦点弦长公式: 二

. 双曲线的焦点弦长 设双曲线,其中两焦点坐标为 ,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。 。 解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得 整理可得,同理,则可求得弦长

(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,,由余弦定理可得, 整理可得,则 因此焦点在x轴的焦点弦长为 同理可得焦点在y轴上的焦点弦长公式 三

其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。. 抛物线的焦点弦长 若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|(图4) 解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得 即 则 同理的焦点弦长为

的焦点弦长为,所以抛物线的焦点弦长为 由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。 一

(自己整理)圆锥曲线常考题型总结——配有大题和练习

圆锥曲线大综合 第一部分圆锥曲线常考题型和热点问题 一.常考题型 题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点问题 题型四:过已知曲线上定点的弦的问题 题型五:共线向量问题 题型六:面积问题 题型七:弦或弦长为定值的问题 题型八:角度问题 题型九:四点共线问题 题型十:范围为题(本质是函数问题) =+,存在实数,三角形(等边、等腰、题型十一:存在性问题(存在点,存在直线y kx m 直角),四边形(矩形,菱形、正方形),圆) 二.热点问题 1.定义与轨迹方程问题 2.交点与中点弦问题 3.弦长及面积问题 4.对称问题 5.范围问题 6.存在性问题 7.最值问题 8.定值,定点,定直线问题 第二部分知识储备

一. 与一元二次方程20(0)ax bx c a ++=≠相关的知识(三个“二次”问题) 1. 判别式:24b ac ?=- 2. 韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不等的实数根12,x x ,则 12b x x a +=- ,12c x x a ?= 3. 求根公式:若一元二次方程2 0(0)ax bx c a ++=≠有两个不等的实数根12,x x ,则 1,2x =二.与直线相关的知识 1. 直线方程的五种形式:点斜式,斜截式,截距式,两点式,一般式 2. 与直线相关的重要内容:①倾斜角与斜率:tan y θ=,[0,)θπ∈; ②点到直线的距离公式: d = 或d = (斜截式) 3. 弦长公式:直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离: 1212)AB x AB y =-==-或 4. 两直线1111122222: ,:l y k x b l y k x b =+=+的位置关系: ① 12121l l k k ⊥??=- ②121212//l l k k b b ?=≠且 5. 中点坐标公式:已知两点1122(,),(,)A x y B x y ,若点(),M x y 线段AB 的中点,则 111 2 ,22 x x y y x y ++= = 三.圆锥曲线的重要知识 考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理要求有所不同。 文科:掌握椭圆,了解双曲线;理科:掌握椭圆及抛物线,了解双曲线 1. 圆锥曲线的定义及几何图形:椭圆、双曲线及抛物线的定义及几何性质。 2. 圆锥曲线的标准方程:①椭圆的标准方程 ②双曲线的标准方程

圆锥曲线解题方法技巧归纳

圆锥曲线解题方法技巧归纳 例1、已知三角形ABC 的三个顶点均在椭圆80542 2 =+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴 上). (1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为0 90,AD 垂直BC 于D ,试求点D 的轨迹方程. 分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。第二问抓住角A 为0 90可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程; 解:(1)设B (1x ,1y ),C(2x ,2 y ),BC 中点为(00,y x ),F(2,0)则有 116 20,116202 2 222121=+=+y x y x 两式作差有 16) )((20))((21212121=+-+-+y y y y x x x x 04 500=+k y x (1) F(2,0)为三角形重心,所以由 2321=+x x ,得30=x ,由03421=++y y 得20-=y ,代入(1)得5 6 =k 直线BC 的方程为02856=--y x 2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2) 设直线BC 方程为8054,2 2 =++=y x b kx y 代入,得080510)54(2 2 2 =-+++b bkx x k 2 215410k kb x x +-=+,222154805k b x x +-= 2 2 22122154804,548k k b y y k k y y +-=+=+ 代入(2)式得 054163292 2=+--k b b ,解得)(4舍=b 或94 -=b 直线过定点(0,)94-,设D (x,y ),则1494 -=-?+ x y x y ,即016329922=--+y x y 所以所求点D 的轨迹方程是)4()9 20()916(222 ≠=-+y y x 。 3、设而不求法 例2、如图,已知梯形ABCD 中CD AB 2=,点E 分有向线段AC 所成的比为λ,双曲线 过C 、D 、E 三点,且以A 、B 为焦点当 4 3 32≤≤λ时,求双曲线离心率e 的取值范围。

(最新整理)圆锥曲线最值问题及练习

(完整)圆锥曲线最值问题及练习 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)圆锥曲线最值问题及练习)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)圆锥曲线最值问题及练习的全部内容。

圆锥曲线最值问题及练习 中学数学最值问题遍及代数、三角,立体几何及解析几何各科之中,且与生产实际联系密切,最值问题有两个特点:①覆盖多个知识点(如二次曲线标准方程,各元素间关系,对称性,四边形面积,解二元二次方程组,基本不等式等)②求解过程牵涉到的数学思想方法也相当多(诸如配方法,判别式法,参数法,不等式,函数的性质等)计算量大,能力要求高. 1、回到定义 例1、已知椭圆 22 1 259 x y +=,A(4,0),B(2,2)是椭圆内的两点, P是椭圆上任一点,求:(1)求5 |||| 4 PA PB +的最小值; (2)求|PA|+|PB|的最小值和最大值。 略解:(1)A为椭圆的右焦点。作PQ⊥右准线于点Q,则由椭圆的第二定义||4 ||5 PA e PQ ==, ∴5 |||||||| 4 PA PB PQ PB +=+。问题转化为在椭圆上找一点P,使其到点B和右准线的距离之和最小, 很明显,点P应是过B向右准线作垂线与椭圆的交点,最小值为17 4 。 (2)由椭圆的第一定义,设C为椭圆的左焦点,则|PA|=2a—|PC| ∴|PA|+|PB|=2a—|PC|+|PB|=10+(|PB| -|PC|) 根据三角形中,两边之差小于第三边,当P运动到与B、C成一条直线时,便可取得最大和最小值。即-|BC|≤|PB|—|PC|≤|BC|.当P到P”位置时,|PB| -|PC|=|BC|,|PA|+|PB|有最大值,最 大值为 10+|BC|=10+P到P"位置时,|PB| —|PC|=—|BC|,|PA|+|PB|有最小值, 最小值为 10-|BC|=10- 回到定义的最值解法同样在双曲线、抛物线中有类似应用.(2)中的最小值还可以利用椭圆的光学性质来解释:从一个焦点发出的光线经过椭圆面反射后经过另一焦点,而光线所经过的路程总是最短的。 2、利用闭区间上二次函数最值的求法 例2、在抛物线2 4x y=上求一点,使它到直线y=4x—5的距离最短。

圆锥曲线知识点归纳与解题方法技巧.doc

百度文库- 让每个人平等地提升自我 圆锥曲线解题方法技巧 第一、知识储备: 1.直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。(2)与直线相关的重要内容 ①倾斜角与斜率 k tan , [0, ) k y2 y1 x2 x1 ②点 P(x0 , y0 ) 到直线 Ax By C 0 的距离 Ax0 By0 C d B2 A2 l1 : y k1x b1 夹角为,k2 k1 ③夹角公式:直线则 tan l2 : y k2 x b2 1 k2 k1 ( 3)弦长公式 直线 y kx b 上两点 A( x1 , y1 ), B( x2 , y2 ) 间的距离 ① AB ( x2 x1 )2 ( y2 y1 )2 ② AB 1 k2 x x (1 k 2 )[( x x ) 2 4x x ] 1 2 1 2 1 2 ③ AB 1 1 y1 y2 k 2 ( 4)两条直线的位置关系 (Ⅰ) l1 : y k1x b1 l2 : y k2 x b2 ① l1 l2 k1k2=-1 ② l1 // l2k1 k2且 b1 b2 l1 : A1 x B1 y C1 0 (Ⅱ) l2 : A2 x B2 y C2 ① l1 l2A1 A2 B1B2 0 ② l1 / /l 2 A1B2 - A2 B1 =0且 AC1 2 - A2C1 0或 A1 B1 C1 者( A2 B2C2 0 )

两平行线距离公式 l 1 : y kx b 1 | b 1 b 2 | l 2 : y kx b 2 距离 d k 2 1 l 1 : Ax By C 1 0 |C 1 C 2 | l 2 : Ax By C 2 距离 d B 2 A 2 2、圆锥曲线方程及性质 1. 圆锥曲线的两定义 : 第一定义 中要重视“括号”内的限制条件 :椭圆中,与两个定点 F 1 ,F 2 的距离的 和等于常数 2a ,且此常数 2a 一定要大于 F 1 F 2 ,当常数等于 F 1 F 2 时,轨迹是线段 F 1 F 2 , 当常数小于 F 1F 2 时,无轨迹; 双曲线中 ,与两定点 F 1 , F 2 的距离的差的绝对值等于常 数 2a ,且此常数 2a 一定要小于 | F 1 F 2 | ,定义中的 “绝对值”与 2a < |F 1 F 2 | 不可忽视 。 若 2a = |F 1 F 2 | ,则轨迹是以 F 1 ,F 2 为端点的两条射线,若 2a ﹥ |F 1 F 2 | ,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程 ( x 6)2 y 2 ( x 6)2 y 2 8 表示的曲线是 _____(答:双曲线的左支) 2. 圆锥曲线的标准方程 (标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): ( 1)椭圆 :焦点在 x 轴上时 x 2 y 2 y 轴上时 y 2 x 2 2 2 1 ( a b 0 ),焦点在 2 2 = 1 a b a b ( a b 0 )。方程 2 2 表示椭圆的充要条件是什么?( ≠ ,且 A , B ,C Ax By C ABC 0 同号, A ≠B )。椭圆的方程的形式有几种?(三种形式) 标准方程: x 2 y 2 1(m 0, n 0且 m n) m n 距离式方程: (x c)2 y 2 ( x c) 2 y 2 2a 参数方程: x a cos , y bsin 若 x, y R ,且 3x 2 2 y 2 6 ,则 x y 的最大值是 ____,x 2 y 2 的最小值是 ___(答: 5,2 ) ( )双曲线:焦点在 x 轴上: x 2 y 2 y 2 x 2 =1( a 0, b 0 )。 2 a 2 b 2 =1 ,焦点在 y 轴上: 2 b 2 方程 Ax 2 By 2 a C 表示双曲线的充要条件是什么?( ABC ≠0,且 A , B 异号)。 如设中心在坐标原点 O ,焦点 1 、 F 2 在坐标轴上,离心率 e 2 的双曲线 C 过点 F

高考★圆锥曲线★的基本公式推导(学长整合版)

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程 /*另外,针对“计算不好”的同学,本人提供“硬解定理”供大家无脑使用。具体的请参考本目录下的【硬解定理的推导和使用】文章。*/ 圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x 2换成xx 0,y 2换成yy 0,x 换成(x+x 0)/2,y 换成(y+y 0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 12222=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=+b yy a xx 。 ③椭圆122 22=+b y a x 与直线0=++C Bx Ax 相切的条件是02 2222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 12222=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=-b yy a xx 。 ③椭圆122 22=-b y a x 与直线0=++C Bx Ax 相切的条件是022222=--C b B a A 【1-3】抛物线的切线方程: ② 物线 px y 22 = 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线 px y 22 =外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22=与直线0=++C Bx Ax 相切的条件是AC pB 22 = 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为)(00x x k y y -=-, 联立方程,令 0=?,得到k 的表达式,再代入原始式,最后得切线方程式1)()(22 02202020=+= +b y a x b yy a xx (注: k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、),(22y x ,中点P ),(00y x

圆锥曲线大题题型归纳演示教学

圆锥曲线大题题型归纳 基本方法: 1.待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a、b、c、e、p等等; 2.齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3.韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4.点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5.距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 基本思想: 1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题 例1、已知F1,F2为椭圆 2 100 x + 2 64 y =1的两个焦点,P在椭圆上,且∠F1 PF2=60°,则△F1 PF2的面积为多少?

点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。 变式1-1 已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且 12F PF ∠=120?,求12F PF ?的面积。

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12 22 2 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 2002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

相关主题