搜档网
当前位置:搜档网 › 数学建模中数据处理方法

数学建模中数据处理方法

数学建模中的数据处理方法

范筑军

主要内容

←曲线插值与拟合

←数值微分与积分

←微分方程数值解

←优化问题

←回归分析

←判别分析

曲线插值与拟合

←一维插值

←二维插值

←曲线拟合

←对表格给出的函数,求出没有给出的函数值。←在实际工作中,经常会遇到插值问题。

←下表是待加工零件下轮廓线的一组数据,现需要得到x坐标每改变0.1时所对应的y的坐标.

x 0 3 5 7 9 11 12 13 14 15 y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6

←下面是关于插值的两条命令(专门用来解决这类问题):

←y=interp1(x0,y0,x,’method’) 分段线性插值←y=spline(x0,y0,x) 三次样条插值←x0,y0是已知的节点坐标,是同维向量。

←y对应于x处的插值。y与x是同维向量。

←method可选’nearest’(最近邻插值),’linear’(线性插值),’spline’(三次样条插值),’cubic’(三次多项式插值)

←解决上述问题,我们可分两步:

用原始数据绘图作为选用插值方法的参考.

确定插值方法进行插值计算

一维插值(px_lc11.m)

←对于上述问题,可键入以下的命令:

←x0=[0,3,5,7,9,11,12,13,14,15]';

←y0=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6]'

←plot(x0,y0) %完成第一步工作

←x=0:0.1:15;

←y=interp1(x0,y0,x'); %用分段线性插值完成第二步工作

←plot(x,y)

←y=spline(x0,y0,x');

←plot(x,y) %用三次样条插值完成第二步工作

练习

1.对y=1/(1+x2),-5≤x≤5,用n(=11)个节点

(等分)作上述两种插值,用m(=21)

个插值点(等分)作图,比较结果。

(see:px_ex_lc1.m)

2.在某处测得海洋不同深度处水温如下表:

求深度为500、1000、1500米处的水温。

(see:px_ex_lc2.m)

深度446 714 950 1422 1634

水温7.04 4.28 3.40 2.54 2.13

←MATLAB中二维插值的命令是:←z=interp2(x0,y0,z0,x,y,'meth')

在一个长为5个单位,宽为3个单位的金属薄片上测得15个点的温度值,试求出此薄片的温度分布,并绘出等温线图。(数据如下表)

y i x

i

1 2 3 4 5

1 8

2 81 80 82 84

2 79 6

3 61 65 87

3 8

4 84 82 8

5 86

二维插值(px_lc21.m)

←temps=[82,81,80,82,84;79,63,61,65,87;84,84,82,85,86] ;

←mesh(temps) %根据原始数据绘出温度分布图,可看到此图的粗造度。

←%下面开始进行二维函数的三阶插值。

←width=1:5; depth=1:3; di=1:0.2:3;

wi=1:0.2:5;

←[WI,DI]=meshgrid(wi,di);%增加了节点数目

←ZI=interp2(width,depth,temps,WI,DI,'cubic'); % 对数据(width,depth,temps)进

←% 行三阶插值拟合。

←surfc(WI,DI,ZI)

←contour(WI,DI,ZI)

←假设一函数g(x)是以表格形式给出的,现要求一函数f(x),使f(x)在某一准则下与表格函数(数据)最为接近。

←由于与插值的提法不同,所以在数学上理论根据不同,解决问题的方法也不同。

←此处,我们总假设f(x)是多项式。

问题:弹簧在力F的作用下伸长x厘米。F和x

在一定的范围内服从虎克定律。试根据下

列数据确定弹性系数k,并给出不服从虎克定

律时的近似公式。

x 1 2 4 7 9 12 13 15 17 F 1.5 3.9 6.6 11.7 15.6 18.8 19.6 20.6 21.1

←解题思路:可以用一阶多项式拟合求出k,以及近似公式。

←在MATLAB中,用以下命令拟合多项式。←polyfit(x0,y0,n)

←一般,也需先观察原始数据的图像,然后再确定拟和成什么曲线。

曲线拟合(px_lc31.m)

←对于上述问题,可键入以下的命令:

←x=[1,2,4,7,9,12,13,15,17]';

F=[1.5,3.9,6.6,11.7,15.6,18.8,19.6,20.6,21 .1]';

←plot(x,F,'.')

←从图像上我们发现:前5个数据应与直线拟合,后5个数据应与二次曲线拟合。于是键入:

←a=polyfit(x(1:5),F(1:5),1);

←a=polyfit(x(5:9),F(5:9),2)

曲线拟合

注意:有时,面对一个实际问题,究竟是用插值还是用拟合不好确定,还需大家在实际中仔细区分。同时,大家(包括学过计算方法的同学)注意去掌握相应的理论知识。

数值微分与积分

←数值积分

←数值微分

←先看一个例子:

←现要根据瑞士地图计算其国土面积。于是对地图作如下的测量:以西东方向为横轴,以南北方向为纵轴。(选适当的点为原点)将国土最西到最东边界在x轴上的区间划取足够多的分点x i,在每个分点处可测出南北边界点的对应坐标y1,y2。用这样的方法得到下表

←根据地图比例知18mm相当于40km,试由上表计算瑞士国土的近似面积。(精确值为41288km2)。

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

最新数学建模数据分析题

中国矿业大学数学建模常规赛竞赛 承诺书 我们仔细阅读了中国矿业大学数学建模常规赛论文格式规范和2016年中国矿业大学数学建模常规赛通知。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或资料(包括网上资料),必须按照规定的参考文献的表述方式列出,并在正文引用处予以标注。在网上交流和下载他人的论文是严重违规违纪行为。 我们以中国矿业大学大学生名誉和诚信郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权中国矿业大学数学建模协会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们的参赛队号:25 参赛队员(打印并签名):1. 易阳俊 2. 令月霞 3. 刘景瑞 日期: 2016 年 10 月日 (请勿改动此页内容和格式。此承诺书打印签名后作为纸质论文的封面。以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。)

中国矿业大学数学建模常规赛竞赛 编号专用页 评阅统一编号(数学建模协会填写):

题目:数据的分析问题 摘要 本文需要解决的问题是如何根据就诊人员体内7种元素含量来判别某人是否患有疾病G和确定哪些指标是影响人们患疾病G的主要因素。通过解读题目可知,此类问题为典型的分析判别问题。我们先对数据进行了预处理,剔除了有异常数据的样本,然后采用元素分布判别法、马氏距离判别法和Fisher判别法,应用Excel、SPSS和MATLAB等软件来对某人是否患病进行判别,并通过绘制7种元素含量的折线图等来确定患该疾病的主要因素,最后应用综合判别法对之前的结论进行了检验。 对于问题一,在对数据预处理之后,我们删除了序号为10这个高度异常数据样本,然后我们分别采用元素分布判别法、马氏距离判别法和Fisher判别法对49个已知病例进行判别。对于元素分布判别法,我们通过数据预处理知道7种元素含量分布均符合正态分布,然后我们确定了以均值为大致中心的元素正常含量范围,得出其判别准确度为96%;对于马氏距离判别法,通过编写MATLAB 程序(见附录)来进行判别,得出其判别准确度为90%;对于Fisher判别法,通过SPSS软件来进行判别,得到线性判别函数,其判别准确度为96%; 针对问题二:我们运用问题一中建立的三个判别模型对25名就诊人员(见附录)的化验结果进行检验,判别结果如下表1: 行对分析,我们初步判定元素4与元素5是影响人们患疾病G的主要因素,然后用方法一的三种判别方法进行检验,其准确度在85%以上; 对于问题四,我们根据问题三得出的主要因素,分别用三种判别方法对25名就诊人员进行判别,再与问题二的判别结果进行对比,可知它们判断结果之间的差异性最高为24%。 对于问题五,由于三种判别法都有不足,所以我们采用了综合判别法,将三种判别方法的结果进行综合判断,最终我们通过主要因素进行判别的差异性下降到了12%,与问题一的判断结果的一致性达到了88%。 关键词:马氏距离判别,Fisher判别,综合判别,MATLAB,SPSS

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

数学建模-数据的统计分析

数学建模与数学实验 课程设计 学院数理学院专业数学与应用数学班级学号 学生姓名指导教师 2015年6月

数据的统计分析 摘要 问题:某校60名学生的一次考试成绩如下: 93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 (1)计算均值、标准差、极差、偏度、峰度,画出直方图;(2)检验分布的正态性; (3)若检验符合正态分布,估计正态分布的参数并检验参数; 模型:正态分布。 方法:运用数据统计知识结合MATLAB软件 结果:符合正态分布

一. 问题重述 某校60名学生的一次考试成绩如下: 93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 (1)计算均值、标准差、偏差、峰度,画出直方图; (2)检验分布的正态性; (3)若检验符合正态分布,估计正态分布的参数并检验参数。 二.模型假设 假设一:此组成绩没受外来因素影响。 假设二:每个学生都是独自完成考试的。 假设三:每个学生的先天条件相同。 三.分析与建立模型 像类似数据的信息量比较大,可以用MATLAB 软件决绝相关问题,将n 名学生分为x 组,每组各n\x 个学生,分别将其命为1x ,2X ……j x 由MATLAB 对随机统计量x 进行命令。此时对于直方图的命令应为 Hist(x,j) 源程序为: x1=[93 75 83 93 91 85 84 82 77 76 ] x2=[77 95 94 89 91 88 86 83 96 81 ] x3=[79 97 78 75 67 69 68 84 83 81 ]

数学建模缺失大数据补充及异常大数据修正

题目:数据的预处理问题 摘要 关键词:多元线性回归,t检验法,分段线性插值,最近方法插值,三次样条插值,三次多项式插值

一、问题重述 1.1背景 在数学建模过程中总会遇到大数据问题。一般而言,在提供的数据中,不可避免会出现较多的检测异常值,怎样判断和处理这些异常值,对于提高检测结果的准确性意义重大。 1.2需要解决的问题 (1)给出缺失数据的补充算法; (2)给出异常数据的鉴别算法; (3)给出异常数据的修正算法。 二、模型分析 2.1问题(1)的分析 属性值数据缺失经常发生甚至不可避免。 (一)较为简单的数据缺失 (1)平均值填充 如果空值为数值型的,就根据该属性在其他所有对象取值的平均 值来填充缺失的属性值;如果空值为非数值型的,则根据众数原 理,用该属性在其他所有对象的取值次数最多的值(出现频率最 高的值)来补齐缺失的属性值。 (2) 热卡填充(就近补齐) 对于包含空值的数据集,热卡填充法在完整数据中找到一个与其 最相似的数据,用此相似对象的值进行填充。 (3) 删除元组 将存在遗漏信息属性值的元组删除。 (二)较为复杂的数据缺失 (1)多元线性回归 当有缺失的一组数据存在多个自变量时,可以考虑使用多元线性回归模型。将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。 2.2问题(2)的分析 属性值异常数据鉴别很重要。 我们可以采用异常值t检验的方法比较前后两组数据的平均值,与临界值相

2.3问题(3)的分析 对于数据修正,我们采用各种插值算法进行修正,这是一种行之有效的方法。 (1)分段线性插值 将每两个相邻的节点用直线连起来,如此形成的一条折线就是分段线性插值函数,记作()x I n ,它满足()i i n y x I =,且()x I n 在每个小区间[]1,+i i x x 上是线性函数()x I n ()n i ,,1,0???=。 ()x I n 可以表示为 ()x I n 有良好的收敛性,即对于[]b a x ,∈有, 用 ()x I n 计算x 点的插值时,只用到x 左右的两个节点,计算量与节点个数n 无关。但n 越大,分段越多,插值误差越小。实际上用函数表作插值计算时,分段线性插值就足够了,如数学、物理中用的特殊函数表,数理统计中用的概率分布表等。 (2) 三次多项式算法插值 当用已知的n+1个数据点求出插值多项式后,又获得了新的数据点,要用它连同原有的n+1个数据点一起求出插值多项式,从原已计算出的n 次插值多项式计算出新的n+1次插值多项式很困难,而此算法可以克服这一缺点。 (3)三次样条函数插值[4] 数学上将具有一定光滑性的分段多项式称为样条函数。三次样条函数为:对于[]b a ,上的分划?:n x x x a

数学建模各种分析报告方法

现代统计学 1.因子分析(Factor Analysis) 因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。 运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。 2.主成分分析 主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 主成分分析和因子分析的区别 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,

数学建模方法和步骤

数学建模的主要步骤: 第一、模型准备 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征. 第二、模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步.如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化. 第三、模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构.这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天.不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值. 第四、模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术.一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重. 第五、模型分析 对模型解答进行数学上的分析."横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次.还要记住,不论那种情况都需进行误差分析,数据稳定性分析. 数学建模采用的主要方法有: (一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模 型. 1、比例分析法:建立变量之间函数关系的最基本最常用的方法. 2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法. 3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用. 4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式. 5、偏微分方程:解决因变量与两个以上自变量之间的变化规律. (二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型 1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法. 2、时序分析法:处理的是动态的相关数据,又称为过程统计方法. 3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.

数学建模步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

数学建模数据分析题

承诺书 我们仔细阅读了中国矿业大学数学建模常规赛论文格式规范和2016年中国矿业大学数学建模常规赛通知。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或资料(包括网上资料),必须按照规定的参考文献的表述方式列出,并在正文引用处予以标注。在网上交流和下载他人的论文是严重违规违纪行为。 我们以中国矿业大学大学生名誉和诚信郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权中国矿业大学数学建模协会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们的参赛队号:25 参赛队员(打印并签名):1.易阳俊 2.令月霞 3.刘景瑞 日期: 2016年 10 月日 (请勿改动此页内容和格式。此承诺书打印签名后作为纸质论文的封面。以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。)

编号专用页 评阅统一编号(数学建模协会填写):

题目:数据的分析问题 摘要 本文需要解决的问题是如何根据就诊人员体内7种元素含量来判别某人是否患有疾病G和确定哪些指标是影响人们患疾病G的主要因素。通过解读题目可知,此类问题为典型的分析判别问题。我们先对数据进行了预处理,剔除了有异常数据的样本,然后采用元素分布判别法、马氏距离判别法和Fisher判别法,应用Excel、SPSS和MATLAB等软件来对某人是否患病进行判别,并通过绘制7种元素含量的折线图等来确定患该疾病的主要因素,最后应用综合判别法对之前的结论进行了检验。 对于问题一,在对数据预处理之后,我们删除了序号为10这个高度异常数据样本,然后我们分别采用元素分布判别法、马氏距离判别法和Fisher判别法对49个已知病例进行判别。对于元素分布判别法,我们通过数据预处理知道7种元素含量分布均符合正态分布,然后我们确定了以均值为大致中心的元素正常含量范围,得出其判别准确度为96%;对于马氏距离判别法,通过编写MATLAB 程序(见附录)来进行判别,得出其判别准确度为90%;对于Fisher判别法,通过SPSS软件来进行判别,得到线性判别函数,其判别准确度为96%; 针对问题二:我们运用问题一中建立的三个判别模型对25名就诊人员(见附录)的化验结果进行检验,判别结果如下表1: 行对分析,我们初步判定元素4与元素5是影响人们患疾病G的主要因素,然后用方法一的三种判别方法进行检验,其准确度在85%以上; 对于问题四,我们根据问题三得出的主要因素,分别用三种判别方法对25名就诊人员进行判别,再与问题二的判别结果进行对比,可知它们判断结果之间的差异性最高为24%。 对于问题五,由于三种判别法都有不足,所以我们采用了综合判别法,将三种判别方法的结果进行综合判断,最终我们通过主要因素进行判别的差异性下降到了12%,与问题一的判断结果的一致性达到了88%。 关键词:马氏距离判别,Fisher判别,综合判别,MATLAB,SPSS

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1-1)及其应用

§2 灰色预测模型GM(1,1)及其应用 蠕变是材料在高温下的一个重要性能。处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。 为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。过去,人们都是通过蠕变试验测量断裂时间。而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。 一、灰色预测模型GM (1,1) 建模步骤如下: (1)GM (1,1)代表一个白化形式的微分方程: u aX dt dX =+)1() 1( (1) 式中,u a ,是需要通过建模来求得的参数;) 1(X 是原始数据) 0(X 的累加生成(AGO )值。 (2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。表示为: ∑==k n n X k X 1 )0() 1()()( (2) 不直接采用原始数据) 0(X 建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规 律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。 (3)对GM (1,1),其数据矩阵为 ???? ?? ? ? ?+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a , N T T Y B B B u a 1)(?-=??? ? ??=α (4) (5)建立时间响应函数,求微分方程(1)的解为 a u e a u X t X at +-=+-))1(()1(?)0()1( (5)

数学建模之数据处理 03 版

在某海域测得一些点(x,y)处的水深z由下表给出,船的吃水深度为5英尺, (2)在矩形区域(75,200)*(-50,150)作二维三次插值法; (3)做海底曲面图; (4)作出水深小于5的海域范围,即z=5的等高线。 解: 解答: Matlab程序: x=[129,140,103.5,88,185.5,195,105,157.5,107.5,77,81,162,162,117.5]; y=[7.5,141.5,23,147,22.5,137.5,85.5,-6.5,-81,3,56.5,-66.5,84,-33.5]; z=[-4,-8,-6,-8,-6,-8,-8,-9,-9,-8,-8,-9,-4,-9]; xi=75:10:200; yi=-50:10:150; figure(1) z1i=griddata(x,y,z,xi,yi','nearest'); % 最邻近插值 surfc(xi,yi,z1i) xlabel('X'),ylabel('Y'),zlabel('Z') figure(2) z2i=griddata(x,y,z,xi,yi'); % 双线性插值 surfc(xi,yi,z2i) xlabel('X'),ylabel('Y'),zlabel('Z') figure(3) z3i=griddata(x,y,z,xi,yi','cubic'); % 双三次插值 surfc(xi,yi,z3i) xlabel('X'),ylabel('Y'),zlabel('Z') figure(4) subplot(1,3,1),contour(xi,yi,z1i,4,'b'); subplot(1,3,2),contour(xi,yi,z2i,4,'r'); subplot(1,3,3),contour(xi,yi,z3i,4,'g'); figure(5) % z=5的等高线 contour(xi,yi,z3i,7,'r');

相关主题