搜档网
当前位置:搜档网 › 基坑设计计算实例

基坑设计计算实例

基坑设计计算实例
基坑设计计算实例

[锚杆设计举例]

某高层建筑的基坑开挖深度H =13m ,土质为砂土与卵石等,其主动区土的平均重度a γ=19KN/m 3,摩擦角a ?=40°,被动区的319.5/,45p p KN m γ?==,各层土的聚力以零计,地面荷载q =10kN/m 2。若决定采用Φ800mm 钻孔桩(桩距1.5m )与一层锚杆的基坑支护方案,试进行锚杆设计。

[设计过程]

1、 土层锚杆布置

护桩入土深度计算

土层锚杆头部距地面4.5m ,水平间距1.5m ,锚孔孔径Φ140mm ,锚杆向下倾斜13°

2、计算护桩入土深度t

主动土压力系数:240450.2172a K tg ??=-= ??

? 被动土压力系数:24545 5.832p K tg ??=+= ???

主动土压力:()()2211 2.062132

a a a E H t K t γ=+=+

地面荷载引起压力:()()2 2.1713a a E q H t K t =+=+ 被动土压力:22156.8432

p p p E t K t γ==,0B M =∑,得: 2.062(13+t )2×[2/3(13+t)-4.5]+2.17(13+t) ×[0.5(13+t)-4.5]

-56.843t 2(2/3t+13-4.5)=0

解三次方程t =2.26m ,最后取护桩入土深度t =2.30m ;关于护桩的入土深度可用试算法确定。

3、锚杆所承受的水平力T h

由护桩入土深度t =2.30m ,可知道每延米的主动与被动土压力:

E a1=0.5×19×(13+2.30)2×0.217=482.5(kN/m )

E a2=10×(13+2.30)×0.217=33.2(kN/m )

E p =0.5×19.5×2.32×5.83=301(kN/m )

由0D M =∑,可求出锚杆所承受的水平力每延米T ’h :

()'122.313 2.313 2.313 2.3 4.50333

h p a a T E E E +++-+?-?-= 得:'229.9(/)h T KN m =。

由于锚杆的水平间距为1.5m ,则每根锚杆实际承受的水平力为:

'1.5 1.5229.9344.8()h h T T KN ==?=

4、锚杆承载力Tu 锚杆的轴向拉力设计值为:344.8353.8()cos13cos13

h t T N kN === 若取锚杆抗拔安全系数K =1.5,则锚杆的极限抗拔力为:

1.5353.8530.7u t T K N KN =?=?=

5、锚杆非锚固段长度L 0

锚固段地层为稍密的土层,

BE=(13+2.3-4.5)tg(45°-37°/2)=5.38m

在△BEF

中,由正弦定理有:

锚杆长度计算图

BE/sin∠BFE=BF/sin∠BEF,∠BFE=(90°-13°)+(45°-37°/2)=103.5°∠BEF=90°-(45°-37°/2)=63.5°

则:

5.38sin63.5

sin103.5

BF

?

=,由此非锚固段长度Lo=5.0m。

6、锚杆锚固段长度Le

初选锚固段长度为Le,0点为锚固段中点,有:

BO=BF+FO=5+Le/2

()

Le

BO=BF+FO+5+

2

=4.5+BOsin13 4.55sin13(1)

2

011937

1.5353.8

(2)

3.140.141937

o

Le

h

C K h tg h tg

KNt

Le

D h tg

τγ?

πτ

??

=++??????

?

??

=+?=+???

?

==??????

????

解得:Le =12m

锚杆总长度为17m 。

7、拉杆材料选择

查表9-5,选择Ⅱ级冷拉钢筋做拉杆材料,其f k =430MPa ,则所需钢筋截面面积:2353.8823()430t k N KN A mm f MPa

=== 由此,用单根Φ35mm Ⅱ级冷拉钢筋,其横截面积为962mm 2。

8、锚杆支承腰梁的设计

对支承腰梁进行抗弯验算时,可将两桩之间的一段槽钢简化为一简支梁,支点在两边的挡土桩上,锚杆荷载作用在梁的中点,最大弯矩发生在梁的中点:

M=PL/4=Nt ×1.5/4=132.7kN ·m

取钢材[]217/W kN cm σ=,则有:[]2

2132.710780.617x W M

W cm σ?=== 经查表,采用2根28C 的槽钢背靠背布置,间距25cm ,其Wx =2*392.6=785.2(cm 3),强度满足要求。

9、深部破裂面稳定性验算

假定δ=0,则E ah 和E 1h 看作是水平向作用力:

()()13 2.37.0537.85122cos13acrtg θ+-==+

深部破裂面稳定性验算

()()127.0513 2.310.67 1.5193393.7()2

1.5773.7()

ah a a G kN E E E kN ++=???==+?= E 1h =(0.5×19×7.052×0.217+10×7.05×0.217) ×1.5=175.2kN

则由有关公式可得:

()()()

11max ah h h ah h E E G E tg E tg tg T Htg tg δδ?θα?θ-++-?-=?- =()()773.7175.23393.74037.8

727.7()13134037.8tg kN tg tg -+?-=-

max 727.7 2.11 1.5344.8

h s h T K T ===> 深部破裂面稳定性无问题。

[单撑(单锚)板桩墙设计实例]-按“自由支座”设计:

某基坑工程深6m ,(地表均布超载40KN/m 2)按φ=30°,γ=17kN/m 3, C =0,桩顶拉锚。试进行板桩墙的支护设计。

[设计过程]

1.绘土压力分布简图,得Ka =0.309,Kp =3.0

2.假设t 1值,并取η=0.5。

取()312112120,

02323a a p H t M K t K H t γγη+??=?-+= ??

?,试算得t 1=4m 。

若不考虑η=0.5,即容许变形足够大时,或被动土压力乘以增大系数,则t 1=2.3即可。

3.求支撑力Ra ()221122a a p a p R E E H t K t K λ

γηη=-=+-=17/2(6+4)2·0.309-

17/2·42·3·0.5=58.65kN/m ;

4、求最大弯矩Mmax

设距地表为h 处作用在板桩上的剪力为零:

20, 4.7362a a R h K h m m γ

-===<,可用。则 3

3max 17 4.7358.65 4.730.30918566a a h KN M R h K m γ?=?-=?-?=kNm 5、板桩截面尺寸

如为钢材取[]212W kN cm σ=,[]3max

185********

W M cm W m σ=== 按表选用:实际入土深度t =1.1t 1=1.1×4=4.4m ,而支拉力Ra 在设计时也应适当增大, 1.35 1.3558.6580a a kN

R R m ==?=计。

[单撑(拉锚)板桩设计例题]-按“固定支座”设计,已知条件同前。

[设计过程]

1、 绘土压力分布与等值梁弯矩图

0.3093a p K K ==,1760.30931.5a a kN e HK m γ==??=

1、求t o :()

0.689a o p a e t m K K γ==- 2、取d 点为等值梁下端支点0d M =∑

()202323a a o a o o o e e t H R H t t t ????+-+-= ? ?????,代入已知数得,38.8a kN R m = ()20,66.72323a a o o o o o e H e t t kN P H t H H P m ????+-

-+== ? ????? 3、求Mmax 最大弯矩的作用点:202

a a R h K γ-=

, 3.846h m m ==<可用; 3

3max 17 3.8438.8 3.840.30999.466a a h KN M R h K m γ?=?-=?-?= kNm 4、计算板桩的最小入土深度t 1

()23o p a x x P X K K x γ=-???,

2.96X m === t 1=t 0+X=0.689+2.96=

3.65m ,t=(1.1~1.2)t 1=

4.02~4.38 取t=4.1m,则板桩全长6+4.1m=10.1m

5、板桩截面尺寸:30.7499.461312

cm W m ?==(选择) 6、 1.3552.38a a kN R R m ==计。(完毕)

计算简图

[多层锚杆支护设计实例]

某大厦基坑工程,地面荷载q =10kN/m 2,平均φ=30°(不考虑C ),γ=19kN/m 3。设计锚杆3层,第一层距地面5m ,第二层12米,第三层18m 。基坑总深23.5m 。试做支护设计。

[设计过程]

1、绘土压力分布图。

a K =0.33 p K =3.0

q e =a K q =0.33×10=3.3kPa

a e =a K H =0.33×19×12.5=78.37kPa

a e +q e =81.7

钢结构工程量计算方法

钢结构工程量计算方法 (2015-03-30 14:07) 分享到: 0 钢结构是未来发展的方向,土建算量的不会钢结构算量的大有人在,但日后如果再不会,就要谈谈自己的工资是涨不上去了。钢结构一直以来是与土建分开的,后来的劲钢结构及钢组合结构在施工的过程中,都是先有钢结构公司安装再有总包施工砼,如此以来接合也会慢慢的相近,有时候基本上融合在一起,我只能说我会做钢结构的算量,报价谈不上,因为我的经验不足。 钢结构是由钢板、角钢、槽钢、钢管和圆钢等热轧钢材或冷加工成型的薄壁型钢制造而成的结构。钢结构具有材料强度高、重量轻、安全可靠、制作简便等优点。在房屋建筑中,主要用于厂房、高层建筑和大跨度建筑。常见的钢结构构件有屋架、檩条梁、柱、支撑系统等。 1。算量最基本的就是看图纸,土建的人都烦钢构图纸的太乱,其实我也有这种看法,因为平法并没有用在其上面,图样还保留了一前土建制图的原则,所以做为老人看比较习惯(101 图集出之前的人),后来像我这样人看钢结构图纸真的看不习惯,不过没有办法,还是要习惯的,我们知道麻烦,但任何事情都有规律的,钢结构的详图结点相当的多,但这些变化真的在算的时候影响相当的小,重要是大的方向把握好,钢结构的结点图也是相当科学的,都和科学受力相对应。有许多是重复或对称等。认真的看都会看出来。对于图纸的特点,我会在下面讲2。算重量,因为钢结构的算量基本上全是按吨计(板按 M2)。钢材钢材就是钢结构。而钢材多指型钢,对于型钢的分类算量的方法,我也会一一列出。并做出讲解。 3。统计汇总,哈哈,此类应该是不难的,以清单为基本,分类汇总而以了。 识图问路 1。我对钢结构的认识,应该比大家深一些,因为我毕业的时候就进了一家钢结构公司,工作不到两个月,经常的工作就是画一个图纸的钢构件,把这个钢构件看明白了,画出来,他们叫钢结构深化设计(细化方案)做加工所用,说白了,一张钢板怎么加工这样的东东的。我讲的图识别,其它就是 03G102 上面的东东,大家有机会可以去下载看一下。闲言碎语不多讲,说说吧,钢结构图应该怎么看不头痛。把握好看图不难的原则,其实很简单,比建筑的施工简单多了,因为他每个部分都有详图,哪里不明白了,就看此图有没有什么详图符号,有就找,其实我看明白的地方不是详图的地方,拿出来与原图一对就明白了,是什么柱,是什么梁就明白了许多。一. 钢结构 1 钢结构设计制图分为钢结构设计图和钢结构施工详图两阶段。 2 钢结构设计图应由具有设计资质的设计单位完成,设计图的内容和深度应满足编制钢结构施工详图的要求;钢结构施工详图(即加工制作图)一般应由具有钢结构专项设计资质的加工制作单位完成,也可由具有该项资质的其他单位完成。

钢结构设计计算公式及计算用表

钢结构设计计算公式及计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表1采用。钢铸件的强度设计值应按表2采用。连接的强度设计值应按表3~5采用。

设计计算例题

说明:此计算例题只是一个例子,本次设计抗震部分是不需要计算的,只需按构造要求设置即可 (1)建设地点:南方某市 (2)场地面积:50m×55m (3)总建筑面积:约45002 m(允许偏差10%) (4)抗震设防烈度:7度,设计基本地震加速度为0.10g,设计地震分组为第一组 (5)基本风压:0.4 KN/m2,,基本雪压:0.45 KN/m2 (6)地面粗糙度:B类,Ⅱ类场地 (7)地震资料:地震承载力标准值为220KN/m2,未见地下水,不考虑冻土深度 (8)建筑安全等级:Ⅱ级 (9)设计标高:室内设计标高000 ,室内外高差600mm .0 (10)楼面做法:20mm厚水泥砂浆找平,5mm厚1:2水泥砂浆加107胶水着色粉面层,现浇混凝土楼板,底面为15mm厚纸筋灰抹底,涂2道 (11)屋面做法:现浇楼板上铺珍珠膨胀岩保护层100mm厚,现浇钢筋混凝土楼板,20mm厚1:2水泥砂浆找平,15mm厚纸筋灰抹底,三毡四油防水层(12)门窗做法:全部采用木门,窗户为铝合金制作 2 结构布置及结构计算简图的确定 2.1 结构的平面布置 本次方案采用横向布置,横向承重,即:框架主梁沿横向布置,横向框架为主,要承重框架,主梁和柱可形成横向框架,横向抗倒刚度大,各榀横向框架间由纵向的次梁相连,即建筑物的整体性较好。 结构的平面布置图如下:

2.1.1构件截面尺寸的初定 梁的截面尺寸应满足承载力、刚度及延性要求。截面高度一般取梁跨度l 的1/12~1/8,当梁的负载面积较大或荷载较大时,宜取上限值。为防止梁产生剪切脆性破坏,梁的净跨与截面高度之比不宜小于4。梁的截面宽度可取1/3~1/2梁高,同时不小于1/2柱宽,且不应小于250mm 。 (1)框架梁 1-3柱网: L=6m :mm l h 750~500600081~12181~121=??? ? ??=???? ??=, 取mm h 500= mm h b 250~16750021~3121~31=??? ? ??=???? ??=, 取mm b 250= L=1.8m :mm l h 225~150180081~12181~121=??? ? ??=???? ??=, 取mm h 300= 梁宽保持一致, 取mm b 250= L=3.9m :mm l h 488~325390081~12181~121=??? ? ??=???? ??=, 取mm h 500= 取mm b 250= 4-16柱网: L=6m :b ×h=250×500mm L=1.8m :b ×h=250×300mm 边柱连系梁取250×500mm ,中柱连系梁取250×300mm 在抗震设计中,纵向框架梁截面高度不宜小于10o l ,故其截面高度选择合理。 惯性矩的计算 b ×h=250×500mm , I= 48331004.26500250121 121mm bh ?=??= b ×h=250×300mm , I=483310625.530025012 1 121mm bh ?=??= (2)框架柱 取底层H=3300+600+600=4500mm (H=第一层层高+室内外高差+基础顶至室外地坪高度) 初选柱截面尺寸:b ×h=400×400=160000 2mm

3-钢结构优化分析及设计

例题3 钢框架结构分析及优化设计 1

例题钢框架结构分析及优化设计 2例题.钢框架结构分析及优化设计 概要 本例题通过某六层带斜撑的钢框架结构来介绍midas Gen的优化设计功能。midas Gen 提供了强度优化和位移优化两种优化方法。强度优化是指在满足相应规范的强度要求 条件下,求出最小构件截面,即以结构重量为目标函数的优化功能。位移优化是针对 钢框架结构,在强度优化设计前提下,增加了以侧向位移为约束条件的自动设计功 能。本文主要讲述强度优化设计功能。 此例题的步骤如下: 1.简介 2.建立模型并运行分析 3.设置设计条件 4.钢构件截面验算及设计 5.钢结构优化设计

例题钢框架结构分析及优化设计1.简介 本例题介绍midas Gen的优化设计功能。例题模型为带斜撑的六层钢框架结构。(该例题数据仅供参考) 基本数据如下: 轴网尺寸:见图2 柱:HW200x204x12/12 主梁:HM244x175x7/11 次梁:HN200x100x5.5/8 支撑:HN125x60x6/8 钢材:Q235 层高:一层 4.5m 二~六层 3.0m 设防烈度:8o(0.20g) 场地:II类 设计地震分组:1组 地面粗糙度;A 基本风压:0.35KN/m2; 荷载条件:1-5层楼面,恒荷载4.0KN/m2,活荷载2.0KN/m2; 6层屋面,恒荷载5.0KN/m2,活荷载1.0KN/m2; 1-5层最外圈主梁上线荷载4.0KN/m; 6层最外圈主梁上线荷载1.0KN/m; 分析计算考虑双向风荷载,用反应谱分析法来计算双向地震作用 3

例题钢框架结构分析及优化设计 4图1分析模型图2结构平面图

钢结构设计实例 含计算过程

设计资料 北京地区某金工车间。采用无檩屋盖体系,梯形钢屋架。车间跨度21m,长度144m,柱距6m,厂房高度15.7m。车间内设有两台150/520kN中级工作制吊车。设计温度高于-20℃。采用三毡四油,上铺小石子防水屋面,水泥砂浆找平层,8cm厚泡沫混凝土保温层,1.5m×6.0m预应力混凝土大型屋面板。屋面积灰荷载0.6kN/m2,屋面活荷载0.35 kN/m2,雪荷载为0.45kN/m2,风荷载为0.5kN/m2。屋架铰支在钢筋混凝土柱上,上柱截面为400mm ×400mm,混凝土标号为C20。 一、选择钢材和焊条 根据北京地区的计算温度和荷载性质及连接方法,钢材选用Q235-B。焊条采用E43型,手工焊。 二、屋架形式及尺寸 无檩屋盖,i=1/10,采用平坡梯形屋架。 =L-300=20700mm, 屋架计算跨度为L =1990mm, 端部高度取H 中部高度取H=H +1/2iL=1990+0.1×2100/2=3040mm, 屋架杆件几何长度见附图1所示,屋架跨中起拱42mm(按L/500考虑)。 为使屋架上弦承受节点荷载,配合屋面板1.5m的宽度,腹杆体系大部分采用下弦间长为3.0m的人字式,仅在跨中考虑到腹杆的适宜倾角,采用再分式。 屋架杆件几何长度(单位:mm) 三、屋盖支撑布置 根据车间长度、屋架跨度和荷载情况,设置四道上、下弦横向水平支撑。因柱网采用封闭结合,为统一支撑规格,厂房两端的横向水平支撑设在第二柱间。在第一柱间的上弦平面设置刚性系杆保证安装时上弦杆的稳定,第一柱间下弦平面也设置刚性系杆以传递山墙风荷载。在设置横向水平支撑的柱间,于屋架跨中和两端共设四道垂直支撑。在屋脊节点及支座节点处沿厂房纵向设置通长的刚性系杆,下弦跨中节点处设置一道纵向通长的柔性系杆,支撑布置见附图2。图中与横向水平支撑连接的屋架编号为GWJ-2,山墙的端屋架编号为GWJ-3,其他屋架编号均为GWJ-1。

钢结构最新设计规范方案

钢结构设计规GB50017-2003 第一章总则 第1.0.1条为在钢结构设计中贯彻执行国家的技术经济政策,做到技术先进、经济合理、安全适用、确保质量,特制定本规。 第1.0.2条本规适用于工业与民用房屋和一般构筑物的钢结构设计。 第1.0.3条本规的设计原则是根据《建筑结构设计统一标准》(CBJ68-84))制订的。 第1.0.4条设计钢结构时,应从工程实际情况出发,合理选用材料、结构方案和构造措施,满足结构在运输、安装和使用过程中的强度、稳定性和刚度要求,宜优先采用定型的和标准化的结构和构件,减少制作、安装工作量,符合防火要求,注意结构的抗腐蚀性能。 第1.0.5条在钢结构设计图纸和钢材订货文件中,应注明所采用的钢号(对普通碳素钢尚应包括钢类、炉种、脱氧程度等)、连接材料的型号(或钢号)和对钢材所要求的机械性能和化学成分的附加保证项目。此外,在钢结构设计图纸中还应注明所要求的焊缝质量级别(焊缝质量级别的检验标准应符合国家现行《钢结构工程施工及验收规》)。 第1.0.6条对有特殊设计要求和在特殊情况下的钢结构设计,尚应符合国家现行有关规的要求。 第二章材料 第2.0.1条承重结构的钢材,应根据结构的重要性、荷载特征、连接方法、工作温度等不同情况选择其钢号和材质。承重结构的钢材宜采用平炉或氧气转炉3号钢(沸腾钢或镇静钢)、16Mn钢、16Mnq钢、15MnV钢或15MnVq钢,其质量应分别符合现行标准《普通碳素结构钢技术条件》、《低合金结构钢技术条件》和《桥梁用碳素钢及普通低合金钢钢板技术条件》的规定。 第2.0.2条下列情况的承重结构不宜采用3号沸腾钢: 一、焊接结构:重级工作制吊车梁、吊车桁架或类似结构,冬季计算温度等于或低于-20℃时的轻、中级工作制吊车梁、吊车桁架或类似结构,以及冬季计算温度等于或低于-30℃时的其它承重结构。 二、非焊接结构:冬季计算温度等于或低于-20℃时的重级工作制吊车梁、吊车桁架或类似结构。 注:冬季计算温度应按国家现行《采暖通风和空气调节设计规》中规定的冬季空气调节室外计算温度确定,对采暖房屋的结构可按该规定值提高10℃采用。 第2.0.3条承重结构的钢材应具有抗拉强度、伸长率、屈服强度(或屈服点)和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。承重结构的钢材,必要时尚应具有冷弯试验的合格保证。对于重级工作制和吊车起重量等于或大于50t的中级工作制焊接吊车梁、吊车桁架或类似结构的钢材,应具有常温冲击韧性的合格保证。但当冬季计算温度等于或低于-20℃时,对于3号钢尚应具有-20℃冲击韧性的合格保证;对于16Mn钢、16Mnq钢、15MnV钢或15MnVq钢尚应具有-40℃冲击韧性的合格保证。对于重级工作制的非焊接吊车梁、吊车桁架或类似结构的钢材,必要时亦应具有冲击韧性的合格保证。 第 2.0.4条钢铸件应采用现行标准《一般工程用铸造碳钢》中规定的ZG200-400、ZG230-450、ZG270-500或ZG310-570号钢。 第2.0.5条钢结构的连接材料应符合下列要求: 一、手工焊接采用的焊条,应符合现行标准《碳钢焊条》或《低合金钢焊条》的规定。选择的焊条型号应与主体金属强度相适应。对重级工作制吊车梁、吊车桁架或类似结构,宜采用低氢型焊条。

轴设计计算和轴承计算模板(实例)

【轴设计计算】 计算项目计算内容及过程计算结果 1. 选择材料该轴没有特殊的要求,因而选用调质处理的45号钢,可以查得 的其强度极限。(表12-1) 45号钢,调质处 理, =650MPa 2. 初估轴径 按扭转强度估算输出端联轴器处的最小直径,根据表12-11, 按45号钢,取C=110; 根据公式(12-2)有: 由于在联轴器处有一个键槽,轴径应增加5%,49.57+49.57 × 5%=52.05(mm);为了使所选轴径与联轴器孔径相适应,需要同 时选取联轴器。 Tc=K·T2=1.3×874.2=1136.46≤Tn查手册(课程 设计P238),选用HL4弹性联轴器J55×84/Y55×112GB5014-85。故 取联轴器联接的轴径为d1=55mm。 d1=55mm HL4弹性联轴器 Tn=1250 N·m [n]=4000r/min l =84mm 3. 结构设计 (1)轴上零件 的轴向定位 (2)轴上零件 的周向定位 根据齿轮减速器的简图确定轴上主要零件的布置图(如图所示) 和轴的初步估算定出轴径进行轴的结构设计。 齿轮的一端靠轴肩定位,另一端靠套筒定位,装拆、传力均较为 方便;两端轴承常用同一尺寸,以便于购买、加工、安装和维修; 为了便于拆装轴承,轴承处轴肩不宜过高(轴肩高h≥0.07d ),故 左端轴承与齿轮间设置两个轴肩,如下页图所示。 齿轮与轴、半联轴器与轴、轴承与轴的周向定位均采用平键联接 及过盈配合。根据设计手册,并考虑便于加工,取在齿轮、半联轴 器处的键剖面尺寸为b×h=18×11,(查表7-3)配合均采用H7/k6; 滚动轴承内圈与轴的配合采用基孔制,轴的尺寸公差为k6,如图所 示。 (3)确定各段 轴径直径和长 度 轴径:从联轴器开始向左取ф55(联轴器轴径)d1; d2 →ф63 (55+2×0.07 d1=62.7;取标准值,表12-10) d3→ф65 (轴颈,查轴承内径)(轴承) d4 →ф75 (取>65的标准值)(齿轮) d5 →ф85 (75+2×0.07 d4=85.5;取整数值) d6→ф74 (查轴承7213C的安装尺寸da) d7→ф65(轴颈,同轴两轴承取同样的型号)d7=d3 轴长:取决于轴上零件的宽度及他们的相对位置。半联轴器与轴配 合长度 =84mm,为使压板压住半联轴器,取其相应的轴长为 l1=82mm;选用7213C轴承,其宽度为B=23mm;齿轮端面至箱体壁间 的距离取a=15mm;考虑到箱体的铸造误差,装配时留有余地,取滚 动轴承与箱体内边距s=5mm;轴承处箱体凸缘宽度,应按箱盖与箱座 联接螺栓尺寸及结构要求确定,暂定:该宽度B3=轴承宽+(0.08~ 0.1)a+(10~20)mm,取为50mm;轴承盖厚度取为20mm;轴承盖 与联轴器之间的距离取为b=16 mm;已知齿轮宽度为 d1=55mm d2=63mm d3=65mm d4=75mm d5=85mm d6=74mm d7=65mm B=23mm a=15mm s=5mm B3=50mm b=16 mm l1=82mm l2 =16+21+(50-5-23) =59mm

钢结构18m梯形屋架设计实例

钢结构课程设计任务书 一、题目 某厂房总长度90m,跨度为18m,屋盖体系为无檩屋盖。纵向柱距6m。 1.结构形式:钢筋混凝土柱,梯形钢屋架。柱的混凝土强度等级为C30,屋 面坡度i=L/10;L为屋架跨度。地区计算温度高于-200C,无侵蚀性介质,屋架下弦标高为18m。 2.屋架形式及荷载:屋架形式、几何尺寸及内力系数(节点荷载P=1.0作用 下杆件的内力)如附图所示。屋架采用的钢材、焊条为:Q345钢,焊条为E50型。 3.屋盖结构及荷载 (1)无檩体系:采用1.5×6.0m预应力混凝土屋板(考虑屋面板起系杆作用)荷载:①屋架及支撑自重:按经验公式q=0.12+0.011L,L为屋架 跨度,以m为单位,q为屋架及支撑自重,以kN/m2为单 位; ②屋面活荷载:施工活荷载标准值为0.7kN/m2,雪荷载的 =0.35kN/m2,施工活荷载与雪荷 基本雪压标准值为S 载不同时考虑,而是取两者的较大值;积灰荷载为 0.7kN/m2 ③屋面各构造层的荷载标准值: 三毡四油(上铺绿豆砂)防水层 0.45kN/m2 水泥砂浆找平层 0.7kN/m2 保温层 0.4 kN/m2(按附表取) 预应力混凝土屋面板 1.45kN/m2 附图

(a) 18米跨屋架 (b)18米跨屋架全跨单位荷载几何尺寸作用下各杆件的内力值 (c) 18米跨屋架半跨单位荷载作用下各杆件的内力值 二、设计内容 1.屋架形式、尺寸、材料选择及支撑布置 根据车间长度、屋架跨度和荷载情况,设置上、下弦横向水平支撑、垂直

支撑和系杆,见下图。因连接孔和连接零件上有区别,图中给出W1、W2和W3 三种编号 (a)上弦横向水平支撑布置图 (b)屋架、下弦水平支撑布置图 1-1、2-2剖面图 2.荷载计算 三毡四油防水层0.45 kN/m2 水泥砂浆找平层0.7kN/m2 保温层0.4kN/m2 预应力混凝土屋面板 1.45kN/m2 屋架及支撑自重0.12+0.011L=0.318kN/m2 恒荷载总和 3.318kN/m2 活荷载0.7kN/m2 积灰荷载0.7kN/m2 可变荷载总和 1.4kN/m2 屋面坡度不大,对荷载影响小,未予以考虑。风荷载对屋面为吸力,重

(完整版)地下车库结构设计及计算实例

w 地下车库结构设计及计算实例 [摘要] 本文通过上海某楼盘地下车库的结构设计计算实例,参考了国内相应的规范和规程,并 比较与分析了不同的车库顶板以及基础设计方案。 [关键词] 地下室外墙;无梁楼盖;梁板式楼盖;筏板;抗冲切;抗剪;抗浮;地基承载力 本工程为上海某楼盘独立地下车库,地下一层,上部设绿化覆土带。车库顶板采用无梁楼 盖加柱帽结构,基础采用独立柱基加抗水板的做法。以下为该地下车库的设计计算分析过程: 一、抗浮验算 由于本工程为一层独立地下室,因此该地下车库需要进行局部抗浮计算,取单个混凝土柱 子进行验算。 水浮力 F w = w hA 其中,γ取 10KN/m 2 ;h 为地下室底板标高至地下水位标高之间的距离;A 为单根柱子所属 底板面积。 抗浮力∑G=(G 1+G 2+G 3+G 4)A+F 1+F 2+F 3 其中,G 1 为顶板上覆土重荷载(包括地下水自重); G 2 为顶板自重荷载;G 3 为底板自重荷载; G 4 为底板上素砼面层荷载;F 1 为柱自重;F 2 为顶板柱帽重;F 3 为底板柱帽重。(如有底板外挑压 土自重应考虑进行) 分别根据上海市工程建设规范《地基基础设计规范》[1] DGJ08-11-2010(以下简称《规范》) 12.3.2 条以及《高层建筑筏形与箱形基础技术规范》[2] JGJ6-2011 的 5.5.4 条规定,满足 1.05F ≤∑G 即无须设置抗拔桩。(取 1.05 为综合考虑有关规范规定所选取的经验值) 二、地基承载力验算 以基底持力土层的抗剪强度指标计算地基承载力(考虑深度修正),并以此计算值作为本次 设计的地基承载力设计值。 根据《规范》5.2.3-1 求得 f d = (1/ 2)N r r b + N q q 0 d + N c c C d 上部荷载作用下地基净反力为 ∑ N / A = w dh 应小于 f d ,(∑N 为基本组合)则地基承载力 满足要求。 三、地下室外墙计算 地下室外墙计算简图见下图,取外墙单位长度为计算单元。

钢结构设计计算书

《钢结构设计原理》课程设计 计算书 专业:土木工程 姓名 学号: 指导老师:

目录 设计资料和结构布置- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 1.铺板设计 1.1初选铺板截面 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 1.2板的加劲肋设计- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 1.3荷载计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 3.次梁设计 3.1计算简图- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 3.2初选次梁截面 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 3.3内力计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 3.4截面设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 4.主梁设计 4.1计算简图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 4.2初选主梁截面尺寸 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 5.主梁内力计算 5.1荷载计算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 5.2截面设计- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 6.主梁稳定计算 6.1内力设计- - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - 11 6.2挠度验算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13 6.3翼缘与腹板的连接- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13 7主梁加劲肋计算 7.1支撑加劲肋的稳定计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14 7.2连接螺栓计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14 7.3加劲肋与主梁角焊缝 - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - 15 7.4连接板的厚度 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15 7.5次梁腹板的净截面验算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15 8.钢柱设计 8.1截面尺寸初选 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 16 8.2整体稳定计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 16 8.3局部稳定计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 17 8.4刚度计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 17 8.5主梁与柱的链接节点- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 18 9.柱脚设计 9.1底板面积 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21 9.2底板厚度 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21 9.3螺栓直径 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21 10.楼梯设计 10.1楼梯布置 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 22

钢结构的计算方法

钢结构的计算方法 钢结构是未来发展的方向,土建算量的不会钢结构算量的大有人在,但日后如果再不会,就要谈谈自己的工资是涨不上去了。钢结构一直以来是与土建分开的,后来的劲钢结构及钢组合结构在施工的过程中,都是先有钢结构公司安装再有总包施工砼,如此以来接合也会慢慢的相近,有时候基本上融合在一起,我只能说我会做钢结构的算量,报价谈不上,因为我的经验不足。 钢结构是由钢板、角钢、槽钢、钢管和圆钢等热轧钢材或冷加工成型的薄壁型钢制造而成的结构。钢结构具有材料强度高、重量轻、安全可靠、制作简便等优点。在房屋建筑中,主要用于厂房、高层建筑和大跨度建筑。常见的钢结构构件有屋架、檩条梁、柱、支撑系统等。 1。算量最基本的就是看图纸,土建的人都烦钢构图纸的太乱,其实我也有这种看法,因为平法并没有用在其上面,图样还保留了一前土建制图的原则,所以做为老人看比较习惯(101 图集出之前的人),后来像我这样人看钢结构图纸真的看不习惯,不过没有办法,还是要习惯的,我们知道麻烦,但任何事情都有规律的,钢结构的详图结点相当的多,但这些变化真的在算的时候影响相当的小,重要是大的方向把握好,钢结构的结点图也是相当科学的,都和科学受力相对应。有许多是重复或对称等。认真的看都会看出来。对于图纸的特点,我会在下面讲 2。算重量,因为钢结构的算量基本上全是按吨计(板按 M2)。钢材钢材就是钢结构。而钢材多指型钢,对于型钢的分类算量的方法,我也会一一列出。并做出讲解。 3。统计汇总,哈哈,此类应该是不难的,以清单为基本,分类汇总而以了。 识图问路 1。我对钢结构的认识,应该比大家深一些,因为我毕业的时候就进了一家钢结构公司,工作不到两个月,经常的工作就是画一个图纸的钢构件,把这个钢构件看明白了,画出来,他们叫钢结构深化设计(细化方案)做加工所用,说白了,一张钢板怎么加工这样的东东的。我讲的图识别,其它就是 03G102 上面的东东,大家有机会可以去下载看一下。闲言碎语不多讲,说说吧,钢结构图应该怎么看不头痛。把握好看图不难的原则,其实很简单,比建筑的施工简单多了,因为他每个部分都有详图,哪里不明白了,就看此图有没有什么详图符号,有就找,其实我看明白的地方不是详图的地方,拿出来与原图一对就明白了,是什么柱,是什么梁就明白了许多。一. 钢结构 1 钢结构设计制图分为钢结构设计图和钢结构施工详图两阶段。 2 钢结构设计图应由具有设计资质的设计单位完成,设计图的内容和深度应满足编制钢结构施工详图的要求;钢结构施工详图(即加工制作图)一般应由具有钢结构专项设计资质的加工制作单位完成,也可由具有该项资质的其他单位完成。注:若设计合同未指明要求设计钢结构施工详图,则钢结构设计内容仅为钢结构设计图。 3 钢结构设计图 1)设计说明:设计依据、荷载资料、项目类别、工程概况、所用钢材牌号和质量等级(必要时提出物理、力学性能和化学成份要求)及连接件的型号、规格、焊缝质量等级、防腐及防火措施; 2)基础平面及详图应表达钢柱与下部混凝土构件的连结构造详图;

《钢结构设计禁忌及实例》资料

《钢结构设计禁忌及实例》 《钢结构设计禁忌及实例》 2010年11月02日 内容简介本书依据相干规范及工程实践经验,对钢结构设计中的一些误区和禁区进行了深进分析。书中第一先容了一些工程案例作为警示,进而按规范系统逐条列出r相干设计禁忌、算例以及对规范的修改提议等内容,提出哪些题目不能那样做,而应当如何做。本书内容翔实,实用性、对照性强,可供盛大结构设计职员利用,也供相干专业施工、科研、教学职员参考。 索引第1章钢结构工程违禁犯讳案例 【案例1.1】吊车分袂肢柱头的疲惫拉裂 【案例1.2】将门式刚架钢柱改为混凝土柱 【案例1.3】在多层建筑上扩建门式刚架轻钢结构 【案例1.4】过量积灰积雪 【案例1.5】在吊车梁上随意施焊 【案例1.6】重型平台柱头的剪切破坏 【案例1.7】电机与平台共振 【案例1.8】防锈油漆与防火涂料起化学反映 【案例1.9】柱脚抗剪键设置不到位 【案例1.10】门式刚架设计、施工、治理题目 【案例1.11】钢材选择或利用不当

【案例1.12】未分清钢结构设计图与施工图的关系 【案例1.13】在预应力高强度锚栓上出现焊点 【案例1.14】不留意柱脚锚栓d=72mm与M72的差别 【案例1.15】吊车梁轨道联接的经常损坏 【案例1.16】吊车梁端上部变形引起突缘支座纵向联接题目 【案例1.17】箱形吊车梁真个梁、柱节点过于刚劲 【案例1.18】插进式柱脚埋深未进行计算 【案例1.19】忽视施工运输安设阶段担保结构安稳和平安的临时举措【案例1.20】温度区段的不正常办理 【案例1.21】梁柱节点采用栓焊并用联接的差异算法 第2章选料 【禁忌2.1】对建筑结构钢材根本知识缺乏了解 【禁忌2.2】设计文件中对所引用的国家轨范没有所有、正确地表示【禁忌2.3】不熟悉经常用钢材的性能及特殊要求 【禁忌2.4】用建筑结构用钢板按号取代Q235等钢号的钢板 【禁忌2.5】对铸钢有哪些国家轨范不清楚 【禁忌2.6】对钢材及联接选料要求不足明白具体 【禁忌2.7】对钢结构联接要领一知半解 【禁忌2.8】不了解各种焊接选料的型号、表示办法和具体用途 【禁忌2.9】采用的焊接选料与母材不匹配 【禁忌2.10】对钢结构紧固件联接缺乏了解 【禁忌2.11】不深切理解钢材及其联接的各项强度设计值

钢结构工程量计算方法及规则

钢结构工程量计算方法及规则 金属结构工程 (一)钢屋架、钢网架 (1)按设计图示尺寸以钢材重量计算,不扣除孔眼、切边、切肢得重量,焊条、铆钉、螺栓等重量不另增加。 (2)不规则或多边形钢板,以其外接规则矩形面积计算。 (3)钢网架应区分球形结点、钢板结点等连接形式。 (4)计量单位为t。 (二)钢托架,钢桁架 (1)按设计图示尺寸以钢材重量计算。不扣除孔眼、切边、切肢得重量,焊条、铆钉、螺栓等重量不另增加。 (2)不规则或多边形钢板,以其外接矩形面积计算。 (3)计量单位为t。 (三)钢柱、钢梁 (1)按设计图示尺寸以钢材重量计算。不扣除孔眼、切边、切肢得重量,焊条、铆钉、螺栓等重量不另增加。 不规则或多边形钢板,以其外接矩形面积计算。 具体包括实腹柱、空腹柱、钢管柱、钢梁及钢吊车梁等。计量单位为t。 (2)依附在钢柱上得牛腿等并入钢柱工程量内。 (3)钢管柱上得节点板、加强环、内衬管、牛腿等并入钢管柱工程量内。 (4)设计规定设置钢制动梁、钢制动桁架、车挡时,其工程量应并入钢吊车梁内。 (四)压型钢板楼板,墙板

压型钢板楼板:按设计图示尺寸以铺设水平投影面积计算,柱、垛以及0.3m2以内孔洞面积不扣除。计量单位为m2。 压型钢板墙板:按设计图示尺寸以铺挂面积计算。0.3m2以内孔洞面积不扣除,包角、包边、窗台泛水等面积不另计算。计量单位为m2。压型钢板楼板浇筑钢筋混凝土,混凝土与钢筋按混凝土及钢筋混凝土中得有关规定计算。 (五)钢构件 钢构件一般计算规则如下: (1)按设计图示尺寸以钢材重量计算。如钢支撑、钢檩条、钢天窗架、钢墙架(包括柱、梁与连接杆件)、钢平台、钢走道、钢栏杆、钢漏斗、钢支架、零星钢构件等。不扣除孔眼、切边、切肢得重量,焊条、铆钉、螺栓等重量不另增加。 (2)不规则或多边形钢板,以其外接矩形面积计算。计量单位为t。 (六)金属网 按设计图示尺寸以面积计算,包括制作、运输、安装、油漆等。 屋面及防水工程 (一)瓦、型材屋面 按设计图示尺寸以斜面面积计算。不扣除房上烟囱、风帽底座、风道、小气窗、斜沟等所占面积,屋面小气窗得出檐部分亦不增加。计量单位为m2。小青瓦、油毡瓦、水泥平瓦、琉璃瓦、西班牙瓦等,可按瓦屋面项目列项。彩钢波纹瓦、彩钢保温板、阳光板、玻璃钢瓦等,可按型材屋面列项。 (二)屋面防水 1.卷材防水屋面、涂膜防水屋面

钢结构课程设计参考示例

参考实例: 钢结构课程设计例题 -、设计资料 某一单层单跨工业长房。厂房总长度为120m,柱距6m,跨度为27m。车间内设有两台中级工作制桥式吊车。该地区冬季最低温度为-20℃。 屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。上铺120mm 厚泡沫混凝土保温层和三毡四油防水层等。屋面活荷载标准值为0.6kN/㎡,雪荷载标准值为0.75kN/㎡,积灰荷载标准值为0.5kN/㎡。 屋架采用梯形钢屋架,其两端铰支于钢劲混凝土柱上。柱头截面为400mm ×400mm,所用混凝土强度等级为C20。 根据该地区的温度及荷载性质,钢材采用Q235―A―F,其设计强度f=215kN/㎡,焊条采用E43型,手工焊接。构件采用钢板及热轧钢劲,构件与支撑的连接用M20普通螺栓。 屋架的计算跨度:Lo=27000-2×150=26700mm,端部高度:h=2000mm(轴线处),h=2015mm(计算跨度处)。 二、结构形式与布置 屋架形式及几何尺寸见图1所示。 图1 屋架形式及几何尺寸

屋架支撑布置见图2所示。 符号说明:GWJ-(钢屋架);SC-(上弦支撑):XC-(下弦支撑); CC-(垂直支撑);GG-(刚性系杆);LG-(柔性系杆) 图2 屋架支撑布置图

三、荷载与内力计算 1.荷载计算 荷载与雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值 放水层(三毡四油上铺小石子)0.35kN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40kN/㎡保温层(120mm厚泡沫混凝土)0.12*6=0.70kN/㎡ 预应力混凝土大型屋面板 1.40kN/㎡ 钢屋架和支撑自重0.12+0.011×27=0.417kN/㎡管道设备自重0.10 kN/㎡ 总计 3.387kN/㎡可变荷载标准值 雪荷载0.75kN/㎡ 积灰荷载0.50kN/㎡ 总计 1.25kN/㎡ 永久荷载设计值 1.2×3.387=4.0644 kN/㎡(由可变荷载控制) 可变荷载设计值 1.4×1.25=1.75kN/㎡ 2.荷载组合 设计屋架时,应考虑以下三种组合: 组合一全跨永久荷载+全跨可变荷载 屋架上弦节点荷载P=(4.0644+1.75) ×1.5×6=52.3296 kN 组合二全跨永久荷载+半跨可变荷载 屋架上弦节点荷载 P=4.0644×1.5×6=36.59 kN 1 P=1.75×1.5×6=15.75 kN 2 组合三全跨屋架及支撑自重+半跨大型屋面板重+半跨屋面活荷载 P=0.417×1.2×1.5×6=4.5 kN 屋架上弦节点荷载 3 P=(1.4×1.2+0.75×1.4) ×1.5×6=24.57 kN 4 3.内力计算 本设计采用程序计算杆件在单位节点力作用下各杆件的内力系数,见表1。由表内三种组合可见:组合一,对杆件计算主要起控制作用;组合三,可能引起中间几根斜腹杆发生内力变号。如果施工过程中,在屋架两侧对称均匀铺设面板,则可避免内力变号而不用组合三。

UASB设计计算实例.pdf

UASB反应器的设计计算 1 设计参数 (1) 污泥参数 设计温度T=25℃ 容积负荷NV=8.5kgCOD/(m3.d) 污泥为颗粒状 污泥产率0.1kgMLSS/kgCOD, 产气率0.5m3/kgCOD (2) 设计水量Q=2800m3/d=116.67m3/h=0.032 m3/s。 (3) 水质指标 表5 UASB反应器进出水水质指标 水质指标COD(㎎∕L)BOD(㎎∕L)SS(㎎ ∕L) 进水水质3735 2340 568 设计去除率85% 90% / 设计出水水质560 234 568 2 UASB反应器容积及主要工艺尺寸的确定[5] (1) UASB反应器容积的确定 本设计采用容积负荷法确立其容积V V=QS0/NV V—反应器的有效容积(m3) S0—进水有机物浓度(kgCOD/L) V=3400 *3.735/8.5=1494m3 取有效容积系数为0.8,则实际体积为1868m3 (2) 主要构造尺寸的确定 UASB反应器采用圆形池子,布水均匀,处理效果好。 取水力负荷q1=0.6m3/(m2·d) 反应器表面积 A=Q/q1=141.67/0.6=236.12m2

反应器高度 H=V/A=1868/236.12=7.9m 取H=8m 采用4座相同的UASB反应器,则每个单池面积A1为: A1=A/4=236.12/4=59.03m2 取D=9mA 则实际横截面积 A2=3.14D2/4=63.6 m2 实际表面水力负荷 q1=Q/4A2=141.67/5 63.6=0.56 q1在0.5—1.5m/h之间,符合设计要求。 3 UASB进水配水系统设计 (1) 设计原则 ①进水必须要反应器底部均匀分布,确保各单位面积进水量基本相等,防止短路和表面负荷不均; ②应满足污泥床水力搅拌需要,要同时考虑水力搅拌和产生的沼气搅拌; ③易于观察进水管的堵塞现象,如果发生堵塞易于清除。 本设计采用圆形布水器,每个UASB反应器设30个布水点。 (2) 设计参数 每个池子的流量 Q1=141.67/4=35.42m3/h (3) 设计计算 查有关数据[6],对颗粒污泥来说,容积负荷大于4m3/(m2.h)时,每个进水口的负荷须大于2m2 则布水孔个数n必须满足пD2/4/n>2即n<пD2/8=3.14*9*9/8=32 取n=30个 则每个进水口负荷a=пD2/4/n=3.14* 9* 9/4/30=2.12m2 可设3个圆环,最里面的圆环设5个孔口,中间设10个,最外围设15个,其草图见图4 ①内圈5个孔口设计 服务面积: S1=5 *2.12=10.6m2 折合为服务圆的直径为:

钢结构焊接、螺栓连接计算及实例

第一节 钢结构的连接方法 钢结构是由钢板、型钢通过必要的连接组成基本构件,如梁、柱、桁架等;再通过一定的安装连结装配成空间整体结构,如屋盖、厂房、钢闸门、钢桥等。可见,连接的构造和计算是钢结构设计的重要组成部分。好的连接应当符合安全可靠、节约钢材、构造简单和施工方便等原则。 钢结构的连接方法可分为焊缝连接、铆钉连接和螺栓连接三种(详见附图十三)。 一、焊缝连接 焊接是现代钢结构最主要的连接方法。其优点是不削弱构件截面(不必钻孔),构造简单,节约钢材,加工方便,在一定条件下还可以采用自动化操作,生产效率高。此外,焊缝连接的刚度较大密封性能好。 焊缝连接的缺点是焊缝附近钢材因焊接的高温作用而形成热影响区,热影响区由高温降到常温冷却速度快,会使钢材脆性加大,同时由于热影响区的不均匀收缩,易使焊件产生焊接残余应力及残余变形,甚至可能造成裂纹,导致脆性破坏。焊接结构低温冷脆问题也比较突出。 二、铆钉连接 铆接的优点是塑性和韧性较好,传力可靠,质量易于检查和保证,可用于承受动载的重型结构。但是,由于铆接工艺复杂、用钢量多,因此,费钢又费工。现已很少采用。 三、螺栓连接 螺栓连接分为普通螺栓连接和高强度螺栓连接两种。普通螺栓通常用Q235钢制成,而高强度螺栓则用高强度钢材制成并经热处理。高强度螺栓因其连接紧密,耐疲劳,承受动载可靠,成本也不太高,目前在一些重要的永久性结构的安装连接中,已成为代替铆接的优良连接方法。 螺栓连接的优点是安装方便,特别适用于工地安装连接,也便于拆卸,适用于需要装拆结构和临时性连接。其缺点是需要在板件上开孔和拼装时对孔,增加制造工作量;螺栓孔还使构件截面削弱,且被连接的板件需要相互搭接或另加拼接板或角钢等连接件,因而比焊接连接多费钢材。 第二节 焊接方法、焊缝类型和质量级别 一、钢结构中常用的焊接方法 焊接方法很多,钢结构中主要采用电弧焊,薄钢板(mm t 3 )的连接有时也可以采用电阻焊或气焊。 1.电弧焊

相关主题