搜档网
当前位置:搜档网 › 射频滤波器的设计与仿真设计

射频滤波器的设计与仿真设计

射频滤波器的设计与仿真设计
射频滤波器的设计与仿真设计

射频滤波器的设计与仿真

摘要

射频滤波器,主要用于电子设备、频率高工作更大的衰减高频电子设备产生的干扰信号。射频滤波器是最基本射频设备。能够由微带线组成,也能够由电阻,电容等组成。

由实践可知,很多射频系统中的元件不存在准确频率选择性,因此往往需要添加滤波器,用来极其准确地完成设定的选择特性,所以对射频滤波器的设计有重要的意义。在射频有源电路的各级之间都可以借助滤波器对射频信号进行隔离、选择或是重新组合。

在设计模拟电路时,需要对高频信号在特定频率或频段内的频率分量做放大或衰减处理。这是十分重要的任务,因此本文将重点研究如何设计和实现这个任务的射频电路——射频滤波器。

关键词:射频,微波滤波器,微带线,workbench ,Advanced Design System;

The design and simulation of radio frequency filters

ABSTRACT

Rf filter, mainly used in electronic devices, high frequency work greater interference signal attenuation of high frequency electronic device. Rf filter is the most basic radio frequency devices. Can consist of microstrip line, also can by resistance, capacitance, etc.

The practice shows that a lot of rf components do not exist in the system accurate frequency selective, so often need to add the filter, used extremely accurately complete set of selected features, so the design of rf filter has an important significance. Between active rf circuit at all levels can use filter to segregate, choice or rearrange the rf signal.

In analog circuit design, the need for high frequency signal at a particular frequency or frequency component in the spectrum for amplification or decay process. It is very important task, so this article will focus on how to design and implement the task of rf circuit, rf filter. Keywords: R f, Microwave filter, Microstrip line, The workbench; ADS;

目录

第一章绪论 (1)

1.1 课题研究的背景及意义 (1)

1.2 国内外滤波器的研究现状及发展趋势 (2)

1.2.1 国内外滤波器的发展现状 (2)

1.3 论文组织 (3)

第二章射频滤波器 (4)

2.1 滤波器的分类 (4)

2.2 滤波器的主要参数 (4)

2.3 滤波器的综合设计和分析方法 (6)

2.3.1 综合设计方法 (6)

2.3.2 分析方法 (7)

2.4 常见的射频滤波器 (7)

第三章 worhbench设计与仿真 (9)

3.1 workbench软件介绍 (9)

3.2 模拟带通滤波器设计 (9)

3.2.1 设计目的 (9)

3.2.2 设计要求 (9)

3.3滤波器的设计原理及组件选择 (9)

3.3.1 滤波器介绍 (9)

3.3.2 有源滤波器的设计 (10)

3.3.3 滤波器类型的选择分析 (10)

3.3.4 741运算放大器 (12)

3.4.workbench电路仿真设计 (13)

3.4.1 仿真电路图: (13)

第四章微带滤波器的设计与仿真 (16)

4.1微带线 (16)

4.1.1 微带线传输的主模 (16)

4.1.2 微带线的特性参量 (16)

4.2耦合微带线 (16)

4.3微波谐振器 (18)

4.3.1 微波谐振器的基本参量 (18)

4.3.2 谐振腔的等效电路 (20)

4.4基本阻抗匹配理论 (20)

4.4.1匹配电路的概念和意义 (20)

4.4.2射频电路匹配网络 (21)

4.5 微带滤波器的设计与仿真 (21)

4.5.1 微带滤波器的基本原理 (21)

4.5.2 微带耦合滤波器的设计 (22)

4.5.3 电路参数设置 (22)

4.5.4 原理图仿真 (23)

4.5.5 滤波器电路的优化 (25)

4.6 本章小结 (28)

参考文献: (29)

第一章绪论

1. 1课题研究的背景及意义

根据电气和电子工程师协会对于频谱划分的方式,通常把频30MHz,--4GHz 的频段范围称为射频,另外处于300MHz~300GHz的频段范围。叫做微波。低频率比微波叫做窄频带,主要包含长、中、短等波、无线电频率(rf)在最广泛意义的是指300千赫~ 300GHZ频段范围内的电磁波,射频和微波频段。

过往的若干年期间,射频和微波在系统中的应用呈上升形式,其中原因主要由以下几个方面:

高频带带来了宽带的效应;

小体积的系统受益于相对小尺寸的器件;

有更多可利用而且不拥挤的频谱;

短波长促进了雷达系统的高分频率;

比较宽敞的信号之间,它们之间的干扰也小;

运行速度较高;

电子设备工作的快速发展,越来越多的高频电磁干扰频率、频率干扰一般会达到几百兆赫,甚至上GHz。由于电压或电流的频率越高,辐射会更有可能,它是高频干扰信号辐射干扰问题日益严重。因此,需要一个辐射衰减的高频信号有较大的filter。

由于卫星、移动和无线技术的不断发展,微波滤波器已变成射频微波领域的一个极其关键的部分。军事电子设备和国内电子设备都需要不同的形式,射频微波滤波器的功能多样性。因为每个滤波器普遍都存在自身的长处和不足,并依据实际使用和相对的技术指标对所需求的滤波器选择是必要的。

1.2国内外滤波器的研究现状及发展趋势

1.2.1国内外滤波器的发展现状

国内外发展状况:

国外:

在二十世纪初,美德的专家发明了LC滤波器,紧接着诞生了首个多回路复用系统;在1950年,日渐完善了无源滤波器的发展,在60年代,滤波器正是随着计算机技术、集成技术和材料工业的发展而迈向了相比之前更高水平,在向功率损耗低、高精度,小体格,多重功用,稳定,可靠性强以及便宜的价格的趋向发展;1978年,单片RC有源滤波器;随后几年,致力于钻研各种新式的滤波器,不遗余力提高性能和扩张使用范围;90年代,着重从事各种滤波器和各种产品的开发和应用。

国内:

大规模应用滤波器是从50年代后期开始的,当它比较多的使用是过滤以及提交是过滤的必经之路。经50多年的发展,开发和不断研究,过滤技术已纳入国际发展速度,但因为缺乏专业开发技术、集成过程以及材料产业发展缓慢,导致众多新类型的滤波器器的开发使用相比于国际发展仍然有一定差距。

在我们国家,大约1978名教师和研究生开始工作,是真正的自1980年以来,人们的注意。清华大学在1983年被制成一块现金流量表,成都大学工程和工厂,现金流量表还发展成一段。目前主要是要使用现金流量表应用和MOS工艺技术难题,由于使用者不理解,导致目前国内相关方面的应用不是很常见。

我国目前的滤波器类型和频率能够供大部分设备使用。总体来说,目前有源过滤器的技术比不上无源,因此尚未在国内大规模生产以及使用。可以从以下比例生产使用程序在各种滤波器:LC滤波器的应用(50%);晶体滤波器(20%);机械过滤器(15%);陶瓷滤波器谐波表面1%;其余的各种过滤器占13%。根据这些应用程序的使用情况显示,要使电子产品等产业在国内形成大规模的集成,其中滤波器的集成从始自终是一个关键任务。

1.3 论文组织

论文分为四个章节,从第一章开始依次为:

第一章,讲述射频滤波器的背景、研究意义以及滤波器的国内外发展状况

第二章,阐述相关滤波器的类别、主要参数、分析方法等,以及常见的几种射频滤波器。

第三章,简单介绍了软件workbench以及模拟带通滤波器的设计原理,算法及仿真图表与分析。

第四章,微带线理论知识、基本参量,微波谐振器等。ADS软件仿真及其优化。

第二章 射频滤波器

2.1滤波器的分类

存在许多类型的射频滤波器,可以从相关角度进行类别划分。总体来说,重要的划分有下面几个:

(1)按信号通过的频段可以分为:低通、高通、带通以及带阻滤波器,在理想状态下,各自的频率响应图下示:

(2)按照不同传递函数的逼近可以分为:巴特沃斯滤波器、切比雪夫滤波器和椭圆函数滤波器。这几种原型滤波器的衰减响应如图。

(3)按照原型可以分为:分布参数原型滤波器和集总参数原型滤波器。

(4)按照实现方式可以分为:无源、有源、晶体和声面表波滤波器。

2.2 滤波器的主要参数

1.中心频率:

以滤波器通频带的频率f0 f0 =(f1和f2)/ 2,f1,f2带通或带阻filter 左和右相对衰落频率点1 dB 或3 dB 。窄带filter 通常集中在插入损耗的最小点作为中心频率。

2.通带宽度(或带宽)

是指对应于三分贝衰减的频率差,表达式是:

dB 3BW =dB 3u f -3dB 1f

3.插入损耗

频谱宽度需要由BWxdB =(f2 - f1)。F1,f2的中心。频率f0以插入损耗为准,

下跌X(分贝)频率所对应于左边频点和右边频点。由于filter 原始信号在电路的引入,处于中心或截止频率的衰减损失特性,比如要求所有带内插入损耗应强调。

4.纹波

可以用响应幅度最大小值之间的差来表示衡量通带内信号响应的平坦度情况。单位用dB 或奈贝表示。

5.回波损耗(或反射损耗)

端口信号的输入功率和反射功率之比的分贝数(dB),为20 log10 |ρ|,其中ρ是电压反射系数。当端口把输入功率整个吸收时所有回波损耗是无限的

6.群时延

波产生的传输延迟,它的值是在一定频率相位(相移)的变化率频率、一阶导数的频率的阶段。假设在一个频率范围内,相位特性曲线是一条直线,然后群延迟是一个常数,则肯定不能生成失真的信号包络。

在滤波器的这些参数里、插入损耗和回波损耗,是一个微波网络矩阵(S)和散射矩阵的值,因此能够考虑把滤波器作为二端口网络来分析。

散射矩阵(S)着重反映了端口事件中,入射电压波和反射电压波之间的联系,所以能够直接使用矢量分析仪进行测量,还能够利用网络分析计算。一旦你知道网络的S 参数,然后就能够把它转换为其他矩阵参数(如阻抗矩阵以及导纳矩阵等等)。因此,微波网络的S 参数是非常重要关键的一个参量。微波可以被认为是一个二端口网络,所以利用功率分析的关系,可如图(2.2.1)所示:

图(2.2.1)

图中, in P 是入射功率, R P 是反射功率, A P 是通过滤波器的功率, L P 是负载功率。根据能量守恒关系:

in P =R P +A P

经过滤波器的功率A P ,负载会吸收掉一部分的功率,即负载功率L P ,因此可以得到:

L P ≤A P

如果滤波器无损耗,则L P =A P ;如果输入端又无反射, R P =0,则L P =in P 。11s 和21s 用分贝(dB )表示如下: B P P IL L d lg 10in ??? ?

?-= B P P RL d lg 10in R ???

? ??-= 再由电压的关系分析,假设+n V (n=1,2)表示入射到 n 端口的电压波振幅,-n V (n=1,2)表示经过 n 端口反射的电压波振幅。则通过入射的电压波和反射电压波的关系就可得出散射矩阵或【S 】矩阵:

ii S 表示当所有端口接匹配负载时从i 端口看去的反射系数; ij S 则为当所有端口连接匹配负载时从 端口j 到端口i 的传输系数。

假设端口2 接匹配负载,则inc P 和L P 分别表示端口1 和端口2 的功率,与端口电压成平方关系,插入损耗IL 是21S 的分贝表示形式。反射系数 就是11S ,回波损耗也就是11S 的dB 表示形式。

2.3 滤波器的综合设计和分析方法

2.3.1 综合设计方法

滤波器的综合设计方式有插入损耗法和镜像参量法两种 。

插入损耗的方法是使用一个系统的集成实现频率响应方法,所以它可以控制

在通带和阻带相位和振幅特征,设计一个完整的滤波器频率响应。起始的归一化频率和阻抗低通滤波器原型,通过转换,将其转换为所需的滤波器,而且还简化了设计程度。

镜参数方法是一种ABCD参数基于两端口网络分析方法的过滤输入/输入。主要是通过比较容易的级联两个滤波器,从而达到需要的衰减特性和截止频率,但是它不提供全部工作频率范围内的频率响应的具体属性。其中,插入损耗法便是最常见的现代滤波器设计的方式。

综合方法如图(2.2.2)所示:

图(2.2.2)

2.3.2 分析方法

滤波器常用分析方法有:微波网络理论、微带线理论、腔体理论、有限元法(FEM)、矩量法(MoM)以及时域有限差分法。其中微波网络理论、传输线理论和腔体理论属于传统的分析方法,而后面三种则属于数值分析方法。

2.4 常见的射频滤波器

现在常见射频滤波器为下面的几个:

1.体波及声表面波滤波器

特点是插入损耗低、带外抑制较高、频率响应平坦、体积小、承受功率高、整合兼容性高,另外品质因数高,温度特性优良,因此应用比较广泛,但是主要适合窄带应用。

2.波导滤波器

最早出现,具有低插入损耗、高功率容量、结构简单、良好的频率选择性等特点,在射频频段体积较大,成本较高。

3.介质滤波器

具有低损耗、高介电常数、频率温度系数和热膨胀系数小、可承受高功率等特点,但是由于工艺水平较低和加工成本过高,应用并不是很普遍。主要包括陶瓷、晶体等滤波器。

4.同轴线滤波器

通带插入损耗低、结构紧凑,但当工作频率变高时,尤其是超过10GHz 时,其加工误差带来的的影响是不容忽视的。

5.微带滤波器

具有结构简单,体积小,容易和电路集成,容易加工和低成本等。它主要是通过采用不同的介质衬底,形成输电线路,使其适用的频率范围宽。正是由于这些特点,它是常见的无线电频率滤波器。

2.5 本章小结

本章主要写了滤波器的分类、重要参数、设计方式,以及几种常见射频滤波器。

分析滤波器的插入损耗和回波损耗两个参数,优化设计滤波器仿真提供了一部分理论基础。

第三章 worhbench设计与仿真

3.1 workbench软件介绍

Electronic Workbench是一种电子电路仿真的软件,能够演示各种电路工作状态,模拟各种各样电路以及缩放其显示出来的波形。目前Electronic Workbench 已经是一种经典灵巧,比较好用而且能够准确描述电路波形的模拟数字电路仿真软件。

Electronic Workbench包括:函数发生器,示波器、数字万用表、光谱仪、…首先设计好电路,连接好电路和仪器,设定好所有仪器的参数设置,调整电源电压,开关电源。它能够演示各种电路工作的状态,能够模拟各种电子电路,能够放大显示的波形,能够仿真数字电路,模拟电路和数字电路(线性)与模拟(线性)电路的工作点,例如波形、频率、周期、有效值,等等。。

3.2 模拟带通滤波器设计

3.2.1设计目的

1.了解有源滤波器和无源滤波器的设计方式以及内容过程。

2娴熟的掌握仿真软件(工作台或电路仿真)电路设计以及运行仿真结果。 3设计电路仿真和微波组件来构建相应的电路。

4结合目前已有的仪器和仪表对系统调试。

5.掌握理论联系实践的方法。

3.2.2 设计要求

设计一个低通滤波器,是有源二阶,并且最高截止频率为2KHz,通带电压放大倍数为2,当频率为10KHz时,幅度衰减量高于30分贝。

3.3滤波器的设计原理及组件选择

3.3.1滤波器介绍

滤波器是一种用于使不同的频率信号进行分离的组件。滤波器的关键作用是为了抑制不需要的信号,让其无法通过滤波器,只让需要的信号通过。事实上许多微波组件都有特定的频率特性,可以使用滤波器的理论进行分析。源于集中参数

滤波器理论相对健全,因此,虽然微波滤波器在很多方面都有自己的特点,但是在一定的频率范围内,分析微波滤波器的特点,可以使用相应的集总等效电路进行了分析。因此,对于很大部分的微波滤波器,能够采用集总参数滤波器的设计原则以及处理方式,再根据得到的分析结果,在具体的微波结构形式中充分显现。

现在用单端口,双端口网络的理论知识进行微波滤波器的设计,开发。由于在设计模拟电路时,需要对高频信号在特定的频率或频段内的频率分量做放大或衰减的处理,因此必须研究如何实现模拟信号的滤波。

3.3.2 有源滤波器的设计

有源滤波器的设计,它是依据给定指标的要求,确定滤波器的阶数n,选择相应具体的电路形式,计算电路中每个元素的具体数值,对电路进行安装以及调试,使滤波器满足设计指标的要求,具体内容下示:

(1)确定滤波器的阶数,主要是由阻带衰减速率要求来作为确定依据。

(2)选择具体的电路形式。

(3)建立一个系数方程,利用电路的传递函数以及归一化分母多项式滤波器的传递函数。

(4)对方程组进行求解,求出电路中各个元件的数值。

(5)对电路进行安装以及调试,确保电路性能达到要求的指标。

3.3.3滤波器类型的选择分析

我们选择巴特沃斯滤波器电路。因为这种滤波器的衰减曲线不存在波纹,其特点是通频带内的频率响应曲线呈最大限度平坦,起伏微乎其微,却在阻频带逐渐降低,直至变成零。由于要求30 分贝/八度,选取二阶有源低通滤波器电路,其中n = 2。

有源二阶low pass filter的电路如图(3.3.1)所示,压控电压源二阶滤波电路的特点是:运算放大器是同相连接的方式,使滤波器为高输入阻抗、输出阻抗很低,滤波器等效为电压源,它的优势是电路性能稳定,增益只需要简单的调整。

图(3.3.1)

在集成运算放大器输出之间的集成运放同相输入之中接入一个负面的反馈,处于不同的频段,其反馈的极性也是不一样的,当信号频率f > > fc 截止频率(fc),每级RC 电路的移相- 90度,两个级别的RC 电路的相移- 180度,电路的输出电压和输入电压反相,所以通过电容C 引到集成运算放大器同相位的端口的反馈是负面的反馈,反馈信号会减弱输入信号的作用,减少电压放大倍数,所以反馈将使二阶有源低通滤波器快速衰减振幅高频率端的频率特征,只让低频信号通过。巴特沃斯低通滤波器的性能·参数公式是:

公式中uo A 是通带内的电压放大倍数,Q 是品质因子,c 是截止角频率,。

电路元器件值表

①截止频率c f =2Khz ,C=0.01uF;

②增益v A =2,1C =C=0.01uF;

③为了得到相对应 的电阻值,需要求出k 值,由k 值与相应的'R 相乘求得R ;而K=100/(c f *C ).

我们取K=5,由公式③及电路元器件值表中Av=2得R1=1.126*5=5.63k Ω,取R1为5.6k Ω;R2=2.25*5=11.25k Ω,取R1为11k Ω;R3=R4=33.76k Ω,取33k Ω。将其代到设计值,则可以得到相应的电路图,如图(3.3.2)所示:

图(3.3.2) 低通filter 实验的电路图 3.3.4.741运算放大器

741高增益运算放大器

741芯片是增益运算放大器,往往在军工业和商业应用等领域有广泛的应用,,例如单片硅集成电路可以提供输出短路保护以及闭锁自由操作。其中:第2管脚是负输入端;

第3管脚是同相位端口中的输入端;

第4管脚是负直流源输入端,第7管脚是正直流源输入端;

第6管脚为输出端;第8管脚是悬空端;

第1和第5管脚则是为了提高运算中的精度。

在操作之前,应该首先把直流输出电位调零,确保在输入为零的时候,输出是零,当运算放大器输入外部有零终端接入时,可以按照需求的组件连接调零电位计R3,在调整为零,将输入端接地,电位器R3接入调零端,输出电压与直流电压表测量Uo,仔细调整电位器,让Uo变为零(失调电压为0)。

3.4.workbench电路仿真设计

3.4.1仿真电路图:

图(3.4.1)有源低通filter仿真电路

在仿真软件workbench对其电路进行仿真工作后,得出滤波器的频域特性曲线,可以得到最后的仿真结果,如下图(3.4.2)所示:

图(3.4.1)

从图(3.4.1)中可以看出,该设计所需要的仿真效果大致达到。

第四章 微带滤波器的设计与仿真

4.1微带线

微带线作为最广泛应用于微波传输线的集成电路。它可以印刷在非常薄的介质衬底,它的横截面积大小与波导相比,同轴电缆要小很多。与其它波导相比,同轴电缆组件,大大减少体积,重量,大大简化了电路的技术和结构。

它是一种准TEM 波传输线,计算更为复杂,但结构相对比较简单。由于它是方便安装以及调试、电路过渡程度高,所以是选择射频|微波电路的设计的首要选择。

微带结构主要用于做低阻抗传输线,为了保证信号传输时的低功率损耗,低迟延,在选择基板材料时,需要选择介电常数合适的,另外介质损耗角的正切需要比较小,要对其进行严格尺寸计算和加工。

4.1.2微带线传输的主模

微带线的空气介质,是双导体系统,并且导体周围存在统一的空气,所以它可以无色散三TEM 模式存在。但事实上介质基片微带线生产,尽管它仍然是双导体系统,却源于空气介质和介质界面的存在,让问题变得比较复杂化。利用电磁场理论,可以证明得到在两种不一样介质的传输系统中,纯TEM 模式是不存在,只存在TE 模式和TM 模式的混合模式。但在微波频率低的频段,由于存在弱色散现象,传输模式只能类似于TEM 模式。所谓准TEM 模式。

4.1.3微带线的特性参量

,微带线通常工作在弱色散区,它的工作模式,TEM 模式的分析根据分析,一种“准静态分析”的方式。

有之前分析可知TEM 模传输线的特性阻抗,它的计算表达公式为: 0

p 0v 1C Z 因此只需要一个微带线的相速度和单位长度电容分布,就可以计算出微带线的特性阻抗。

4.2耦合微带线

射频低通滤波器设计示例

射频电路设计示例 设计任务: 用两种方法设计一个输入、输出为50Ω的低通滤波器,滤波器参数为: (1) 截止频率为3Ghz (2) 在通带内,衰减小于3dB (3) 在通带外,当归一化频率为2时,损耗不小于50dB (4) 相速为光速的60% 设计要求: (1)画出滤波器的电路图。 (2)用微带线实现上述的功能,并画出微带线的结构尺寸。 (3)画出0--3.5Ghz 的衰减曲线。 (4)给出设计的源代码本,利用具体软件(如Matlab, MW- office, ADS 、HFSS 、IE3D 等)操作方法及步骤。 方法一: 切比雪夫滤波器设计: Step1: 画出滤波器的电路图。由课本(p151)知滤波器阶数应为N=5。归一化参数为:g g 514817.3==,g g 427618.0==,5381.43=g 集中参数为:4817 .35 1 == C C ,5381 .43 =C ,2296 .14 2 == L L 图1 归一化5阶低通滤波器电路原理图 Step2:将集中参数变换成分布参数(Richards 变换:电感用短路线代,电容用开路线代): g Y Y 1 51 = =,g Z Z 2 4 2 = = ,g Y 3 3 = 。

图2 (O.C =开路线,S.C=短路线) Step3:将串联线段变为并联线段—Kuroda 规则(P162表5.6)。首先在滤波器的输入、输出端口引入两个单位元件。 因为单位元件与信号源及负载的阻抗都是匹配的,所以到入它们并不 影响滤波器的特性。对第一个并联的短线和最后一个并联短线应用Kuroda 规则-1后得: 2872.12872.014817 .3112 1 =+=+ == N N , 2231.02872.14817.31 ' ' 2 1 =?= = Z Z UE UE 7769.02872 .1151=== ' ' Z Z S S

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

实验一 交叉耦合滤波器设计与仿真(材料详实)

实验一 交叉耦合滤波器设计与仿真 一、 实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S 参数 二、 实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、 实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N )表示各谐振腔的回路电流,Mij 表示第i 个谐振腔与第k 个谐振腔之间的互耦合系数(i,j=1,2,…,N ,且i ≠j)。在这里取ω0=1,即各谐振回路的电感L 和电容C 均取单位值。Mkk (k=1,2,3,…,N )表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示: ...1F 1/2H 1/2H 1/2H 1/2H 1/2H 1/2H 1H 1F 1F 1F ...i 1 i 2 i k i N i N M N ,1M k 1M kN M N 1 ,2-M 12 M k 2M N k 1 ,-M N N ,1-e 1 R 1 R 2 1F 1H 这个电路的回路方程可以写为 ?? ? ??? ? ?? ? ???????????????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,3231321,22312 11,11312110000M Λ ΛM M ΛM M M ΛΛΛM 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j

微带低通滤波器的设计与仿真

微带低通滤波器的设计与仿真 分类: 电路设计 嘿嘿,学完微波技术与天线,老师要求我们设计一个微带元器件,可以代替实验室里的元器件,小弟不才,只设计了一个低通滤波 器。现把它放到网上,以供大家参考。 带低通滤波器的设计 一、题目 第三题:低通滤波器的设计 f < 800MHz ;通带插入损耗 ;带外 100MHz 损耗 ;特性阻抗 Z0=50 Ohm 。 二、设计过程 1、参数确定:设计一个微带低通滤波器,其技术参数为 f < 800MHz ;通带插入损耗;带外100MHz 损耗;特性阻抗Z0=50 Ohm 。 介质材料:介电常数 £r = 2.65,板厚 1mm 。 2、设计方法:用高、底阻抗线实现滤波器的设计,高阻抗线可以等效为串联电感,低阻抗线可以等效为并联电容,计算各阻抗线的 宽度及长度,确保各段长度均小于 X /8(入为带内波长)。 3、设计过程: (1)确定原型滤波器:选择切比雪夫滤波器, ?s = fs/fc = 1.82 , ?s -1 = 0.82及Lr = 0.2dB , Ls >= 30,查表得N=5,原型滤波器的归 一化元件参数值如下: g1 = g5 = 1 .3394, g2 = g4 = 1.3370,g3 = 2.1660,gL= 1 .0000。 该滤波器的电路图如图 1 所示: O H 技术参数: 仿真软件: HFSS 、 ADS 或 IE3D 介质材料: 介电常数 £ r = 2.65板厚1mm

(2)计算各元件的真实值:终端特性阻抗为Z0=50?,则有 C1 = C5 =g1/(2*pi*f0*Z0) = 1.3394/(2*3.1416*8*10^8*50) = 5.3293pF , C3 = g3/(2*pi*f0*Z0) = 2.1660/(2*3.1416*8*10^8*50)= 8.6182pF , L2 = L4 = Z0*g2/(2* pi*f0) = 50*1.3370/(2*3.1416*8*10^8) = 13.2994nH。 (3)计算微带低通滤波器的实际尺寸: 设低阻抗(电容)为Z0I = 15?。 经过计算可得W/d = 12.3656, £ e = 2.443,贝U 微带宽度W1 = W3 = W5 = W = 1.000*12.3656 = 12.3656mm , 各段长度I1 = I5 = Z0I*V pl *C1 = 15* 3*10A11/sqrt(2.4437)*5.3293*10A-12 =15.3412mm, I3 = Z0I*V pl*C3 = 15* 3*10A11/sqrt(2.4437)*8.6182*10A-12 =24.8088mm, 可知各段均小于入/8符合要求。 设高阻抗(电感)为Z0h = 95? 。 经过计算可得W/d =0.85,£ e = 2.0402则 微带宽度W2 = W4 = W =1.0000*0.85 =0.85mm , 各段长度l2 = l4 = Vph*L2/Z0h = 29.4031mm , 带内波长入=Vpl/f = 3*10^11/(sqrt(2.0402)*8*10^8) = 262.5396mm,入/8 = 32.8175mm 可知各段均小于入/8符合要求。

射频滤波器如何正确选取 看完全懂了

射频滤波器如何正确选取,看完全懂了 随着移动设备功能越来越强大,支持的网络频段越来越多,射频前端模块成了移动设备中不可缺少的一部分。举例来说,一款较新的手机至少需要支持2G,3G,4G以及WiFi,GPS等网络制式,而每一个制式都需要自己的射频前端模块。射频前端模块一般包括天线开关,多路器,滤波器,功率放大器与低噪声放大器等等。这些器件目前仍无法用集成度最高的CMOS工艺制造,而必须使用特殊工艺以保证性能。 根据Mobile Expert LLC的研究报告,2016年在智能手机增长萎靡(9%)的情况下,射频前端模块的增长率仍达到了17%。而在射频前端模块中,未来发展最快的,也最关键的模块就是射频滤波器模块。 滤波器到底有多重要 随着无线通讯应用的发展,人们对于数据传输速度的要求也越来越高。在2G时代,只有一小部分人会使用手机上网下载铃声或浏览wap版网页,需要的数据率大约在1KB/s。在3G时代,随着智能手机的普及,使用运营商网络上

网收发邮件,使用各种app等使得网络流量剧增,需要的数据率大约是50KB/s。到了4G时代的今天,直播等应用更是将手机通讯的带宽需求推向了一个新的高度,需要的数据率达到了1MB/s。 与数据率上升相对应的是频谱资源的高利用率以及通讯协议的复杂化。这两个问题是相辅相成:由于频谱资源有限,为了满足人们对数据率的需求,必须充分利用频谱,因此一部手机必须能够覆盖很宽的频带范围,这样在人群拥挤的情况下不同人的设备才能够分配到足够的频谱带宽。同时,为了满足数据率的需求,从4G开始还使用了载波聚合技术,使得一台设备可以同时利用不同的载波频谱传输数据。 另一方面,为了在有限的带宽内支持足够的数据传输率,通信协议变得越来越复杂,因此对于射频系统的各种性能也提出了严格的需求。 在射频前端模块中,射频滤波器起着至关重要的作用。它可以将带外干扰和噪声滤除以以满足射频系统和通讯协议对于信噪比的需求。如前所述,随着通信协议越来越复杂,对于通讯协议对于频带内外的需求也越来越高,这也

选用射频滤波器(馈通滤波器、穿心电容)的方法

选用射频滤波器(馈通滤波器、穿心电容)的方法随着电子设备工作频率的迅速提高,电磁干扰的频率也越来越高,干扰频率通常会达到数百MHz,甚至GHz以上。由于电压或电流的频率越高,越容易产生辐射,因此,正是这些频率很高的干扰信号导致了辐射干扰的问题日益严重。因此,对用来解决辐射干扰的滤波器的一个基本要求就是要能对这些高频干扰信号有较大的衰减,这种滤波器就是射频干扰滤波器。普通干扰滤波器的有效滤波频率范围为数kHz 数十MHz,而射频干扰滤波器的有效滤波频率范围从数kHz到GHz以上。 按照传统方式构造的滤波器不能成为射频滤波器。这是由于两个原因:第一个原因是:图1中的旁路电容寄生电感较大(导致串联谐振,增加了旁路阻抗),导致电容器在较高的频率并不具有较低的阻抗,起不到旁路的作用。第二个原因是:滤波器的输入端和输出端之间的杂散电容导致高频干扰信号耦合,使滤波器对高频干扰失去作用。解决这个问题的方法是用穿心电容作为旁路电容。穿心电容具有非常小的寄生电感,旁路阻抗非常小,并且由于采用隔离安装方式,消除了输入输出端之间的高频耦合。 本样本中的各种射频滤波器都是基于穿心电容制造的,并且安装方式都是馈通形式的(输入与输出被金属板隔离)。 虽然本样本中的射频滤波器品种很多,但是每一种型号在设计时都考虑了具体使用场合的要求,使设计师能够在性能、体积、成本等方面获得满意的结果。选择射频滤波器需要考虑的因素有:

截止频率:滤波器的插入损耗大于3dB的频率点称为滤波器的截止频率,当频率超过截止频率时,滤波器就进入了阻带,在阻带,干扰信号会受到较大的衰减。根据使用滤波器的场合不同(信号电缆滤波还是电源线滤波),可以用两个方法来确定滤波器的截止频率。在对信号电缆进行滤波时,根据有效信号的带宽来确定,截止频率要大于信号的带宽,这样才能保证有用信号不被衰减。在对电源线或直流信号线,滤波时,由于有效信号的频率很低,信号失真的问题不是主要因素,因此主要根据干扰信号的频率来定,要使干扰频率全部落在滤波器的阻带内。滤波器的截止频率越低,滤波器的尺寸越大,价格越高,因此没有必要时(干扰的频率不是很低时),不要盲目选用截止频率过低的滤波器。 插入损耗:指滤波器在阻带的损耗数值(dB),每一种滤波器都有一张插入损耗与频率对应的表格,选用滤波器时,根据干扰信号的频率和需要衰减的程度确定对插入损耗的要求。需要注意的一点是,产品样本上给出的插入损耗是在50 系统中测量的,实际使用条件如果不是50 ,插入损耗会有差异。 额定电压:滤波器在正常工作时能够长时间承受的电压,要注意正确选用直流和交流品种,在交流应用场合绝对不能使用直流的品种,否则容易发生击穿。由于几乎所有的电磁兼容试验都有脉冲干扰的项目,因此在选用滤波器时要考虑这种高压脉冲干扰的作用,耐压值需要留有一定的富裕量。 额定电流:滤波器在正常工作时能够长时间流过的电流值,额定

微波射频滤波器归类

摘要:按微波滤波器的传输线的种类进行了分类,并按照这种分类方法对各种微波滤波器的性能指标、设计方法进行了详细的介绍。 关键词:微波滤波器;性能指标;设计方法 前言:随着现代微波通信,尤其是卫星通信和移动通信的发展,系统对通道的选择性越来越高,这对微波滤波器的设计提出了更高的要求,而微波滤波器作为通信系统中的重要部分,其性能的优劣往往决定了整个通信系统的质量。因此研究微波滤波器的性能指标和设计方法具有重要意义。 微波滤波器是一类无耗的二端口网络,广泛应用于微波通信、雷达、电子对抗及微波测量仪器中,在系统中用来控制信号的频率响应,使有用的信号频率分量几乎无衰减地通过滤波器,而阻断无用信号频率分量的传输。滤波器的主要技术指标有:中心频率,通带带宽,带内插损,带外抑制,通带波纹等。 微波滤波器的分类方法很多,根据通频带的不同,微波滤波器可分为低通、带通、带阻、高通滤波器;按滤波器的插入衰减地频响特性可分为最平坦型和等波纹型;根据工作频带的宽窄可分为窄带和宽带滤波器;按滤波器的传输线分类可分为微带滤波器、交指型滤波器、同轴滤波器、波导滤波器、梳状线腔滤波器、螺旋腔滤波器、小型集总参数滤波器、陶瓷介质滤波器、SIR(阶跃阻抗谐振器)滤波器、高温超导材料等。本文是按照传输线的分类来对各种微波滤波器的主要特性进行详尽的分析。 一、微带滤波器 主要性能指标: 频率范围:500MHz~6GHz 带宽:10%~30% 插入损耗:5dB(随带宽不同而不同) 输入输出形式:SMA、N、L16等 输入输出驻波:1.8:1 微带滤波器主要包括平行耦合微带线滤波器、发夹型滤波器、微带类椭圆函数滤波器。 半波长平行耦合微带线带通滤波器是微波集成电路中广为应用的带通滤波器形式。其结构紧凑、第二寄生通带的中心频率位于主通带中心频率的3倍处、适应频率范围较大、适用于宽带滤波器时相对带宽可达20%。其缺点为插损较大,同时,谐振器在一个方向依次摆开,

巴特沃斯滤波器的设计与仿真

信号与系统课程设计 题目巴特沃斯滤波器的设计与仿真 学院英才实验学院 学号2015180201019 学生姓名洪 健 指导教师王玲芳

巴特沃斯滤波器的设计与仿真 英才一班 洪健 2015180201019 摘 要:工程实践中,为了得到较纯净的真实信号,常采用滤波器对真实信号进行处理。本文对巴特沃斯模拟滤波器的幅频特性、设计方法及设计步骤进行了研究,并利用Matlab 程序和Multisim 软件,设计了巴特沃斯模拟滤波器,并分析了巴特沃斯模拟滤波器的幅频特性。利用 Matlab 程序绘制了巴特沃斯模拟滤波器的幅频特性曲线,并利用Matlab 实现了模拟滤波器原型到模拟低通、高通、带通、带阻滤波器的转换。通过Multisim 软件,在电路中设计出巴特沃斯滤波器。由模拟滤波器原型设计模拟高通滤波器的实例说明了滤波器频率转换效果。同时通过电路对巴特沃斯滤波器进行实现,说明了其在工程实践中的应用价值。 关键词:巴特沃斯滤波器 幅频特性 Matlab Multisim 引言 滤波器是一种允许某一特定频带内的信号通过,而衰减此频带以外的一切信号的电路,处理模拟信号的滤波器称为模拟滤波器。滤波器在如今的电信设备和各类控制系统里应用范围最广,技术最为复杂,滤波器的好坏直接决定着产品的优劣。滤波器主要分成经典滤波器和数字滤波器两类。从滤波特性上来看,经典滤波器大致分为低通、高通、带通和带阻等。 模拟滤波器可以分为无源和有源滤波器。 无源滤波器:这种电路主要有无源元件R、L 和C 组成。有源滤波器:集成运放和R、C 组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink 两大部分。 Multisim10 是美国NI 公司推出的EDA 软件的一种,它是早期EWB5.0、Multisim2001、Multisim7、Multisim8、Multisim9等版本的升级换代产品,是一个完全的电路设计和仿真的工具软件。该软件基于PC 平台,采用图形操作界面虚拟仿真了一个如同真实的电子电路实验平台,它几乎可以完成实验室进行的所有的电子电路实验,已被广泛应用于电子电路的分析,设计和仿真等工作中,是目前世界上最为流行的EDA 软件之一。 本文主要对低通模拟滤波器做主要研究,首先利用MATLAB 软件对巴特沃斯滤波器幅频特性曲线进行研究,并计算相应电路参数,最后利用Multisim 软件实现有源巴特沃斯滤波器。 正文 1巴特沃斯低通滤波器 巴特沃斯(Butterworth)滤波器的幅频特性如该幅频特性的特点如下: ① 最大平坦性。可以证明,在ω=0处,有最大值|H(0)|=1,幅频特性的前2n-1阶导数均为零。这表示它在ω=0点附近是很平坦的。 ② 幅频特性是单调下降的,相 频 特 性 也 是 单 调 下降的。因此, 巴特沃斯滤波器对有用信号产生的幅值畸变和相位畸变都很小。 ③ 无论阶数n是什么数,都会通过C = ,并且此时|()|H j ,而且n 越大,其幅频响应就越逼近理想情况。

射频微波滤波器的设计仿真与测试

射频微波滤波器的设计仿真与测试

一、实验目的 1.掌握低通原型滤波器的结构 2.掌握最平坦和等波纹型低通滤波器原型频率响应特性 3.了解频率变换法设计滤波器的原理及设计步骤 4.了解利用微带线设计低通、带通滤波器的原理方法 5.掌握用ADS 进行微波滤波器优化仿真的方法与步骤。 二、实验原理 2.1.滤波器的技术指标 中心频率,通带最大衰减,阻带最小衰减,通带带宽,插入损耗,群时延,带内纹波,回波损耗,驻波比 2.2 插入衰减法设计滤波器 通常采用工作衰减来描述滤波器的衰减特性: 插损法是一种系统的综合方法,可高度地控制整个通带和阻带内的幅度和相位特性,可以计算出满足应用需求的最好响应。如要求插损小,可用二项式响应;而切比雪夫响应能满足锐截止的需要;若可牺牲衰减率的话,则能用线性相位滤波器设计法获得好的相位响应。插损法使滤波器性能提高的最为直接的方法便是增加滤波器的阶数,滤波器的阶数等于元件的个数。 2.3 集总元件低通滤波器原型 最平坦响应滤波器设计 dB P P L L in A lg 10

2.4 滤波器的实现--频率变换 变换后在对应频率点上衰减量不变,须对应的元件值在两种频率下的具有相同的阻抗 2.5 滤波器的设计步骤 (1)由衰减特性综合出低通原型 (2)再进行频率变换,变换成所设计的滤波器类型 (3)计算滤波器电路元件值(集总元件) (4)微波结构实现电路元件,并用微波微波仿真软件进行优化仿真 三.练习题 对下面结构的微带支节低通滤波器的两种设计进行原理图和版图仿真,并分析其特性。

原理图: 仿真结果:

版图 仿真结果: 实验结果分析:结果基本上达到要求。带宽2.35GHZ-2.55GHZ,袋内衰减在3dB以内,2.3GHZ一下以及在2.75GHZ以上衰减达到大于40dB,端口反射系数较小。 四.滤波器的测量--AV36580A矢量网络分析仪

简单二阶低通滤波器设计与仿真

二阶低通滤波器部分 1、设计任务 信号放大后,需要进行滤波,滤除干扰,温度信号是一个缓慢变化的信号,在此需要设计出一个截止频率为10Hz 左右的低通放大器。因二阶低通滤波器的频率特性比一阶低通滤波器好,故决定采用由型号为OP07的运算放大器组成的二阶低通滤波器,OP07运放特点:OP07具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施,具有低温度漂移特性。另外,需要求滤波电路的幅频特性在通带内有最大平坦度,要求品质因数Q=0.707. 2、电路元件参数计算和电路设计: 根据二阶低通滤波器的基础电路进行设计,如图3.1所示。 图3.1二阶低通滤波器的基础电路 该电路(1)、传输函数为:)()()(i o s V s V s A =2 F F )()-(31sCR sCR A A V V ++= (2)、通带增益 :F 0V A A = (3)、截止频率:RC f c π21=其中RC 1c =ω称为特征角频率 (4)品质因数:O A Q -= 31, Q 是f=fc 时放大倍数与通带内放大倍数之比 注: 时,即当 3 03 F F <>-V V A A 滤波电路才能稳定工作。 由O A Q -=31=0.707得放大倍数586.1==O VF A A 一般来说,滤波器中电容容量要小于F μ,电阻器的阻值至少要Ωk 级。 由RC f c π21==10Hz,取C=0.5F μ,计算得R ≈31.8Ωk 又因为集成运放要求两个输入端的外接电阻对称,可得:R R R A VF 2//)1(11=-

求得:Ω=k R 1.1721 电路仿真与分析: (1)采用EDA 仿真软件multisim 13.0对有源二阶低通滤波器进行仿真分析、调试,从而对电路进行优化。Multisim 仿真电路图如图3.2所示 图3.2二阶低通滤波器仿真电路图 (2)通过仿真软件中的万用表验证电路是否符合要求: 设输入电压有效值为1V 当f=1Hz 时,输出如图3.3所示。 图3.3 由图可知,在通带内有增益585.1==VF O A A ,与理论值1.586相近 当Hz f f c 10==时,输出如图3.4所示。

实验一射频滤波器设计

实验一 射频滤波器设计 一、实验目的 (1)了解微波滤波电路的原理及设计方法。 (2)学习使用ADS 软件进行微波电路的设计,优化,仿真。 (3)掌握微带滤波器的制作及调试方法。 二、实验内容 (1)使用ADS 软件设计一个微带带通滤波器,并对其参数进行优化、仿真。 (2)根据软件设计的结果绘制电路版图,并加工成电路板。 (3)对加工好的电路进行调试,使其满足设计要求。 三、 设计指标 设计指标:通带3.0-3.1GHz ,带内衰减小于2dB ,起伏小于1dB ,2.8GHz 以下及3.3GHz 以上衰减大于40dB ,端口反射系数小于-20dB 。 四、实验原理 下图是一个微带带通滤波器及其等效电路,它由平行的耦合线节相连组成,并且是左右对称的,每一个耦合线节长度约为四分之一波长(对中心频率而言),构成谐振电路。 在进行设计时,主要是以滤波器的S 参数作为优化目标进行优化仿真。S21(S12)是 传输参数,滤波器通带、阻带的位置以及衰减、起伏全都表现在S21(S12)随频率变化曲线的形状上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算出输入、输出 端的电压驻波比。如果反射系数过大,就会导致反射损耗增大,并且影响系统的前后级匹配,使系统性能下降。 五、实验步骤 ( 1)启动ADS (2)创建新的工程文件 (3)生成微带滤波器的原理图,如图1 所示。 图1 微带滤波器原理图 等效电路

(4) 设置微带电路的基本参数 双击图上的控件MSUB设置微带线参数 H:基板厚度(0.8 mm) Er:基板相对介电常数(4.3) Mur:磁导率(1) Cond:金属电导率(5.88E+7) Hu:封装高度(1.0e+33 mm) T:金属层厚度(0.03 mm) TanD:损耗角正切(1e-4) Roungh:表面粗糙度(0 mm) (5) 计算微带线的线宽和长度 滤波器两边的引出线是特性阻抗为50欧姆的微带线,它的宽度W可由微带线计算工具得到,具体方法是点击菜单栏Tools -> LineCalc -> Start Linecalc,填入50 Ohm和90 deg可以算出微带线的线宽1.52 mm和长度13.63 mm(四分之一波长)。 (6) 设置微带器件的参数 双击两边的引出线TL1、TL2,分别将其宽与长设为1.52 mm和2.5 mm(其中线长只是暂定,以后制作版图时还会修改)。通过添加变量实现对五个耦合线节微带线线长L,宽W和缝隙S的尺寸进行设置。由于平行耦合线滤波器的结构是对称的,所以五个耦合线节中,第1、5及2、4节微带线长L、宽W和缝隙S的尺寸是相同的。图2是设置微带器件参数后的原理图 图2 设置微带器件参数后的原理图

基于Matlab的模拟滤波器设计与仿真

基于Matlab的模拟滤波器设计与仿真 0 引言建立在拉普拉斯变换基础之上的模拟滤波器的理论和设计方法已 经发展得相当成熟,且有若干典型滤波器供人们选择,如巴特沃斯(But- terworth)滤波器、切比雪夫(Chebyshev)滤波器等。但是关于滤波器实现的电路 元件参数的选取和计算却是件繁琐的工作。在此提出基于Ma-tlab 将电路参数 计算程序化的方法,并通过效果仿真达到优化电路参数的目的,而且程序具有 扩展功能。l 模拟滤波器的设计流程模拟低通滤波器的设计指标有ap,Ωp,as,Ωs,其中Ωp和Ωs分别为通带截止频率和阻带截止频率;ap 是 通带Ω中最大衰减系数;as 是阻带Ω≥Ωs的最小衰减系数ap 和Ωs一般用dB 表示。在此希望幅度平方函数满足给定的技术指标ap,Ωp,as,Ωs。(1)巴特沃斯滤波器幅频特性模的平方为:式中:N 为滤波器的阶数;wc 滤波器截止 角频率。(2)切比雪夫滤波器式中:ε决定通带内起伏大小的波纹参数;TN 为 第一类切比雪夫多项式:LC 一端口网络的T 型电路和∏型电路对应不同的 Ha(s)函数的连分式展开形式。在设计时,先求出归一化低通元件值,然后反演 出电路元件实际值。2 运用Matlab 编程实现的模拟电路设计并仿真(1)无源单 端口模拟滤波器的设计举例技术指标:通带内允许起伏:-1 dB,O≤Ω≤2 π×104rad/s;阻带衰减:≤-15dB,2 π×2×104rad/s≤Ω+∞:信源内阻Rs 和负载电阻RL 相等,均取600 Ω。运用Matlab 语言进行编程计算出如图1 所示 巴特沃斯T 型和∏型电路图的电路元件参数。图2 为切比雪夫T 型和∏型电路 图的电路元件参数。 图3 为设计巴特沃斯T 型和∏型电路图输出电压幅频特性Matlab 仿真图。 图4 为切比雪夫输出电路幅频特性Matlab 仿真图。 tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

带通滤波器的设计和仿真

带通滤波器的设计和仿真 学院信息学院 姓名吴建亮 学号201203090224 班级电信1202 时间2014年10月

1.设计要求 设计带通为300Hz ~10KHz 的带通滤波器并仿真。 2.原理与方案 2.1工作原理: 带通滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制,本实验通过一个4阶低通滤波器和一个4阶高通滤波器的级联实现带通滤波器。 2.2总体方案 易知低通滤波电路的截止角频率ωH 大于高通滤波电路的截止角频率ωn ,两者覆盖的通带就提供了一个带通响应。先设计4阶的低通滤波器1A 0=,截止频率z 10f f c kH H ==,选取第一级高通滤波器的541.01=Q ,第二级的高通滤波器的306.12=Q 。 主要参数: 电容,p 1000 2F C =则 基准电阻Ω== 5.15945f 21 2 c 0C R π, F C A Q C p 2341)1(400112 =+=,取标称值2400pF , Ω== 1470920 10 1A Q R R ,取标称值14.7k Ω, Ω==k R A R 7.14102,取标称值14.7k Ω, Ω=+= 7354) 1(2010 3A Q R R ,取标称值7.32k Ω, Ω== 609320 20 4A Q R R ,取标称值6.04k Ω, Ω==k R A R 04.6405, F C A Q C p 13645)1(440232=+=,取标称值0.013μF,

Ω=+= 3046) 1(2020 6A Q R R ,取标称值3.01?Ω, 同理,设计一个4阶高通滤波器,通带增益1A 0=,截止频率z 300f f c H L ==,选取第一级高通滤波器的541.03=Q ,第二级的高通滤波器的306.14=Q 。 主要参数如下: 电容F C C C μ033.0~0105==, , Ω== k R 08.16C f 21 0C 0π Ω=+= k A Q R R 9.9) /12(030 7,取标称值10k Ω, Ω=+=k A Q R R 1.26)21(0308,取标称值27k Ω, Ω=+= k A Q R R 10.4) /12(040 9 ,取标称值3.9k Ω, Ω=+=k A Q R R 98.62)21(04010,取标称值62k Ω。 3 电路设计 图3-1 高通滤波器

射频微带滤波器基础理论

第2章射频微带滤波器基础理论 频率的提高意味着波长的减小,该结论应用于射频电路中,就是当波长与分立元件的集合尺寸相比拟时,电压和电流不再保持空间不变,以波的形式进行传播。经典的基尔霍夫电压和电流定律没有考虑电压和电流在空间的变化,则必须对普通的集总电路做重大的修改。 本章首先介绍了射频微带滤波器设计中所涉及的基本概念,然后介绍了二端口网络理论和谐振与耦合理论。 2.1 传输线理论 2.1.1 均匀传输线的概念和模型 频率提高后,导线中所流过的高频电流会产生趋肤效应,工程上常用趋肤深度δ来描述这种趋肤效应,δ为电磁波场强的振幅值衰减到表面值1/e所经过的距离,由于趋肤效应使得导线有效面积减小,高频电阻加大,而且沿线各处都存在损耗,这就是分布电阻效应;通高频电流的导线周围存在高频磁场,这就是分布电感效应;由于两导线之间有电压,故两线之间存在高频电场,这就是分布电容效应;由于两线间的介质并非理想介质而存在漏电流,这相当于双线间并联一个电导,这就是分布电导效应。基于上述的物理事实,便可得出双线传输线等效模型[18]如图2.1所示。 图2.1 双线传输线等效模型 图2.1中,R1为单位长度的分布电阻,L1为单位长度的分布电感,G1为单位长度的分布电导,C1为单位长度的分布电容。

2.1.2 均匀传输线相速与波长 相位速度是等相位面传播的速度,简称相速。在均匀传输线理论中等相位面是垂直于z 轴的平面,相速v p 为 β ω==dt dz v p (2-1) 在一个周期的时间内波所行进的距离称为波长,波长λp 为 βπ λ2===T v f v p p p (2-2) 其中f 为电磁波频率,T 为振荡周期。 2.1.3 均匀传输线特性阻抗 入射电压与入射电流之比或反射电压与反射电流之比称为特性阻抗(即波阻抗),特性阻抗Z 0为 1 1110C j G L j R Z ωω++= (2-3) 对于微波传输线由于频率很高,11R L j ω<<、11G C j ω<<,则 1 10Z C L = (2-4) 2.1.4 均匀传输线传播常数 传播常数γ表示行波经过单位长度后振幅和相位的变化,其表示式为 βαωωγj C j G L j R +=++=))((1111 (2-5) 由于实际微波传输线的损耗R 1、G 1比ωL 1、ωC 1小得多,式(2-5)经变换后可得 22220101111111Z G Z R C L G L C R +=+= α (2-6) 其中:0 12Z R c =α ——由导体电阻引起的损耗; 2 01Z G d = α ——由导体间介质引起的损耗。

选用射频滤波器(馈通滤波器、穿心电容)的方法

选用射频滤波器(馈通滤波器、穿心电容)的方法 随着电子设备工作频率的迅速提高,电磁干扰的频率也越来越高,干扰频率通常会达到数百MHz,甚至GHz以上。由于电压或电流的频率越高,越容易产生辐射,因此,正是这些频率很高的干扰信号导致了辐射干扰的问题日益严重。因此,对用来解决辐射干扰的滤波器的一个基本要求就是要能对这些高频干扰信号有较大的衰减,这种滤波器就是射频干扰滤波器。普通干扰滤波器的有效滤波频率范围为数kHz 数十MHz,而射频干扰滤波器的有效滤波频率范围从数kHz到GHz以上。 按照传统方式构造的滤波器不能成为射频滤波器。这是由于两个原因:第一个原因是:旁路电容寄生电感较大(导致串联谐振,增加了旁路阻抗),导致电容器在较高的频率并不具有较低的阻抗,起不到旁路的作用。第二个原因是:滤波器的输入端和输出端之间的杂散电容导致高频干扰信号耦合,使滤波器对高频干扰失去作用。解决这个问题的方法是用穿心电容作为旁路电容。穿心电容具有非常小的寄生电感,旁路阻抗非常小,并且由于采用隔离安装方式,消除了输入输出端之间的高频耦合。 选择射频滤波器需要考虑的因素有: 截止频率:滤波器的插入损耗大于3dB的频率点称为滤波器的截止频率,当频率超过截止频率时,滤波器就进入了阻带,在阻带,干扰信号会受到较大的衰减。根据使用滤波器的场合不同(信号电缆滤波还是电源线滤波),可以用两个方法来确定滤波器的截止频率。在对信号电缆进行滤波时,根据有效信号的带宽来确定,截止频率要大于信号的带宽,这样才能保证有用信号不被衰减。在对电源线或直流信号线,滤波时,由于有效信号的频率很低,信号失真的问题不是主要因素,因此主要根据干扰信号的频率来定,要使干扰频率全部落在滤波器的阻带内。滤波器的截止频率越低,滤波器的尺寸越大,价格越高,因此没有必要时(干扰的频率不是很低时),不要盲目选用截止频率过低的滤波器。 插入损耗:指滤波器在阻带的损耗数值(dB),每一种滤波器都有一张插入损耗与频率对应的表格,选用滤波器时,根据干扰信号的频率和需要衰减的程度确定对插入损耗的要求。需要注意的一点是,产品样本上给出的插入损耗是在50 系统中测量的,实际使用条件如果不是50 ,插入损耗会有差异。 额定电压:滤波器在正常工作时能够长时间承受的电压,要注意正确选用直流和交流品种,在交流应用场合绝对不能使用直流的品种,否则容易发生击穿。由于几乎所有的电磁兼容试验都有脉冲干扰的项目,因此在选用滤波器时要考虑这种高压脉冲干扰的作用,耐压值需要留有一定的富裕量。 额定电流:滤波器在正常工作时能够长时间流过的电流值,额定电流由滤波器的引线直径决定,线径越大,额定电流越大。对于滤波器组件,额定电流还与电感线圈的饱和特性有关,当电流超过额定电流时,滤波器的性能会下降。 工作温度范围:滤波器件能保证预定性能和正常工作时所处的环境温度,本样本中的滤波器件除了特别标出的以外,工作温度范围为有-55 - +125 C。 滤波器的体积:滤波器的体积与滤波器的额定工作电压、工作电流、截止频率、插入损耗以及制造工艺有关。电气性能基本相同的滤波器,由于不同的制造工艺而导致不同的体积,电气性能接近时,体积较大的滤波器价格较低(适合安装空间较大的场合)。 射频滤波器的安装方式对滤波器的性能有很大影响。首先射频干扰滤波器必须以金属板为隔离板,将滤波器的输入和输出隔离开。其次,滤波器要与金属板之间保持低阻抗的接触,以保证滤波电容的旁路效果。最好将滤波器安装在镀锡或锌的铝板或钢板上。为了保证可靠的连接,一般要在滤波器的安装法兰与隔离板之间安装内齿垫片,而不能使用导电胶之类的物质来达到可靠连接的目的。需要注意的问题是,不同金属的接触面之间会发生电化学腐蚀,

下模拟滤波器的仿真设计

下模拟滤波器的仿真设计 摘要:本文提出了用MATLAB简化设计模拟滤波器的方法,着重对巴特沃思滤波器的编程设计进行了研究,并绘制出其幅频特性曲线。 关键词:MATLAB设计模拟滤波器 在信号处理时,通常都会遇到有用信号中混入噪声的问题,因此需要用滤波器来消除或减弱噪声对信号的干扰。模拟滤波器的设计一般包括两个方面:首先是根据设计的技术指标即滤波器的幅频特性,确定滤波器的传递函数H(s);其次是设计实际网络实现这一传递函数。解决滤波器H(s)设计的关键是要找到这种逼近函数,目前已找到了多种逼近函数。然而,不论哪种设计都需要进行非常繁琐的计算,计算出结果还需要查表。MATLAB中提供了相当强的函数用于模拟滤波器的设计,通过编程可以很容易的实现低通、高通、带通、带阻滤波器,并画出滤波器的幅频特性曲线。本文主要研究用MATLAB实现巴特沃斯滤波器。 1设计低通滤波器: 要求在通带截止频率fc=2kHz处,衰减3dB,阻带始点频

率fz=4kHz处,衰减15dB。 按照传统的求法,计算n需要代入公式 n==2.468n取整,n=3. 然后查表,得传递函数模型。 由此可以看出,计算复杂,并且如果没有表,就写不出传递函数。 下面用MATLAB来设计该滤波器,计算阶数、截止频率,并画出滤波器幅频特性。 wp=2000*2*pi; ws=4000*2*pi; Rp=3; Rs=15; [N,Wn]=buttord(wp,ws,Rp,Rs,'s')%计算阶数和截止频率 Fc=Wn/(2*pi); [b,a]=butter(N,Wn,'s');%计算滤波器传递函数多项式系数[z,p,k]=butter(N,Wn,'s');%得到滤波器零点、极点和增益w=linspace(1,4000,1000)*2*pi; H=freqs(b,a,w); magH=abs(H); phaH=unwrap(angle(H)); plot(w/(2*pi),20*log10(magH),'k'); xlabel('频率(Hz)');

ADS低通滤波器的设计与仿真

电磁场与微波技术 课程设计报告 课程题目:低通滤波器的设计与仿真姓名: 指导老师: 系别:电子信息与电气工程系专业:通信工程 班级: 学号: 完成时间:

低通滤波器的设计与仿真 摘要:微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。 关键词:ads;微带线;低通滤波器

一、设计思路 1、设计要求:截止频率:1.1GHz,通带内波纹小于0.2dB,在 1.21GHz 处具有不小于 25dB 的带外衰减。 2、方案选择 利用椭圆函数滤波器设计并仿真,经过优化后,结果调出来的波形能达到指标,但波形会形成带阻波形,只能实现在一定范围内低通。所以不选。 利用切比雪夫滤波器设计并仿真,经过优化调试后可用。 3、设计法案 首先用 LC 设计低通滤波器集总参数模型当频率工作在高频时,要用微带线代替 LC 元件。高阻抗微带线代替串联电感,低阻抗微带线代替并联电容。一般取 Zhigh=120Ω,Zlow=20Ω。在输入和输出加上 50Ω微带线。然后根据设计要求通过 ADS 自带的Linecalc 计算转换过来的微带线长和宽。在进行设计时,主要以滤波器的 S 参数作为优化目标进行优化仿真。 S21(S12) S(表示传输参数,滤波器的通带,阻带的位置以及衰减,起伏全部表现在 S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算输入输出的电压驻波比。如果反射系数过大,就会导致反射损耗过大,影响系统的后级匹配,使系统性能下降。 板材设置:H(基板厚度)=0.8mm,Er(基板相对介电常数)=2.2,Mur (磁导率)=1,Cond(金属电导率)=1E+50,Hu(封装高度)=1E+033mm,T (金属层厚度)=0.01mm,TanD (损耗角正切)=0。 二、仿真过程及电路原理图、版图、S 参数等 经过ADS软件的仿真和折中,以下就以相对比较好的方案为例介绍详细过程以及电路和版图仿真的情况。

相关主题