搜档网
当前位置:搜档网 › 发酵过程优化原理复习(1)

发酵过程优化原理复习(1)

发酵过程优化原理复习(1)
发酵过程优化原理复习(1)

1、发酵过程优化的目标

答:①建立生物反应过程的数量化处理和动力学模型。②实现发酵过程优化,以更好地控制发酵过程;

③规避生物技术产业化过程的技术风险,追求其经济效益;

2、发酵过程优化主要涉及的研究内容

答:①细胞生长过程研究,了解微生物从非生物培养基中摄取营养物质的情况和营养物质通过代谢途径转化后的去向,确定不同环境条件下微生物的代谢产物分布②根据微生物代谢反应符合质量守恒定律,对微生物反应的化学计量进行研究,简化对发酵过程的质量衡算③研究生物反应速率及其影响因素,建立生物反应动力学,这也是是发酵过程优化研究的核心内容。④生物反应器工程,包括生物反应器及参数的检测与控制,它们是发酵过程优化最基本的手段。

3、Hasting(1954年)指出生化工程要解决的十大问题是哪些?

答:深层培养、通气、空气除菌、搅拌、结构材料、容器、冷却方式、设备及培养基除菌、过滤、公害。

其中通气搅拌与放大是生化工程学科的核心,其中放大是生化工程的焦点。

4、Cooney指出,要实现发酵过程的优化与控制,必须解决好哪些问题?

答:必须解决好5个问题:①生物模型;②传感器技术;③适用于生物过程的最优化技术;④系统动力学;⑤计算机-监测系统-发酵罐之间的接口技术

5、流加发酵、分批发酵、连续发酵方式的优缺点比较

答:①与传统的分批发酵相比,流加发酵可以解除底物抑制、葡萄糖效应和代谢阻遏等;与连续发酵相比,流加发酵则具有染菌可能性更小,菌种不易老化变异等优点。

②与流加发酵和连续发酵相比,分批发酵工艺操作简单,比较容易解决杂菌污染和菌种退化等问题,对营养物的利用效率较高,产物浓度也比连续发酵要高。但其人力、物力、动力消耗较大,生产周期较长,生产效率低。

③连续发酵最大的优点是,微生物细胞的生长速度、代谢活性处于恒定状态,可达到稳定高速培养微生物或产生大量代谢产物的目的,且便于进行微生物代谢、生理生化和遗传特性的研究,在工业上可减少分批培养中每次清洗、装料、消毒、接种、放罐等操作时间,提高了生产效率和自动化程度。

6、重组生物药物生产过程的优化包括哪6个方面

答:①适宜宿主的选择;②重组蛋白积累位点(如可溶的胞内积累、胞内聚合积累、周质积累或胞外积累)的确定;③重组基因最大表达的分子策略;④细胞生长和生产环境的优化;⑤发酵条件的优化;⑥后处理过程的优化。

7、操作细胞循环生物反应器时必须考虑哪两个因素?为什么?

答:①稀释率(流速/体积),因为稀释率的大小影响细胞的生长速率,不同的实验目的对稀释率的要求也不同;

②循环速率(指通过过滤系统的培养基速率),因为高的循环速率可使组分混合均匀,但循环速率过高会使作用在细胞上的剪切力过高,也会导致过滤单元膜的迅速损坏。因此,很难同时确定合适的稀释率与循环速率,这也是限制细胞循环技术应用的一个重要因素。

8、细胞生长过程可以分为哪3个步骤,运输过程包括其中的两个步骤,在细胞膜上的运输过程是研究者普遍关心的内容,在细胞膜上可能存在哪些运输机制?各有何特点?

答:(1)细胞生长过程的3个步骤:①底物传递进入细胞;②通过胞内反应,将底物转变为细胞质和代谢产物;③代谢产物排泄进入非生物相;

(2)研究表明在膜上存在3种不同的运输机制:①自由扩散;②协助扩散;③主动运输。

特点:①自由扩散和协助扩散只有存在浓度梯度时,由高浓度向低浓度的运输才可能发生,统称被动运输,在运输过程中不需要提供外部能量;

自由扩散分子扩散的质量通量遵守Fick第一定律,通过自由扩散进行运输的化学物质主要有氧气、二氧化碳、水、有机酸和乙醇等;协助扩散是通过膜上的转运蛋白来进行物质运输的,具有选择性,其运输速率比自由扩散又快又多,运输速率遵循典型的饱和型动力学。

③主动运输是逆着浓度梯度进行运输,需要输入一定的吉布斯自由能,以特定的膜内蛋白作为运输过程的媒介,可以逆着浓度梯度的方向进行运输,因此是一个耗能的过程,根据运输动力来源可以分为一级主动运输和次级主动运输两大类,还有一种特别的主动运输过程为基团转移。

9、发酵过程数量化处理包括哪些方面的内容?常规的参数一般包括哪些?通常如何测量这些参数?

发酵过程的数量化处理包括:①发酵过程的速度;②化学计量学和热力学;③生产率、转化率和产率;

one

two

10、比速率和速率有什么区别?

答:比速率是一个相对速度,表示细胞的个体行为,反应了细胞的生长和代谢能力,它与生物量(以细

胞干重表示)或有催化活性物质的量(如酶量)有密切的关系,各种比速率的单位均为h -1,定义类似于化学

反应动力学中比速率r i *的定义

速率:是绝对速率,所表示的是细胞的整体行为,不能代表系统的特征。

11、生物反应过程中有关的宏观产率系数及定义

答:宏观产率系数(或称得率系数)Y i/j (i 表示菌体或产物,j 表示底物)是常用于对C 源等底物形成菌体或产物的潜力进行评价,将消耗的量同形成的量关联起来,定量表示细胞或产物甚至热量的产率,也能用于定量的表示不同消耗量之间或形成量之间的相互关系,最初是由Monod 以质量单位和商的形式定义的:

12、Y ATP 与其它产率系数相比有何特点? 答: ,是Bauchop 以异化代谢中ATP 的生长量作为菌体产率的基准而定义的。Y ATP 与微生物及底物种类无关,基本为一常数。

在复合培养基的厌氧培养中,不管微生物和环境的性质如何,Y ATP 总是约为10.5g/mol 。但该值对微生物生长具有普遍性。在基本培养基中无论是厌氧还是需氧培养,单一碳源中一部分作为能源通过异化代谢分解,其余部分用于同化构成菌体。假设用于同化的这部分碳源与ATP 生成无关,则对于异化代谢的碳源亦服从Y ATP ≈10g/mol 。

13、复合培养基厌氧培养过程中细胞的生物合成步骤及ATP 的生成和利用途径 P26

14、代谢产物理论产率系数和实际过程产率系数有何区别?影响实际过程产率系数的因素有哪些? 答:假设发酵过程中完全没有菌体生成,则Y P/S 可以达到最高值,即为理论代谢产物产率,可以根据化学计量关系、生物化学计量关系计算。

而在实际发酵过程中的实际产率是变化的,所以需对产率系数的概念进行修正。实际产率值取决于

各种生物和物理参数。,式中μ为比生长速率;m 为混合度;s 为底物浓度;t 为平均停留时间;t m 为混合时间;OTR 为氧传递速度

15、微生物反应动力学模型的类型及着眼点。Monod 模型属于什么模型?其使用的条件包括哪些?

答:(1)①类型:可分为概率论模型和决定论模型两大类,其中决定论模型又可分为均相模型和生物相

分离模型,或结构模型与非结构模型。

②着眼点:对底物、菌体和产物3个状态变量进行数学描述

(2)非结构动力学模型

(3)满足的条件为:①菌体生长为均衡性非结构生长;②培养基中只有一种底物是生长限制性底物;

③菌体产率系数恒定

16、对于一个具体的发酵产品,需要使用哪些模型才能完整地对其进行描述?为什么?

答:(1)温度和pH 恒定时,μ随培养基组分浓度变化而变化。若着眼于某一特定培养基组分的浓度s ,并假设其它培养基组分浓度不变,则得到Monod 模型为: (2)延迟期动力学模型 , (3)生长稳定期动力学模型:r X =α.x (1 – x/β)α和β是经验常数,取α=μmax 和β=x max ,在微生物生长停止时才出现产物形成的情况下,它具有较好的适用性。

细胞的生长、繁殖代谢是一个复杂的生物化学过程,该过程既包括细胞内的生化反应,也包括胞内与胞外的物质交换,还包括胞外物质的传递及反应。该体系具有多相、多组分、非线性的特点。同时,细胞的培养和代谢还是一个复杂的群体的生命活动,每个细胞都经历着生长、成熟直至衰老的过程,同时还伴有退化和变异。要对这样一个复杂的体系进行精确的描述,在各个发酵阶段必须合适的发酵动力模型。为了优化反应过程,首先要进行合理的简化,就必须在简化的基础上建立过程的物理模型,再据此推导得出数学模型,对发酵过程进行合理优化。

17、Gaden 根据产物生成速率和细胞生长速率之间的关系,将产物形成分成了哪几种类型?除此之外,底物消耗的质量细胞形成的质量

==-=≈--=??-=ds dx dt ds dt d Y r r //x s s x x s x s x t 00t s /x Y M Y A x ATP/s s x/s ?=??=TP Y ATP )1(),(/max e s K s t s t t s L --+=μμs K s s +=μμmax

还有哪两种模型?

答:类型Ⅰ:也称偶联模型,即产物的形成与细胞的生长相偶联;或代谢产物的生成与微生物生长完全同步。

类型Ⅱ:也称部分偶联模型,即产物的形成与底物的消耗存在部分偶联。这类代谢产物通常是在能源代谢中间接生成的,代谢途径较为复杂。

类型Ⅲ:也称非偶联模型,即产物的形成与细胞的生长没有直接关系,当细胞处于生长阶段时,没有产物积累,当细胞生长停止以后,产物大量形成。

还有两种模型:一种是q p与μ负偶联的模型,例如黑曲霉生产黑色素,其q p与μ的关系可表示为: q p=q p,max-Y P/Xμ;另外一种是q p与μ没有关系的模型,一般只适用于休眠细胞中,此时细胞本身代谢仅利用少量底物,只起到酶载体的作用,有:r p=α.r x+β.x-k d.p

18、发酵过程优化一般包括哪些步骤?具体陈述

答:简化、定量化、分离、建模型,最后把分离开的现象重新组合起来。

①反应过程的简化:微生物反应是一个复杂的过程,简化必须保证不损失基本信息,例如将微生物细胞当作黑匣子,其简化的结果是从宏观上通过分析、计算液相中各种浓度变化来间接地反应细胞中发生的代谢反应;

②定量化:分析方法的选择必须要求可以保证测定结果的可用性和代表性能够满足优化的要求。

③分离:指在生物过程和物理过程的各种速度相互不影响的情况下,精心设计实验以获得关于生物和物理现象的数据,只能通过计算机模拟的方式,通过检测液体培养基中的外部变化,才能来反应代谢反应的内部变化。

④数学建模:是能以简化的形式表征过程行为,并实现特定目的的数学公式。数学模型可将特定结果通用化,并为推论系统的其它性质提供基础。

19、系统优化方法的基本原则,具体陈述

答:(1)整体性原则:①不能从系统的局部得出有关系统整体的结论;②分系统的目标必须服从于系统整体的目标。

(2)有序相关原则:凡是系统都是有序的,为获得预期的整体功能,从方法论上应把注意力集中于系统内部各要素(分系统)之间的相互关联上。

(3)目标优化原则:是系统优化技术的指导思想和优化目标,优化问题是在不可控参数发生变化的情况下,根据系统的目标,经常、有效地确定可控参数的数值,使系统经常处于最优状态。系统最优化离不开系统模型化,先有模型化而后才有系统最优化。

(4)动态性原则:应把实施对象看作一个动态过程,分析系统内外的各种变化,掌握变化的性质、方向和趋势,采取相应的手段,改进研究方法,在动态变化中对系统整体进行优化。

(5)分解综合原则:分解对系统来说就是归纳出相对独立、层次不同的分系统。综合则是完成新系统的筹建过程,即选择具有性能好、适用性强的分系统,设计出它们的相互关系,形成具有更广泛价值的系统,以达到预定的目标。分解的原则是既要满足系统的结构要求,又要便于进行研究。一般可按结构要素、时间要素、功能要素、空间状态等方法进行分解。

(6)系统创造思维原则:其基本原则有两条:第一、把陌生的事物看作熟悉的东西,用已有的知识加以辨识和解决。第二、把熟悉的对象看作陌生的东西,用新的方法、新的原则加以研究,从而创造出新的理论、新的技术。

总之,对生物系统进行优化,首先是要构建一个系统,然后使这一系统高效运行。

20、构建ATP再生系统必须满足那些条件?目前报道的ATP再生系统按底物不同可以分为哪几类?根据酶源的不同,可分为哪几类?各有何特点?

答:(1)条件:①用于合成产物的酶的活性必须足够强且稳定;②能够大量提供廉价、稳定的前体物质;

③再生ATP的活性足够强且稳定,能与生物合成酶反应成功耦合;④提供廉价的能量底物和磷酸基团供体以利于ATP再生;⑤若有类似于分解反应的有害副反应,则必须对其加以控制;⑥若底物或预定的产物不能透过细胞膜,则必须设法提高膜的通透性。(2)按底物不同来分类,目前所报道的ATP再生系统可以分为转移高能磷酸基的反应系统和用碳水化合物作基质的反应系统(3)根据酶源不同分的类型:①自耦合ATP再生系统:在该系统中,生物合成酶反应所消耗的ATP被具有ATP合成活性的同种微生物菌株再生,以后再用于生物合成反应,故只需提供葡萄糖和目标产物的前体,生物合成反应便可以进行下去。②种间耦合ATP再生系统:即一种微生物作为ATP合成活性的供体,另一种微生物作为于此相偶联的生物合成酶活性的供体。该系统的优点在于:合成酶活性供体可以自如地从多种微生物中选择;采用重组DNA技术可显著促进特定酶的活性。21、ATP再生系统存在的问题答:第一、除了合成产物所需的关键酶以外,细胞内还有许多种酶,其中一些具有分解活性,能将反应的底物和预定的产物转化为副产物;第二、微生物细胞具有很强的自我保护功能,作为渗透屏障的细胞膜可防止胞内物质渗出。当细胞用作酶源时,这种屏障就会阻碍底物和产物进出

three

细胞。因此,有必要寻求一种在不降低合成酶活性前提下提高细胞膜通透性的方法。

22、采用ATP再生系统来生产有用物质时,固定化微生物细胞进行这些有用物质的生产具有什么优点?

答:优势:①无需提取和纯化酶的过程;②细胞可重复利用;③可实现连续操作;④反应器占地小;⑤反应控制容易;⑥处理的液体体积小;⑦可获得高纯度产品;⑧工厂污染减轻。

23、E.coliⅡ-1是一株合成GSH的重组微生物,请分析有机溶剂和前体氨基酸对其合成GSH的影响

答:细胞未经有机溶剂处理,几乎不能在胞外积累GSH,而经过一定浓度的甲苯(最好)、苯乙醇和甲醇处理后,胞外GSH浓度明显提高。主要是由于通过有机溶剂的处理,提高了细胞膜的通透性,使ATP、其它底物及产物能够自由出入细胞,从而促进了GSH合成反应的进行。

实验浓度范围内,随L-Glu的浓度的增加,GSH的合成量相应增加;随Gly浓度的增加,GSH的合成量很快增加至一高点,然后维持稳定;随L-Cys浓度的增加,GSH的合成量出现高点之后逐渐下降。上述结果表明,L-Glu很可能对GSH-Ⅰ的活性具有促进作用,而过高浓度的L-Cys很可能对GSH-Ⅰ的活性有抑制作用。24、有机废水处理如何与PHAs的合成耦合?分析影响耦合的有关因素答:该思路的具体实施包括5个方面①合成废水生产PHAs的初步条件;② R.eutrophus发酵生产PHAs最佳有机酸种类,包括以有机酸为底物生产PHAs的代谢机理、理论产率和PHAs发酵的实际产率;③高效厌氧酸化工艺,包括酸化率达100%时有机酸分布的工艺学条件等;④在小型发酵罐中,以不同浓度的酸化废水为碳源进行分批发酵实验,在对PHAs发酵过程动力学分析的基础上,建立较为合理的发酵过程动力学模型;⑤进行有机废水生产PHAs流加发酵的初步研究,比较分批和流加发酵过程中丁酸对PHAs产率的变化。影响耦合的因素:①不同初始酸浓度对PHAs发酵过程的影响:②产物分布影响因子的影响;③HRT对酸化产物分布的影响;④不同pH条件下UASB反应器出水产物分布的影响。25、在有机废水酸化工艺中,HRT对酸化产物分布的影响?答:进水葡萄糖浓度为30g/L,自然pH时, HRT对酸化产物的组成有明显影响。HRT=3h时,乳酸>乙酸>丁酸;随着HRT 的增加,酸化产物的组成发生变化,丁酸浓度大幅度增加,乳酸浓度下降,乙酸和丙酸的浓度略有增加。因此,延长HRT有可能使产酸相中丁酸成为主要产物。26、生物反应与产物分离的组合系统具有什么特征?应用该系统时,分离技术的选择是关键,分离技术的选择主要考虑哪些因素?内部随程溶剂萃取和外部随程溶剂萃取各有何特点?答:(1)3个特征:①耦合过程是一种集成式单元操作,其生物反应器具有特殊的结构;②实现产物及时分离的方法必须考虑产物的特性及具体的生物反应体系来合理选择和设计;③耦合过程作为一种新的反应工程技术,可适用于各种生物反应过程(2)分离技术的选择主要基于4个方面的因素:①分离技术应当具备生物相容性,适宜的分离技术对生物反应不造成负面影响,不会造成生物催化剂或细胞的失活、变性和死亡,也不会改变生物反应的代谢和调节机制;②应当考虑产物或副产物的物理化学性质和生物学特性;③考虑系统的流体特性,因为流体力学性质决定并影响分离过程的传质,从而影响分离的容量和速度,如高粘度的非牛顿流体就不能用膜分离技术④考虑工程及经济因素,理想的分离技术应当是操作费用低、性能稳定、工程上易于实现的技术。3)内部随程萃取是指萃取剂在反应器中与培养基直接接触,以便将产物萃取到溶剂中去。内部随程萃取的特点是溶剂和液相混合均匀,因而有利于传质的进行。但溶剂也可能在培养液中形成稳定的乳化作用,这对溶剂和产物的分离不利。外部随程萃取是指萃取剂和培养液在反应器外的萃取装臵中逆流接触,从而萃取产物的过程。用这种方法可以减轻内部溶剂萃取中的乳化问题。

27、流加发酵的分类

答:(1)单一补料分批培养,特点是补料一直到培养液达到额定值为止,且在培养过程中不取出培养液。(2)重复补料分批培养,特点是在培养过程中每隔一定时间,取出一定体积的培养液,同时在同一时间间隔内加入相等体积的培养液,如此反复。分五类:间歇补料操作流加发酵、连续补料操作流加发酵、循环补料操作流加发酵、循环连续补料操作流加发酵、循环间歇补料操作流加发酵。

28、赖氨酸的生产方法有哪些?酶法生产赖氨酸的工艺有哪些?

答:水解法(已淘汰)、合成法、酶法和直接发酵法。酶法(3种):①合成ε-苯甲酰-α-乙酰-DL-赖氨酸,采用消旋酶处理制成ε-苯甲酰-L-赖氨酸,经酸水解得产品;②合成DL-4-氨基丁基乙内酰脲,采用微生物酶使其转变为L-赖氨酸;③由环己烯合成DL-氨基己内酰胺,采用水解酶和消旋酶共同作用使其变成L-赖氨酸。29、目前通常采用哪些方法来保持高产菌株遗传性能的稳定,防止其回复突变?

答:①选育遗传性能稳定的菌株。经诱变处理后,在易出现回复突变的培养基中反复传代,选出不发生回复突变的菌株②定向赋加生产菌的遗传标记。如选育双缺菌株,增加抗回复突变性能;对于抗性株,尽量选育多重抗性突变株;③在保藏过程中除选择合理的保藏方法外,对于营养缺陷型菌株要提供足够的营养物,抗性株可添加适量的抗性物质④必须定期进行分离、纯化工作,保持其遗传性能的稳定。

30、黄色短杆菌是我国赖氨酸发酵的常用菌株,请分析其产赖氨酸的合成途径及调控机制,根据其赖氨酸合成途径及代谢调控机制,可以采用哪些育种策略?这些问题与发酵过程优化有什么关系?答:(1)如右图:(2)①切断代谢支路:选育和应用营养缺陷型菌株,切断丙氨酸、苏氨酸和蛋氨酸的分支途径是积累赖氨酸的有效手段。②解除反馈抑制:选育抗结构类似物的突变株,可以得到对AK反馈抑制脱敏的菌株,代谢调节被遗传性地解除,这是赖氨酸发酵育种的重要手段。特别是选育营养缺陷型兼具结构类似物抗性的突变

four

株,极有希望获得高产菌株。

③增加前体的生物合成:关键酶AK的催化反应速度与底物天门冬氨酸浓度的之间的关系呈S型,随着底物浓度的增加,AK与天门冬氨酸的亲和协同性增大。根据变构酶的S型动力学特性,为了提高赖氨酸的产量,应设法增加前体物质天门冬氨酸的浓度,以抵消变构抑制剂的影响。因此选育丙氨酸缺陷型,抗天门冬氨酸结构类似物的突变株。

④解除代谢互锁:赖氨酸与亮氨酸的生物合成之间存在代谢互锁,因此可以考虑选育亮氨酸缺陷型,抗亮氨酸结构类似物的突变株。

31、FB42(Leu-Thr-AECrAHVrLysHxr)是一株能大量合成赖氨酸的黄色短杆菌,在分批发酵中,初糖浓度、溶氧、pH对其发酵过程有什么影响?Thr、Leu、生物素对其分泌赖氨酸有何影响?为什么其发酵动力学模型的建立需要首先进行发酵过程的动力学分析?应当如何评价所建立的动力学模型?

答:(1)①菌体浓度存在一个饱和值,只要满足一定的初糖浓度,菌体的生长都能达到这个饱和值。只是不同的初糖浓度时菌体达到饱和值的时间不一样。随着初糖浓度的逐渐升高,菌体浓度达到饱和值的时间将逐渐延长,表明初糖浓度对FB42的生长有抑制作用。

②对于菌体生长来说,在满足一定的溶氧水平前提下,菌体在不同的溶氧水平时其生长量均能达到一个饱和值,但菌体的生长速度不同。结合图4-27和图4-26发现,当K La=531.8h-1时,菌体的生长比速最大,过高的K La反而对菌体的生长有抑制作用。综合菌体生长和产物形成的结果表明,菌体生长和产物合成所需的合适溶氧水平不一致。

③pH对许多酶的催化过程有很大的影响,pH变化能改变体系酶的环境和营养物质的代谢流,使得诱导物和生长因子在活性和非活性之间变化。pH的变化对赖氨酸的发酵影响很大:当pH7.0时产酸最高,pH偏高或偏低,产酸均降低。pH对菌体生长量总的来说影响不大,但进一步的研究却发现pH同时影响了菌体的生长比速和产物的形成比速,偏低的pH对菌体生长有利,实验范围内pH6.0时菌体的生长比速最高,而产物形成比速在pH7.0时最高。

(2)当苏氨酸浓度>150mg/L时,就能满足菌体生长的需求,且实验范围内未发现过高的苏氨酸浓度对菌体生长有抑制作用。对产酸而言,苏氨酸浓度有一合适范围(100~350mg/L之间),过高对FB42产赖氨酸有抑制作用;亮氨酸对菌体生长和产酸的影响相似,即存在合适的生长和产酸浓度(400~600mg/L),过高会抑制菌体生长和产酸;高生物素浓度将抑制谷氨酸的分泌而应该有利于赖氨酸分泌。通过合成培养基进行的发酵实验表明,生物素浓度必须大于150μg/L。发酵中,添加3%的玉米浆即可满足要求。

(3)建立和评价的一般规律:

①明确建模目的,主要从宏观角度出发,实现产物最大生长比速及最短生产周期,获得满意的经济效益,同时要求动力学模型尽量简单;

②对模型做出合理的假设,并确定模型应用范围;

③选择合理的模型参数,模型中的参数最好容易测定,才能使控制容易进行;

④建立模型来实施最佳工艺控制,建模才能够通过优化工艺和管理,将发酵控制在最佳工艺;

⑤模型的校验与修改,模型是否合理,需要进行试验和生产的检验,以及进行不要、合理的修改,修改从第②步开始;

⑥对模型的评价主要考虑在实验范围内,模型是否符合实验结果、是否简单、是否具有一定

的通用性,参数是否恰当,这些因素以生产中容易应用为基本出发点。

32、以赖氨酸发酵生产为例,请你结合发酵过程优化的基本原理,谈谈你的优化思路。

33、以丙酮酸发酵生产为例,请你结合发酵过程优化的基本原理,谈谈你的优化思路。

34、利用WSH-IP12菌株发酵法生产丙酮酸时,氮源、碳氮比对其丙酮酸发酵有何影响?

答:①初始葡萄糖浓度为80g/L,当培养基中蛋白胨浓度为15g/L时,丙酮酸产量较高,低于15g/L时,葡萄糖消耗速度较慢,细胞干重和丙酮酸产量也较低;而高于15g/L时,丙

酮酸产量明显下降。酵母粉是一种常用的氮源和生长因子的来源,但“随着

发酵培养基中酵母粉浓度的增大,细胞干重不断增大而丙酮酸产量却迅速降

低”实验结果表明酵母粉不适合研究菌株发酵生产丙酮酸。豆饼水解液浓度

为5g/L时,发酵液中丙酮酸产量较高,但低于蛋白胨。不过,由于豆饼水

解液来源广、价格低,因而仍是一种有潜力的氮源。

②小型发酵罐的实验结果表明:葡萄糖和蛋白胨的浓度按碳:氮=25:

1的原则同时提高,丙酮酸的生产会得到促进;若蛋白胨浓度保持不变,在

此基础上再提高葡萄糖浓度(即C:N增大),发酵后期(40h后)细胞生长速

度和葡萄糖消耗速度明显下降,丙酮酸产率也显著降低。

five

35、WSH-IP12与WSH-IP303相比主要有什么差异?维生素对WSH-IP303菌株过量合成丙酮酸中的影响

答:(1)WSH-IP303可以以无机氮化合物为唯一氮源并大量积累丙酮酸,且WSH-IP303对氮源的需求量也有所下降;而WSH-IP12虽可利用硫酸铵、氯化铵、磷酸氢铵和尿素为唯一氮源生长,但其丙酮酸产量均不及以蛋白胨和豆饼水解液为氮源的情况。

(2)①培养基中若缺乏烟酸、硫胺素、吡哆醇和生物素中的任何一种,细胞生长均很弱,丙酮酸产量也很低;

②细胞生长不需要核黄素,但添加适量的核黄素对丙酮酸的生产有一定的促进作用;

③细胞积累丙酮酸时,对不同维生素浓度变化的敏感程度不同。

正交实验的结果表明:

①硫胺素是影响细胞生长、葡萄糖消耗及丙酮酸合成的最重要因素;②增大吡哆醇、生物素和核黄素的浓度,对细胞生长和葡萄糖消耗没有显著影响,但对丙酮酸合成有一定的促进作用;③增大烟酸浓度可促进葡萄糖的消耗,但不利于丙酮酸的合成。细胞以葡萄糖为碳源积累丙酮酸时,烟酸和硫胺素较优浓度的确定,对维持丙酮酸合成与降解的平衡非常重要。

一,基于微生物反应原理的培养环境优化技术

基本思想:基于底物运输、生化反应、产物排出,确定不同环境条件对微生物生长和代谢产物分布的

影响,优化微生物生长的物理和化学环境,保证微生物生长处于最适条件。内容:培养基组成的优化技术,

发酵环境条件的优化技术。目的:1.确定培养基组分的最小用量,避免底物的过量或不足2.减少副产物

的形成,使底物转化率明显提高,3、对关键物质的浓度及其供给方式进行优化,使目标产物产量明显

提高,4、分析不同环境条件下微生物的生理学二、基于微生物代谢特性的分阶段培养技术

发酵过程的动力学参数(μ,qp,qs)流变学参数的变化特性,不同T、pH、RPM、DO,分阶段控制策略,

控制环境条件在最适合细胞生长或最适合产物合成的水平。利用分阶段培养技术还可以将细胞生长期和

产物形成期人为分开,从而实现优化发酵过程的目的。三、基于反应动力学和人工智能的优化和控制技

术以数学模型为基础的优化,建立动力学模型,求解参数并评价其适用性,优化发酵过程,对发酵进

程和产量指标进行预测。以生理模型为基础的优化,采用人工神经网络、专家系统、模糊逻辑控制技术,

对发酵过程进行在线状态预测和模式识别,自适应最优化控制系统的开发、计算机模拟和实际应用。四、

基于代谢通量分析的过程优化技术:参考已知的生化反应计量关系、代谢途径、生理、特征,构建、合

成不同产物的代谢网络,利用代谢通量分析方法,计算得出胞内各条代谢途径的通量变化。目的:分析

不同发酵产品合成途径中主要代谢节点的性质,结合发酵过程中胞内能量代谢情况,提出一系列发酵优

化策略。五、基于环境胁迫条件下微生物生理应答的过程优化技术:环境压力或胁迫:饥饿、高温、高

压、机械剪切、冷冻、强酸、强碱、高渗透压(高盐)、活性氧、有毒化学物质等等。长期胁迫-可遗

传性的应答(遗传变异)短期胁迫-不可遗传性的应答(生理性的)。细胞结构、基因转录和蛋白表达

的临时改变,酶原的激活以及代谢途径的临时调整等。学术思想:研究一些重要的工业微生物的抗胁迫

因子及其抗胁迫机制,考察环境胁迫条件下特定微生物蛋白转录和代谢途径变化,采用不同环境胁迫手

段或措施对微生物的生长或代谢进行调控,促进微生物生长或大量合成目的产物。六:基于微生物代

谢的辅因子调控的过程优化技术:研究辅因子形式及其浓度在物质代谢和信号传递途径中控制代谢流方

向和流量分配的作用机制、物质流和辅因子流的变化规律,对微生物的生长或代谢进行调控,促进微生

物合成目的产物的代谢流的最大化和快速化。

six

《发酵工程原理与技术》课程复习提纲及习题集

《发酵工程原理与技术》课程复习提纲及部分知识点 [复习提纲] 什么是发酵?发酵工程的发展历程? 发酵的定义在合适的条件下利用生物细胞内特定的代谢途径转变外界底物生成人类所需目标产物或菌体的过程 自然发酵时期 1.发酵工程的诞生 2.通气搅拌液体深层发酵的建立 3.大规模连续发酵以及代谢调控发酵技术的建立 4.现代发酵工程时期 发酵工业常用的微生物及其特点。 ①细菌:枯草芽孢杆菌、醋酸杆菌、棒状杆菌、短杆菌等②放线菌:链霉菌属、小单胞菌属和诺卡均属③酵母菌:啤酒酵母、假丝酵母、类酵母 4.霉菌 菌种的分离及保藏 一稀释涂布和划线分离法二利用平皿中的生化反应进行分离三组织分离法四通过控制营养和培养条件进行分离 一斜面保藏方法二液体石蜡油保藏法三冷冻干燥保藏法四真空干燥法五液氮超低温保藏法六工程菌的保藏 菌种的退化及复壮 菌种退化是指生产菌种或选育过程中筛选出来的较优良菌株,由于进行转移传代或包藏之后,群体中某些生理特征和形态特征逐渐减退或完全丧失的现象退化的原因主要有基因突变连续传代以及不当的培养和保藏条件 菌种的复壮通过人工选择法从中分离筛选出那些具有优良性状的个体使菌种获得纯化服装的方法一纯种分离二淘汰法三宿主体内复壮法 微生物育种的方法有哪些? 自然育种、诱变育种 培养基的主要成分。 水、碳源、氮源、无机盐、生长因子、 碳源及氮源的种类。 碳源种类:1、糖类2、醇类3、有机酸类4、脂肪类5、烃类6、气体 氮源种类:1、无机氮源 2、有机氮源 培养基的设计的基本原则? 一根据生产菌株的营养特性配制培养基二营养成分的配比恰当三渗透压 4ph 值 发酵工业原料的选择原则 一因地制宜就地取材原料产地离工厂要近,便于运输节省费用 二营养物质的组成比较丰富浓度恰当能满足菌种发育和生长繁殖成大量有生理功能菌丝体的需要更重要的是能显示出产物合成的潜力 三原料资源要丰富容易收集

第10章 发酵过程的优化和放大

第10章生物过程的优化和放大 生物过程的研究一般经历 摇瓶培养→小罐培养→中试→生产规模 10.1 生物过程的优化 优化方法 1单次单因子法 2统计法:Plackett-Burman法,部分因子设计法响应面法,响应面法 响应面法:中心组合设计法,Box-Behnken法 3改进单纯形法 统计法一般需要经过以下几步:实验设计;实验结果的数据分析,以得到合适的数学模型;数学模型的检验,即方差分析;求解最优化值及其校验。 一、Plackett-Burman法 Plackett-Burman法是一种两水平的实验设计方法,它试图用最少的实验次数达到使因子的主效果得到尽可能精确的估计,适用于从众多的考察因子中快速有效地筛选出最为重要的几个因子,但无法考察各因子对发酵的相互交叉的影响,因此常作为响应面法的初步实验,用于确定影响发酵过程的重要因子。 1. 实验设计 Hadamard矩阵 设计的准则为: 1)若要考察k 个因子,则需要进行N=k+1个实验,为便于进行方差分析,往往要求k 至少 包括1-3个虚构变量,即空项,且k为奇数; 2)每个因子取两个水平,即用“+”、“-”分别代表其高、低水平,低水平为原始培养条件, 高水平约取低水平的1.25倍; 3)矩阵每行含“+”的数目为(k+1)/2,含“-”的数目为(k-1)/2,而每列含“+ ”、“-”的数目相等; 4)矩阵第一行任意排列,但必须符合上述要求,最后一行全部为“-”;其余行以上一行的最 后一列为该行的第一列,上一行的第一列为该行的第二列,其余类推。 2. 数据分析 3. 方差分析 二、响应面法 1. 实验设计 2. 数据分析 3. 方差分析 4. 优化 10.2 生物过程的放大 不管是微生物细胞、动、植物细胞还是重组质粒,要进行工业化生产,都必须经过放大中试阶段,生化过程的放大有各种各样的方法和手段,其放大方法和原理林林总总,对具体某一体系来说,用何种放大模式可以快捷地成功过渡到工业化生产,没有固定模式,必须针对具体菌种生理生化及培养基及环境条件的放大效应综合考虑,至目前为止,生化过程放大一直是个长脖子的事。 传统的工业放大,一般要经过四个阶段:实验室摇瓶培养、实验室小型发酵罐培养、中间工厂和生产工厂。 一、摇瓶与罐培养的差异 摇瓶的试验条件放大到生产罐或小发酵罐的试验条件转移到大发酵罐时,它们所得产物的产量往往不完全一致,特别是产抗生素的新菌株,差异更大,当然也有一致的巧合。引起这种

微生物发酵培养基的优化方法

工业发酵进展

微生物发酵培养基的优化方法 对于微生物的生长及发酵,其培养基成份非常复杂,特别是有关微生物发酵的培养基,各营养物质和生长因子之间的配比,以及它们之间的相互作用是非常微妙的。面对特定的微生物,人们希望找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步。以工业微生物为例,选育或构建一株优良菌株仅仅是一个开始,要使优良菌株的潜力充分发挥出来,还必须优化其发酵过程,以获得较高的产物浓度(便于下游处理),较高的底物转化率(降低原料成本)和较高的生产强度(缩短发酵周期)。设计发酵培养基时还应时刻把工 实验室最常用的优化方法是单次单因子法,这种方法是在假设因素间不存在交互作用的前提下,通过一次改变一个因素的水平而其他因素保持恒定水平,然后逐个因素进行考察的优化方法。但是由于考察的因素间经常存在交互作用,使得该方法并非总能获得最佳的优化条件。另外,当考察的因素较多时,需要太多的实验次数和较长的实验周期[3]。所以现在的培养基优化实验中一般不采用或不单独采用这种方法,而采用多因子试验。 2.多因子试验 多因子试验需要解决的两个问题: (1)哪些因子对响应具有最大(或最小)的效应,哪些因子间具有交互作用。 (2)感兴趣区域的因子组合情况,并对独立变量进行优化。

3.正交实验设计 正交实验设计是安排多因子的一种常用方法,通过合理的实验设计,可用少量的具有代表性的试验来代替全面试验,较快地取得实验结果。正交实验的实质就是选择适当的正交表,合理安排实验的分析实验结果的一种实验方法。具体可以分为下面四步: (1)根据问题的要求和客观的条件确定因子和水平,列出因子水平表; (2)根据因子和水平数选用合适的正交表,设计正交表头,并安排实验; (3)根据正交表给出的实验方案,进行实验; (4)对实验结果进行分析,选出较优的“试验”条件以及对结果有显著影响的因子。 正交试验设计注重如何科学合理地安排试验,可同时考虑几种因素,寻找最佳因 次 报道。CastroPML报道用此法设计20种培养基,做24次试验,把gamma干扰素的产量提高了45%。 6.部分因子设计法 部分因子设计法与P1ackett-Burman设计法一样是一种两水平的实验优化方法,能够用比全因子实验次数少得多的实验,从大量影响因子中筛选出重要的因子。根据实验数据拟合出一次多项式,并以此利用最陡爬坡法确定最大响应区域,以便利用响应面法进一步优化。部分因子设计法与Plaekett-Burman设计法相比实验次数稍多,如6因子的26-2部分因子设法需要进行20次实验,而Plackett-Burman设计法只需要7次实验。 7.响应面分析法

发酵工程复习资料

第一章,绪论 一、填空: 微生物工程可分为发酵和提纯两部分,其中以发酵为主。 化学工程与发酵工程的本质区别在于化学工程利用非生物催化剂,发酵工程利用生物催化剂---酶。 二、判断: 发酵产品是经微生物厌氧生物氧化过程获得的。错 三、课后思考题: 1、发酵的定义:利用微生物的新陈代谢作用,把底物(有机物)转化成中间产物,从而获得某种工业产品。(工业上定义、广义、有氧无氧均可) 2、发酵流程: 3、比拟放大的基本过程:斜面菌种-摇瓶试验(培养基、温度、起始pH值、需氧量、发酵时间)-小型发酵罐-中试-大规模工业生产 4、发酵工程的发展经历了哪几个阶段? 1.)自然发酵时期 2)纯培养技术建立(第一个转折期) 3)通气搅拌的好气性发酵工程技术建立(第二个转折期) 4)人工诱变育种与代谢控制发酵工程技术建立(第三个转折期) 5)发酵动力学、连续化、自动化工程技术的建立(第四个转折期) 6)生物合成和化学合成相结合工程技术建立(第五个转折期) 5、微生物工业发展趋势 1)、几个转变 分解代谢→合成代谢 自然发酵→人工控制的突变型发酵→代谢控制发酵→通过遗传因子的人工支配建立的发酵(如工程菌) 2)、化学合成与生物合成相结合 3)、大型、连续化、自动化发酵 发酵罐的容量可达500t,常用的也达20-30t。 4)、人工诱变育种和代谢控制发酵

微生物潜力进一步挖掘,新菌株、新产品层出不穷。 5)、原料范围不断扩大 石油、植物淀粉、天然气、空气、纤维素、木质素等 6、举例说明微生物工业的范围 酿酒工业(啤酒、葡萄酒、白酒) 食品工业(酱、酱油、食醋、腐乳、面包、酸乳) 有机溶剂发酵工业(酒精、丙酮、丁醇) 抗生素发酵工业(青霉素、链霉素、土霉素等) 有机酸发酵工业(柠檬酸、葡萄糖酸等) 酶制剂发酵工业(淀粉酶、蛋白酶等) 氨基酸发酵工业(谷氨酸、赖氨酸等) 核苷酸类物质发酵工业(肌苷酸、肌苷等) 维生素发酵工业(维生素B12、维生素B2等) 生理活性物质发酵工业(激素、赤霉素等) 名贵医药产品发酵工业(干扰素、白介素等) 微生物菌体蛋白发酵工业(酵母、单细胞蛋白) 微生物环境净化工业(利用微生物处理废水等) 生物能工业(沼气、纤维素等天然原料发酵生产酒精、乙烯等能源物质) 微生物治金工业(微生物探矿、治金、石油脱硫等) 第二章发酵基础知识 1、写出生产以下产品的主要菌种: 啤酒(啤酒酵母)、黄酒(霉菌(根霉、曲霉)、酵母菌、细菌)、味精(谷氨酸棒杆菌、黄色短杆菌)、柠檬酸(黑曲霉)、食醋(霉菌、酵母菌、醋酸菌)、酸奶(乳酸菌(保加利亚乳杆菌、嗜热链球菌、乳酸链球菌)) 2、发酵工艺控制中,主要应监控温度、pH值、溶解氧、 泡沫、氧化还原电位等。 3、概念:单菌发酵: 现代发酵工业中最常见,传统发酵工业中很难实现。 混合菌发酵: 自然发酵和人工接种发酵 液态发酵: 发酵基质呈流动状态,如啤酒发酵、柠檬酸发酵等。 固态发酵: 发酵基质呈不流动状态。如固态酱油发酵、米醋发酵、大曲酒(白酒)发酵等。半固态发酵: 发酵基质呈半流动状态,如黄酒发酵、传统稀醪酱油发酵等。 4、发酵产品主要类型 微生物菌体、代谢产物、酶 5、如何理解:传统工艺,原料决定菌种;现代工艺,菌种决定原料? 传统工艺,原料决定菌种:传统工艺中,发酵原料是一种选择培养基。 传统工艺就是利用这种选择作用,把自然界带入的各种野生菌,在发酵基质上进行选择富集培养,这些微生物生长和代谢的结果可生产出有特殊风味的食品。 现代工艺,菌种决定原料:在使用纯种发酵剂前,我们必须对原料进行灭菌,以防止其他杂菌对发酵的干扰。 6、发酵产品主要有哪些附加值 1)发酵有利于食品保藏食品发酵后,改变了食品的渗透压、酸度、水的活性等,从而抑制了腐败微生物的生长,有利于食品保藏。 2)发酵产品有保健作用有些食品经过微生物发酵后,不仅能产生酸类和醇类等,还能产生某些抗菌素可抑制致病菌和肠内腐败菌。

发酵过程优化原理复习

发酵过程优化原理复习 1、 发酵过程优化的目标 答:①建立生物反应过程的数量化处理和动力学模型。 ②实现发酵过程优化,以更好地控制发酵过程; ③规避生物技术产业化过程的技术风险,追求其经济效益; 2、发酵过程优化主要涉及的研究内容 答:①细胞生长过程研究,了解微生物从非生物培养基中摄取营养物质的情况和营养物质通过代谢途径转化后的去向,确定不同环境条件下微生物的代谢产物分布; ②根据微生物代谢反应符合质量守恒定律,对微生物反应的化学计量进行研究,简化对发酵过程的质量衡算; ③研究生物反应速率及其影响因素,建立生物反应动力学,这也是是发酵过程优化研究的核心内容。 ④生物反应器工程,包括生物反应器及参数的检测与控制,它们是发酵过程优化最基本的手段。 3、Hasting (1954年)指出生化工程要解决的十大问题是哪些? 答:深层培养、通气、空气除菌、搅拌、结构材料、容器、冷却方式、设备及培养基除菌、过滤、公害。其中通气搅拌与放大是生化工程学科的核心,其中放大是生化工程的焦点。 4、Cooney 指出,要实现发酵过程的优化与控制,必须解决好哪些问题? 答:必须解决好5个问题:①生物模型;②传感器技术;③适用于生物过程的最优化技术;④系统动力学;⑤计算机-监测系统-发酵罐之间的接口技术 5、流加发酵、分批发酵、连续发酵方式的优缺点比较 答:①与传统的分批发酵相比,流加发酵可以解除底物抑制、葡萄糖效应和代谢阻遏等;与连续发酵相比,流加发酵则具有染菌可能性更小,菌种不易老化变异等优点。 ②与流加发酵和连续发酵相比,分批发酵工艺操作简单, 比较容易解决杂菌污染和菌种退化等问题, 对营养物的利用效率较高,产物浓度也比连续发酵要高。但其 人力、物力、动力消耗较大,生产周期较长,生产效率低。 ③连续发酵最大的优点是,微生物细胞的生长速度、代谢活性处于恒定状态,可达到稳定高速培养微生物或产生大量代谢产物的目的,且便于进行微生物代谢、生理生化和遗传特性的研究,在工业上可减少分批培养中每次清洗、装料、消毒、接种、放罐等操作时间,提高了生产效率和自动化程度。 6、重组生物药物生产过程的优化包括哪6个方面 答:①适宜宿主的选择;②重组蛋白积累位点(如可溶的胞内积累、胞内聚合积累、周质积累或胞外积累)的确定;③重组基因最大表达的分子策略;④细胞生长和生产环境的优化;⑤发酵条件的优化;⑥后处理过程的优化。 7、操作细胞循环生物反应器时必须考虑哪两个因素?为什么? 答:①稀释率(流速/体积),因为稀释率的大小影响细胞的生长速率,不同的实验目的对稀释率的要求也不同; ②循环速率(指通过过滤系统的培养基速率),因为高的循环速率可使组分混合均匀,但循环速率过高会使作用在细胞上的剪切力过高,也会导致过滤单元膜的迅速损坏。 因此,很难同时确定合适的稀释率与循环速率,这也是限制细胞循环技术应用的一个重要因素。 8、细胞生长过程可以分为哪3个步骤,运输过程包括其中的两个步骤,在细胞膜上的运输过程是研究者普遍关心的内容,在细胞膜上可能存在哪些运输机制?各有何特点? 答:(1)细胞生长过程的3个步骤:①底物传递进入细胞;②通过胞内反应,将底物转变为细胞质和代谢产物;③代谢产物排泄进入非生物相; (2)研究表明在膜上存在3种不同的运输机制:①自由扩散;②协助扩散;③主动运输。 特点:①自由扩散和协助扩散只有存在浓度梯度时,由高浓度向低浓度的运输才可能发生,统称被动运输,在运输过程中不需要提供外部能量; 自由扩散分子扩散的质量通量遵守Fick 第一定律,通过自由扩散进行运输的化学物质主要有氧气、二氧化碳、水、有机酸和乙醇等;协助扩散是通过膜上的转运蛋白来进行物质运输的,具有选择性,其运输速率比自由扩散又快又多,运输速率遵循典型的饱和型动力学。 ③主动运输是逆着浓度梯度进行运输,需要输入一定的吉布斯自由能,以特定的膜内蛋白作为运输过程的媒介,可以逆着浓度梯度的方向进行运输,因此是一个耗能的过程,根据运输动力来源可以分为一级主动运输和次级主动运输两大类,还有一种特别的主动运输过程为基团转移。 9、发酵过程数量化处理包括哪些方面的内容?常规的参数一般包括哪些?通常如何测量这些参数? 发酵过程的数量化处理包括:①发酵过程的速度;②化学计量学和热力学;③生产率、转化率和产率; 10、比速率和速率有什么区别? 答:比速率是一个相对速度,表示细胞的个体行为,反应了细胞的生长和代谢能力,它与生物量(以细胞干重表示)或有催化活性物质的量(如酶量)有密切的关系,各种比速率的单位均为h -1,定义类似于化学反应动力学中比速率r i *的定义 速率:是绝对速率,所表示的是细胞的整体行为,不能代表系统的特征。 11、生物反应过程中有关的宏观产率系数及定义 答:宏观产率系数(或称得率系数)Y i/j (i 表示菌体或产物,j 表示底物)是常用于对C 源等底物形成菌体或产物的潜力进行评价,将消耗的量同 形成的量关联起来,定量表示细胞或产物甚至热量的产率,也能用于定量的表示不同消耗量之间或形成量之间的相互关系,最初是由Monod 以质量单位和商的形式定义的: 12、Y A TP 与其它产率系数相比有何特点? 答: ,是Bauchop 以异化代谢中ATP 的生长量作为菌体产率的基准而定义的。Y ATP 与微生物及底物种类无关,基本为一常数。 在复合培养基的厌氧培养中,不管微生物和环境的性质如何,Y ATP 总是约为10.5g/mol 。但该值对微生物生长具有普遍性。在基本培养基中无论是厌氧还是需氧培养,单一碳源中一部分作为能源通过异化代谢分解,其余部分用于同化构成菌体。假设用于同化的这部分碳源与ATP 生成无关,则对于异化代谢的碳源亦服从Y ATP ≈10g/mol 。 13、复合培养基厌氧培养过程中细胞的生物合成步骤及ATP 的生成和利用途径 P26 14、代谢产物理论产率系数和实际过程产率系数有何区别?影响实际过程产率系数的因素有哪些? 答:假设发酵过程中完全没有菌体生成,则Y P/S 可以达到最高值,即为理论代谢产物产率,可以根据化学计量关系、生物化学计量关系计算。 而在实际发酵过程中的实际产率是变化的,所以需对产率系数的概念进行修正。实际产率值取决于各种生物和物理参数。 ,式中μ为比生长速率;m 为混合度;s 为底物浓度;t 为平均停留时间;t m 为混合时间; OTR 为氧传递速度 15、微生物反应动力学模型的类型及着眼点。Monod 模型属于什么模型?其使用的条件包括哪些? 底物消耗的质量细胞形成的质量==-=≈--=??-=ds dx dt ds dt d Y r r //x s s x x s x s x t 00t s /x Y M Y A x ATP/s s x/s ?=??=TP Y ATP

发酵工程工艺原理复习思考题答案。修改版

《发酵工程工艺原理》复习思考题 第一章思考题: 1.何谓次级代谢产物?次级代谢产物主要有哪些种类?举例说明次级代谢产物 在食品中的应用及对发酵食品的影响。P50 初级代谢:指微生物的生长、分化和繁殖所必需的代谢活动而言的。初级代谢过程所生成的产物就是初级代谢产物。 关系不大,生理功能也不十分清楚,但可能对微生物的生存有一定价值。次级代谢过程所生成的产物就是次级代谢产物。通常在细胞生成的后期形成。 次级代谢产物有抗生素、生物碱、色素和毒素等。 2.典型的发酵过程由哪几个部分组成? 发酵工程的一般过程可分为三个步骤:第一,准备阶段;第二,发酵阶段;第三,产品的分离提取阶段。 准备阶段的任务包括四个方面,即各种器具的准备,培养基的准备,优良菌种的选择或培育,器具和培养基的消毒。 优良菌种是保证发酵产品质量好、产量高的基础。优良菌种的取得,最初是通过对自然菌体进行筛选得到的。20世纪40年代开始使用物理的或化学的诱变剂,如紫外线、芥子气等处理菌种,进行人工诱发突变,从而迅速选育出比自然菌种更优良的菌种。后来,又运用细胞工程和遗传工程的成果来获取菌种。例如,使用大肠杆菌生产人类的胰岛素、生长素、干扰毒等等。 在发酵过程中,还要防止“不速之客”来打扰。发酵工程要求纯种发酵,以保证产品质量。因此,防止杂菌污染是确实保证正常生产的关键之一。其方法是,对于这些不受欢迎的“来客”进行灭菌消毒。在进行发酵之前,对有关器械、培养基等也进行严格的消毒。 第二章思考题: 1.食品发酵对微生物菌种有何要求?举例说明。 ?能在廉价原料制成的培养基上迅速生长,并能高产和稳产所需的代谢产物。 ?可在易于控制的培养条件下迅速生长和发酵,且所需的酶活性高。 ?生长速度和反应速度快,发酵周期短。 ?副产物尽量少,便于提纯,以保证产品纯度。 ?菌种不易变异退化,以保证发酵生产和产品质量的稳定性。 ?对于用作食品添加剂的发酵产品以及进行食品发酵,其生产所用菌种必须符合食品卫生要求。 2.什么叫自然突变和诱发突变?诱变育种的实质是什么?P17 自然突变:在自然状况下发生的突变;

发酵过程及优化实验

发酵过程及优化实验 ——产淀粉酶细菌的优化实验 淀粉酶是一类能催化淀粉糖苷键水解的酶类,作用于淀粉分子产生糊精、低聚糖及葡萄糖等多种产物。而淀粉酶是应用最广的酶制剂之一,占全球酶工业市场份额的25%-33%。淀粉酶广泛分布于动物、植物和微生物有机体中。 目前,已报道的能够产生淀粉酶的微生物种属包括不动杆菌属、微球菌属、黄隐球酵母、盐单胞菌属、青霉菌属、类芽孢杆菌属、链霉素属、假单胞菌属和杆菌菌属等。 实验一培养基的配置、灭菌 一、实验目的 1. 温故配制微生物培养基的原理及配制的一般方法、操作步骤。 2. 了解鉴别性培养基的原理,并掌握配制鉴别性培养基的放到和步骤。 二、实验原理 鉴别性培养基是一类在成分中加有能与目的菌的无色代谢产物发生显色反应的指示剂,从而达到只需用肉眼辨别颜色就能方便地从近似菌落中找出目的菌菌落的培养基。如对于淀粉酶产生菌的筛选,选用的是在含有淀粉的培养基中培养微生物,滴加碘液进行染色,若出现透明圈,则表明该菌能产生胞外淀粉酶。 三、材料和器材 (1)培养基: 普通培养基:牛肉膏3g,蛋白胨10g,NaCl 5g,自来水1000mL,pH7.2~7.4。鉴别型培养基:牛肉膏3g,蛋白胨10g,可溶性淀粉10g,NaCl 5g,琼脂20g,自来水1000mL,pH7.2~7.4。另一个鉴别性培养基加可溶性淀粉15g每1000ml。(2)器皿:电子天平,烧杯,锥形瓶,量筒,培养皿,玻棒,涂布棒,移液管等。 (3)其他:药匙,记号笔,报纸等。 (4)碘原液:称取碘化钾22g,加少量蒸馏水溶解,加入碘11g,溶解后定容至500mL,贮于棕色瓶中。 稀碘液:取碘原液2mL,加碘化钾20g,用蒸馏水定容至500mL,贮于棕色瓶中。 四、方法和步骤 1.配制基本培养基,分装50mL至250mL锥形瓶,供实验菌株扩增。 2.配制鉴别培养基,检测实验菌株是否能产胞外淀粉酶。

发酵工程原理期末复习

发酵工程原理期末复习 一 1、微生物的无氧呼吸称发酵 2、现代发酵工程:是将现代DNA重组及细胞融合技术、酶工程技术、组学及代谢网络调控技术、过程工程优化技术等新技术与传统发酵工程融合,大大提高传统发酵技术水平,拓展传统发酵应用领域和产品范围的一种现代工业生物技术体系。强调现代生物技术、控制技术和装备技术在发酵工业领域的集成应用。 3、发酵工程在生物技术中的地位:发酵工程是生物技术的基础,是生物技术产业的核心。 4、广义发酵工程对生物学和工程学的要求: 上游技术:优良种株的选育和保藏(包括菌种筛选、改造,菌种代谢路径改造等), 中游技术:发酵过程控制,主要包括发酵条件的调控,无菌环境的控制,过程分 析和控制等 下游技术: 分离和纯化产品。包括固液分离技术、细胞破壁技术、产物纯化 技术,以及产品检验和包装技术等 5、日常发酵产品:酒、酒精、醋、啤酒、干酪、酸乳等 6、以高产量、高转化率和高效率及低成本为目标的发酵过程优化技术: 高产量:微生物生理、遗传、营养及环境因素 高转化率:微生物代谢途径和过程条件 高效率:微生物反应动力学和系统优化 低成本:技术综合及产业化技术集成 7.发酵工程技术:分子层次,生物催化→催化剂发现/改造 细胞层次,细胞工厂→代谢工程 过程层次,过程优化→单元放大/耦合/集成/优化 8.发酵工业的范围:①微生物菌体 ②酶制剂 ③代谢产物 ④生物转化 ⑤微生物特殊机能的利用 利用微生物消除环境污染 利用微生物发酵保持生态平衡 微生物湿法冶金 利用基因工程菌株开拓发酵工程新领域 9、新的菌体发酵产品: 茯苓菌→茯苓 担子真菌→灵芝、香菇类 虫草头孢菌 密环菌 二、1.发酵工业对菌种的要求:1)能在价廉原料制备的培养基上迅速生长并生成所需代谢产物,且产量高2).培养条件易于控制, 3)生长迅速,发酵周期短, 4)满足代谢控制的要求 5)抗噬菌体和杂菌的能力强 6)遗传性状稳定,菌种不易变异退化 7)在发酵过程中产生的泡沫少,这对装料系数,提高单罐产量,降低成本有重要意义

江南大学发酵工程原理及技术考试样卷答案1

样卷1及参考答案 一、填空(每空1分,共30分) 1,工业上的发酵产品分为菌体、代谢产物、微生物酶和生物转化产品四个类别。 2,从本质上来说,微生物代谢是通过酶量调节和酶活性调节两种方式来进行调节的。 3,根据对氧需求的不同可将发酵分为通风发酵和厌氧发酵两种类型。 4,根据产物合成途径,我们可将次级代谢分为与糖代谢有关的类型、与脂肪酸代谢有关的类型、与萜烯和甾体化合物有关的类型、与TCA环有关的类型和与氨基酸代谢有关的类型五种类型。 5,卡尔文循环由羧化、还原和再生三个阶段(部分)组成。 6,发酵厂用于原料除杂的方法有筛选、风选和磁力除铁。 7,种子的制备可分为实验室种子制备和车间种子制备两个阶段。 8,空气除菌的方法有加热、静电、射线和介质过滤。 10,常用的连续灭菌工艺有喷射加热、薄板换热器和喷淋冷却。 11,氢化酶是氢细菌进行无机化能营养方式生长的关键酶,在多数氢细菌中有两种氢化酶,它们是颗粒状氢化酶和可溶性氢化酶。 二、名词解释(每题4分,共20分) 1,发酵工程 应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会性服务的一门科学。 2,无菌空气 发酵工业应用的“无菌空气”是指通过除菌处理使空气中含菌量降低在一个极低的百分数,从而能控制发酵污染至极小机会。此种空气称为“无菌空气”。 3,种子的扩大培养 是指将保存在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化后,在经过扁瓶或摇瓶及种子罐逐级放大培养而获得一定数量和质量的纯种过程。这些纯种培养物称为种子。 4,酶合成的阻遏 某些酶在微生物生长时可正常地产生,但当生化途径的终产物浓度增加时或向生长培养基加入这种终产物时,酶的合成就被阻遏。这种低分子量的终产物(辅阻遏物)被认为是同胞内由调节基因编码的蛋白质(阻遏蛋白)结合,产生一种阻遏物,该阻遏物“关闭”对酶编码的结构基因。这样的酶称为可受阻遏的酶。阻遏酶合成的物质称为阻遏物。

发酵工艺优化

发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统 至于装液量的问题,应该从以下几个方面考虑: 1、保持在你所需要的转速培养情况下(尤其是在后期,菌丝很多时,转速很高时),不能让发酵液把你的塞子湿掉,容易造成染菌。 2、装液量的体积在消毒过程中,不能因为沸腾把塞子湿掉,或者跑出三角瓶,装液量太多会出现这样的情况。很容易染菌。 3、根据你的菌种的情况和发酵液的粘度,需要的混匀程度等等方面也要考虑。 4、建议你做一个梯度试验(40-50-60-70-80等)就可以找到你所需要的装液量。 关于剩余空气的排除在灭菌完毕后(100度左右),立刻用盖子或者其他的用品把你的培养摇瓶盖好,有时候这么点空气根本对兼性厌氧发酵没有什么影响,如果你的菌种要求很严的话,最好用干冰加入已经灭菌的空摇瓶后,立刻用其他的样品培养基分装即可。当然也可以用氮气。最好是二氧化碳。 你可以再查查看是否有其他的方法,我说的也不完全。!!

发酵工程原理知识点总结

1、发酵:通过微生物的生长繁殖和代谢活动,产生和积累人们所需产品的生物反应过程。 2、发酵工程:利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系,它是生物工程和生物技术学科的重要组成部分,又叫微生物工程 3、发酵工程技术的发展史: ①1900年以前——自然发酵阶段 ②1900—1940——纯培养技术的建立(第一个转折点) ③1940—1950——通气搅拌纯培养发酵技术的建立(第二个转折点) ④1950—1960——代谢控制发酵技术的建立(第三个转折点) ⑤1960—1970——开发发酵原料时期(石油发酵时期) ⑥1970年以后——进入基因工程菌发酵时期以及细胞大规模培养技术的全面发展 4、工业发酵的类型: ①按微生物对氧的不同需求:厌氧发酵、需氧发酵、兼性厌氧发酵 ②按培养基的物理性状:固体发酵、液体发酵 ③按发酵工艺流程:分批发酵、补料发酵、连续发酵5、发酵生产的流程:(重要) ①用作种子扩大培养及发酵生产的各 种培养基的制备 ②培养基、发酵罐及其附属设备的灭菌 ③扩大培养有活性的适量纯种,以一 定比例将菌种接入发酵罐中 ④控制最适的发酵条件使微生物生长并 形成大料的代谢产物 ⑤将产物提取并精制,以得到合格的产 品 ⑥回收或处理发酵过程中所产生的三废 物质 6、常用的工业微生物: ①细菌:枯草芽孢杆菌、醋酸杆菌、 棒状杆菌、短杆菌等 ②放线菌:链霉菌属、小单胞菌属和 诺卡均属 ③酵母菌:啤酒酵母、假丝酵母、类 酵母 7、未培养微生物:指迄今所采用的微生 物纯培养分离及培养方法还未获得纯培 养的微生物 8、rRNA序列分析:通过比较各类原核生 物的16S和真核生物的18S的基因序列, 从序列差异计算它们之间的进化距离,从 而绘制进化树。 选用16S和18S的原因是:它们为原 核和真核所特有,其功能同源且较为古 老,既含有保守序列又含有可变序列,分 子大小适合操作,它的序列变化与进化距 离相适应。 9、菌种选育改良的具体目标: ①提高目标产物的产量 ②提高目标产物的纯度 ③改良菌种性状,改善发酵过程 ④改变生物合成途径,以获得高产的 新产品 10、发酵工业菌种改良方法: ①常规育种:诱变和筛选,最常用。 关键是用物理、化学或生物的方法修改目 的微生物的基因组,产生突变。 ②细胞工程育种:杂交育种和原生质 体融合育种 ③代谢工程育种:组成型突变株的选 育、抗分解调节突变株的选育、营养缺陷 型在代谢调节育种中的应用、抗反馈调节 突变株的选育、细胞膜透性突变株的选育 ④基因工程育种:原核表达系统、真 核表达系统 ⑤蛋白质工程育种:定点突变技术、 定向进化技术 ⑥代谢工程育种:改变代谢途径、扩 展代谢途径 ⑦组成生物合成育种:通过合成化合 物库进行高效率的筛选 ⑧反向生物工程育种:希望表型的确

发酵工程原理课程标准

发酵工程原理课程标准 濮阳职业技术学院刘殿锋 一、课程的基本要素 1、课程性质 本课程是应用生物技术专业的必修专业课之一;是一门综合性学科,涉及的知识面广,同时又是一门基础理论与生产实际相结合的课程;本课程是在《微生物学》、《生物化学》、、《分子生物学与基因工程》等课程基础上开设的;对于同时开设的《生物技术概论》、《生物工程设备》等课程与本课程有着密切的联系,同时又有适当的分工,本课程以讲授发酵工艺的基本原理为主;在本课程基础上使学生更好地理解和掌握《发酵分析》、《发酵工厂设计概论》、《发酵工艺》、《生物分离与纯化技术》等后续课程。 2、课程的基本理念 该课程面向应用生物技术专业,使学生掌握各种发酵工艺的基本原理,重点突出生产工艺操作及过程控制等方面的实际问题,并了解发酵工程技术前沿动态。 3、课程的设计思路 本课程在设计过程中,注重工学结合教学模式的改革,校企专家共同参与教学过程与评价过程,以“四个结合”作保障,即教学内容――校企结合、教师队伍――专兼结合、教学环境――工学结合、教学方法――理实结合,从根本上改变本课程教学从“理论到理论、从课堂到课堂、从知识到知识”的陈旧的教学模式。 二、课程的目标 1、知识目标 通过本课程的学习,使学生掌握发酵工程的典型过程及其基本原理、基本技术以及基本实验操作技能,了解该学科的发展方向。 2、能力目标 通过本课程的学习,使学生能够理论联系实际去分析和解决有关发酵工程中的具体问题。 3、素质目标

通过本课程的学习,培养出的学生能够理论联系实际地在发酵企业分析实际技术问题,并能因地制宜处理这些问题的能力,可以胜任生物技术产业中新产品和新工艺的开发,生产工艺过程技术管理和高技术生产岗位的实际技术工作。 三、课程内容的组织 课程内容的组织以就业为导向,以能力为本位,以发酵工艺项目为驱动,结合发酵企业生产实际,以发酵工程中的典型单元操作为中心构建课程内容,其理论知识的选取紧紧围绕发酵企业生产实际的需要来进行。 四、课程实施意见 1、学时安排 第一章绪论(2学时): 了解生物技术的知识和生物产品生产的基本过程;了解发酵的一般概念;了解发酵工程的应用范围、特点、发展简史及发展趋势;发酵工艺的一般培养方法及过程。 第二章生产菌种的选育(10学时): 了解生物活性物质产生菌的筛选方法与过程,掌握自然育种、诱变育种、杂交育种、原生质体融合技术育种及基因重组技术育种的原理与方法。 第三章培养基(8学时): 了解发酵生产培养基的组成成份及其在发酵中的作用;掌握影响培养基质量的因素及控制措施。 第四章灭菌(6学时): 了解灭菌的概念及方法;掌握微生物热死动力学;掌握影响灭菌效果的因素及控制方法;重点掌握分批灭菌和连续灭菌的工艺过程及操作要点。 了解无菌空气质量标准、制备方法;掌握空气介质过滤除菌的工艺过程及影响无菌空气质量的因素。 第五章生产菌种的扩大培养与保藏(6学时): 了解生产菌种制备的一般流程;掌握各生产菌种制备的工艺流程及操作要点;掌握影响种子质量的因素及其控制方法;掌握菌种保藏的原理及方法。 第六章发酵动力学(8学时): 掌握分批培养、补料分批培养和连续培养的基础理论、操作特点、动力学模

发酵工艺优化

发酵工艺优化---现代发酵工业调控策略 发布日期:2010-04-10 来源:[标签:来源] 作者:[标签:作者] 浏览次数:716 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH 值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率。在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。基于此,华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化的有关现象,研究细胞代谢物质流与生物

发酵过程中的优化

发酵过程中的优化 高望 (兰州理工大学生命科学与工程学院) 摘要:发酵过程优化控制技术是发酵工程的重要技术。综述了近年来微生物发酵过程优化控制技术的研究现状,综合运用微生物反应计量学、生化反应和传递动力学、生物反应器工程及代谢工程理论,(1) 基于微生物反应计量学的培养环境优化技术;(2) 基于微生物代谢特性的分阶段培养技术;(3) 基于反应动力学模型的优化技术;(4) 基于代谢通量分析的优化技术;(5) 基于系统观点的生物反应系统优化技术;(6)基于环境胁迫的优化技术;(7)基于辅因子调控的优化技术 关键词:发酵过程优化 1 发酵过程优化技术 1.1基于微生物反应计量学的培养环境优化技术 研究微生物从培养基中摄取营养物质的情况和营养物质通过代谢途径转化后的去向,确定不同环境条件对微生物生长和代谢产物分布的影响,进而优化微生物生长的物理和化学环境,保证微生物生长处于最适的环境条件下,为进一步的发酵过程优化奠定基础。:(1) 培养基组成的优化技术。 (2) 发酵环境条件的优化技术。研究表明,培养基中的氮含量与葡

萄糖消耗及丙酮酸积累密切相关。氮源缺乏时, 葡萄糖消耗和丙酮酸生产均受到抑制。在小型反应器流加发酵中采用氨水控制pH 值( 相当于同时提供氮源) , 细胞能够持续、快速地积累丙酮酸。[1]李寅;陈坚;梁大芳营养条件对光滑球拟酵母发酵生产丙酮酸的影响[J]生物工程学报2000,16(2):225-227 1.2 基于微生物代谢特性的分阶段培养技术 对分批发酵过程的研究发现,适合微生物生长的温度、pH 值、剪切和溶解氧浓度往往并不一定适合目标产物的形成,提出分阶段溶解氧和搅拌转速控制策略、分阶段温度控制策略及分阶段pH 值控制策略,将环境条件控制在最适合细胞生长或最适合产物合成的水平。研究表明,郑美英等以Streptoverticilliummobaraense为出菌株,研究了培养中温度控制策略,并在小型发酵罐上进行了验证。得出TG发酵过程中温度控制策略为:O~18h,控制温度为32℃,18h后将温度切换到28℃。采用此温度控制策略在2.5L小罐上进行TG发酵,酶活比未控制温度时的最好水平提高了14%,发酵时间也缩短了6h。由此可见,采用合理的温度控制策略确实能够显著提高TG的发酵过程中的各项指标。郑美英堵国成陈坚分批发酵生产谷氨酰胺转氨酶的温度控制策略[J]生物工程学报,200,16(6):759-761 刘延岭,邓林,周昌豹,陈丽微生物发酵生产谷氨酰胺转胺酶的研究进展四川食品与发酵 2004,4:1-4 1.3 基于反应动力学模型的发酵过程优化和控制技术 研究不同目标代谢产物发酵过程的反应动力学,应用统计热力学理论和功能单元扩展理论,建立目标代谢产物分批发酵过程的动力学模型,用龙格库特法求取模型方程数值解,然后用单纯形搜索法或最速下降法寻出动力学模型方程中的最优参数,并对动力学模型的适用性进行评价。基于分批发酵动力学模型,在下列3 个方面已取得一定成果:①采用奇异优化理论,优化透明质酸的流加培养过程,并通过重复操作和优化补料组合发酵模式,显著提高透明质酸的生产强度[23];②应用最小值原理,分别建立真氧产碱杆菌细胞生长期和聚羟基丁酸合成期底物流加的准优化控制策略,确定以指数速率流加和变速流加相结合的流加操作方式,得到以聚羟基丁酸最大生产强度和最高转化率为目标的准优化控制策略并成功应用[24-25];③在无反馈控制的情况下,比较了不同流加培养模式对重组大肠杆菌生产谷胱甘肽的影响,发现采用简单的指数速率流加方式即可实现重组大肠杆菌的高密度培养[26]。 1.4 基于代谢通量分析(MFA)的发酵过程优化技术 参考已知的生化反应计量关系和特定微生物的代谢途径和生理代谢特征,构建生物合成特定目标代谢产物的代谢网络。利用代谢通量分析方法,对代谢中间产物进行拟稳态假设,然后通过测定细胞和代谢产物浓度的变化速率,计算得出胞内各条代 谢途径的通量变化。根据代谢通量分析的计算数据,分析特定目标代谢产物,如丙酮酸、透明质酸和生物絮凝剂生物合成途径中主要代谢节点的性质(刚性、弱刚性或弹性),结合发酵

发酵工程原理与技术应用复习整理

发酵工程原理与技术应用 第一章绪论 1.什么是发酵工程? 发酵工程是指利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系,是生物工程与生物技术学科的重要组成部分。 利用微生物的特定性状和功能,通过现代化工程技术来生产有用物质或将微生物直接用于工业化体系的一门技术,是建立在微生物发酵工业基础上,与化学工程相结合而发展起来的。 2.发酵工业的特点 ①一步生产 ②反应条件温和 ③原料纯度要求低 ④设备的通用性高 ⑤对环境的污染相对较小 ⑥生产受自然条件限制小 第二章发酵工业菌种 1. 发酵工业菌种的常用类型。 ①细菌:枯草芽孢杆菌、醋酸杆菌、棒状杆菌、短杆菌等 ②放线菌:链霉菌属、小单胞菌属 ③酵母菌:啤酒酵母、假丝酵母、类酵母等 ④霉菌:根霉、毛霉、犁头霉、红曲霉、曲霉及青霉等 ⑤未培养微生物: 2. 发酵工业对菌种的要求。 ①能在廉价原料制成的培养基上生长,且生成的目的产物产量高、易于回收。 ②生长较快,发酵周期短。 ③培养条件易于控制。 ④抗噬菌体及杂菌污染的能力强。 ⑤菌种不易变异退化,以保证发酵生产和产品质量的稳定。 ⑥对放大设备的适应性强。 ⑦菌种不是病原菌,不产生任何有害的生物活性物质和毒素。

3.从自然界分离筛选菌种常用步骤。 ①采样:有针对性地采集样品。 ②样品预处理:可提高菌种分离效率。 ③增殖:人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势,使 筛选变得可能。【目的菌富集培养】 富集培养方式:1?分批培养2?连续培养3?半连续培养 ④纯种分离:利用分离技术得到纯种。 常用的分离方法:1?平板划线分离2?稀释分离3?涂布分离4?毛细管分离5?小滴分离 ⑤初筛:从分离得到的大量微生物中将具有目的产物合成能力的菌株筛选出来的过程。 【(1)平板筛选(各种变化圈),(2)摇瓶发酵筛选】 ⑥菌种复筛。 ⑦菌种发酵性能鉴定。【鉴定技术四个水平:细胞的形态和习性水平 细胞组分水平蛋白质水平基因或核酸水平】 ⑧菌种保藏。 4?代谢调控机制一阻遏 阻遏的类型主要有:末端代谢产物阻遏和分解代谢产物阻遏。末端产物阻遏:| 是指由某代谢途径末端产物过量积累而引起的阻遏。 分解代谢物阻遏:是指有两种碳源(或氮源)分解底物同时存在时,细胞利用快的那种 分解底物会阻遏利用慢的底物的有关分解酶的合成和积累。 5.发酵工业菌种改良的目的 防止菌种退化 改良菌种性状,改善发酵过程 提高生产能力 提高产品质量 开发新产品 6.诱变育种的基本步骤。 ①菌出发菌株的选择:选择好的出发菌株对诱变效果有着极其重要的作用。 【选择标准:产量高、对诱变剂的敏感性大、变异幅度广】 ②悬液的制备:这一步骤的关键是制备单细胞和单孢子状态的、活力类似的菌悬液,为 此要进行合适培养基的培养,并要离心,洗涤,过滤。 ③诱变处理:将制备好的菌悬液与诱变剂接触,进行诱变。 ④中间培养:由于在发生了突变尚未表现出来之前,有一个表现延迟的过程,即细胞内原有酶量的稀释过程(生理延迟),需3代以上的繁殖才能将突变性状表现出来。此过程称为中间培养

相关主题