搜档网
当前位置:搜档网 › 无线电通信导航论文

无线电通信导航论文

无线电通信导航论文
无线电通信导航论文

无线电通信导航论文

摘要:我国交通通信部门要对海上航运业做出总体的部署,推动各项工作的发展,从而为海上交通运输业发展提供保障。海上通信通常是指国家依据国际海事组织的相关规定和协议,为海上通讯服务提供基础设施,国际通用以及规范统一是海上无线电通讯导航业务的特点。我国航海交通运输业不断引进无线电通讯导航的新技术和新业务,保障了我国航海业务的安全,维护了领海的安全。

随着航运事业的发展,无线电通信导航在航海事业中扮演着重要的角色,无线电通信为航运事业的迅速发展提供保障条件。随着水运交通事业的发展,不断强化水上的通信能力,多种技术被运用到航运的管理中。近年来随着国际海事卫星系统不断开发新业务,海上遇险和安全系统的实施以及海上岸边接受设施的完善,这些举措能够为航运事业的发展提供保障。我国的交通通信部门积极参与到国际组织的业务活动中,承担保护国际航海安全的责任,在结合我国航运事业的发展的前提下不断对通信技术进行创新,促进我国航运事业的迅速发展。国际海运事业的发展以及电子信息技术的发展促进了无线电通讯导航业务的发展,促使其推出了各种新的业务,推动海上交通运输业的发展。

1 水上无线电通信导航业务的新发展

1.1 全球海上遇险和安全系统

依据国际的相关规定,国际海事卫星通讯系统、地面无线电系统、船舶报告系统、海上安全信息播发系统等系统都属于全球海上遇险和

1 无线电导航基础

第1章绪论 导航的发展简史 1.1.1导航的基本概念 导航是一门研究导航原理和导航技术装置的学科。导航系统是确定航行体的位置方向,并引导其按预定航线航行的整套设备(包括航行体上的、空间的、地面上的设备)。 一架飞机从一个机场起飞,希望准确的飞到另外一个机场就必须依靠导航、制导技术。 导航,即引导航行的意思,也就是正确的引导航行体沿预定的航线,以要求的精度,在指定的时间内将航行体引导至目的地。由此可知除了知道起始点和目标位置之外,还要知道航向体的位置、速度、姿态等导航参数。其中最主要的是知道航行体的位置。 1.1.2导航系统的发展 在古代,我们的祖先一直利用天上的星星进行导航,在古石器时代,为了狩猎方便,人们利用简单的恒星导航方法,这就是最早的天文导航方法。 后来,随着技术的不断发展和人们对事物认知的发展,人们利用导航传感器来导航,最早是我们祖先发明的指南针。现有的导航传感器包括六分仪、磁罗盘、无线电罗盘、空速表、气压高度表、惯性传感器、雷达、星体跟踪器、信号接收机等。 以航空领域为例,从20世纪20年代开始飞机出现了仪表导航系统。

30年代出现了无线电导航系统,即依靠飞机上的信标接收机和无线电罗盘来获得地面导航台的信息已进行导航。 40年代开始研制甚高频导航系统。 1954年,惯性导航系统在飞机上试飞成功,从而开创了惯导时代。 50年代出现了天文导航系统和多普勒导航系统。 1957年世界上第一颗卫星发射成功以后,利用卫星进行导航、定位的研究工作被提上了议事日程,并着手建立海事卫星系统用于导航定位。随着1967年海事卫星系统经美国政府批准对其广播星历解密并提供民用,由此显示出卫星定位的巨大潜力。 60年代开始使用远程无线电罗兰-C导航系统,同时还有塔康导航系统、远程奥米伽导航系统以及自动天文导航系统。 60年代后,无线电导航得到进一步发展,并与人造卫星导航相结合。 70年代以后,全球定位导航系统得到进一步发展和应用。 在此过程中,为了发挥不同导航系统的优点,互为补充,出现了各种组合导航系统,它们主要以惯性导航系统为基准。 80年代以后,导航系统主要朝着以惯性导航系统为基础的组合导航系统,可组合的传感器除了GPS外还有星光、地形和各种无线电导航装置。 1.1.3导航系统的任务 导航系统的任务是确定载体的位置,并把载体由目前所在的地点按照给定的时间和航线引导到目的地,为此导航系统应该能够提供以下导航信号: 1)载体质量中心所在地的“定位信号”; 2)载体的“定向信号”; 3)载体的“速度信号”。

基于航空无线电导航系统仿真研究

基于航空无线电导航系统仿真研究-电气论文 基于航空无线电导航系统仿真研究 杜春辉 (吉林省民航机场集团飞行区管理部导航保障室,吉林长春130035)【摘要】无线电的导航系统是航空飞行的重要组成部分,也是飞行检验仿真的基础。主要分析了Simulink与Matlab在建模仿真中的特点和航空无线电导航系统及其仿真的特点,并进一步的研究了Simulink与Matlab与高层结构(HLA)在兼容性方面所表现出来的强大的兼容性以及可重用性的优点,充分的说明了其在通信系统中的作用,并建立了机载接收分系统、空间信号合成、天线分配网络以及地面航向信标的Simulink 仿真模型,进而得出了正确的波形,进而提出了将Simulink模型加入到基于高层结构的通信系统综合仿真系统联邦的解决措施。 关键词无线电导航系统;仿真;Simulink与Matlab;模型 基于航空的无线电导航系统的全数字的仿真是航空飞行检验的基础,同时其也是仿真系统中不可或缺的组成部分,在整个系统中起着非常重要的作用。随着我国经济与科学技术的迅猛发展,我国的无线电导航技术也逐渐的走向成熟,无线电导航系统简单的来说就是利用无线电导航技术引导飞机进入相应的航线,并为飞机进行着陆引导,该系统对飞机的自动驾驶仪以及确定下滑道、航道等提供了精准的数据,有效的的保证了飞机的安全驾驶。但是,导航信息质量的高低以及着陆系统性能的发挥情况还受到一些因素的影响,主要的影响因素有两个方面,一个方面的影响因素是场地环境条件以及配置地点的影响,以及电磁干扰以及电波的传递条件等外界因素。另一方面是受到设备本身性能的限制。

1在无线电导航系统仿真中对Simulink与Matlab的可用性兼容性的研究 根据相关的数据统计表明,很多大学和研究机构将建立较为完善的Simulink 模型应用到HLA仿真中进行研究,都取得了一定的成果。在众多的研究案例中,比较成熟的研究案例有清华大学的Matlab与HLA/RTI的通用适配器,MAK公司的HLA/DIS Toolbox 的研究以及国防科研究的KD-HLA-Simulink工具箱,并将该工具箱完全的集成在Simulink的环境中,同时还为用户提供相应的Simulink的模块,该模块就是所说的HLA模块,该模块的功能是实现与RTI之间的接口。而MAK公司研发的HLA/DIS Toolbox 实际上是在基于HLA/D IS 标准仿真环境与MATLABSimulink之间提供了一个接口,通过这个接口,可以实时的或者是将已经记录的HLA/D IS数据输入到MATLAB中进行数据的分析,或者是将Simunlink或MATLAB的模型整合到HLA/D IS的环境之中,在进行Toolboox的使用时,Simulink与Matlab的应用程序就成为了一个完整的HLA/D IS的联邦成员。总而言之,上述的研究成果都为无线电导航系统的Simulink模型加入到通信系统中的综合仿真系统的建立提供了良好的条件与基础。 2实例 利用Simulink建立了无线电导航系统的米波仪表着陆系统地面分系统以及机载分系统的仿真模型,通过验证和校验。基于HLA的米波仪表着陆系统的仿真的体系架构如图1所示: 机载设备和地面设备是仪表着陆系统的两个重要组成部分,其中地面设备主要

无线电导航的发展历程

1.无线电导航的发展历程 无线电导航是20世纪一项重大的发明 电磁波第一个应用的领域是通信,而第二个应用领域就是导航。早在1912年就开始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass),工作频率0.1一1.75兆赫兹。1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为0.2一0.4兆赫兹,已停止发展。1939年便开始研制仪表着陆系统(ILS),1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异(Gee),工作频率为28一85兆赫兹。1943年,脉冲双曲线型中程无线电导航系统罗兰A(Loran-A)投入研制,1944年又进行近程高精度台卡(Dessa)无线电导航系统的研制。 1945年至1960年研制了数十种之多,典型的系统如近程的伏尔(VOR)、测向器( D ME)、塔康(Tacan)、雷迪斯特、哈菲克斯(Hi-Fix)等;中程的罗兰B(Loran-B)、低频罗兰(LF-Loran)、康索尔(Consol)等;远程的那伐格罗布((Navaglohe)、法康(Facan)、台克垂亚(Dectra)、那伐霍(Navarho),罗兰C(Loran-C)和无线电网(Radionrsh)等;超远程的台尔拉克(Delrac)和奥米加(Omega)与。奥米加;空中交通管制的雷康(Rapcon)、伏尔斯康(VOLSCAN)、塔康数据传递系统(Tacandata-link)和萨特柯((Satco)等,另外还有多卜勒导航雷达(Doppler navigation tadar),这期间主要保留下来的系统如表1 表1主要地基无线电导航系统运行年代表 1.1 无线电导航发展的重大突破 1960年以后,义发展了不少新的地基无线电导航系统。如近程高精度的道朗((TORAN)、赛里迪斯(SYLEDIS)、阿戈(ARGO)、马西兰(MAXIRAN)、微波测距仪(TRISPONDER)以及MRB-201,NA V-CON,RALOG-20,RADIST等等;中程的有罗兰D (Loran-D)和脉冲八(Pulse8)等;远程的恰卡(Chayka);超远程的奥米加((Omega与 );突破在星基的全球导航系统,还有新的飞机着陆系统。同时还开始发展组合导航与综合导航系统,以及地形辅助导航系统等。表2列出几种常用的系统及主要性能与用量。 表2几种常用的地基系统性能与用量 *D为飞行距离。

航空无线电导航技术习题

《航空无线电导航技术》习题 1、超短波通信的特点是(C )。 A:不受地形地物的影响B:无衰落现象 C:通信距离限定在视距D:频段范围宽,干扰小2、长波、中波的传播是以(B)传播方式为主。 A:天波B:地波C:直射波D:地面反射波3、短波传播是以(A )传播方式为主。 A:天波B:地波C:直射波D:地面反射波4、超短波传播是以(C )传播方式为主。 A:天波B:地波C:直射波D:地面反射波5、高频通信采用的调制方式是(B)。 A:等幅制B:调幅制C:调频制D:调相制 6、关于短波通信使用频率,下述中正确的是(B )。 A:距离远的比近的高B:白天比晚上的高 C:冬季比夏季的高D:与时间、距离等无关7、天波传输的特点是( A )。 A:传播距离远B:信号传输稳定 C:干扰小D:传播距离为视距 8、地波传输的特点是( A )。 A:信号传输稳定B:传播距离为视距 C:受天气影响大D:传播距离远 9、直射波传播的特点是( C )。

A:传播距离远B:信号传输不稳定 C:传播距离为视距D:干扰大 10、单边带通信的缺点是(D )。 A:频带宽B:功率利用率低C:通信距离近 D:收发信机结构复杂,要求频率稳定度和准确度高 11、飞机与塔台之间的无线电联络使用(B )通信系统。 A:高频B:甚高频C:微波D:卫星12、飞机与区调或站调之间的无线电联络使用(A)通信系统。 A:甚高频B:高频C:微波D:卫星13、目前我国民航常用的空管雷达是(A )。 A:一、二次监视雷达B:脉冲多普勒雷达 C:着陆雷达D:气象雷达 14、相对于单独使用二次雷达,使用一次、二次雷达合装的优点是( C )。 A:发现目标的距离更 B:常规二次雷达条件下提高雷达系统的距离分辨力 C:能够发现无应答机的目标 D:克服顶空盲区的影响 15、二次监视雷达与一次监视雷达相比的主要优点是(A)。 A:能够准确提供飞机的高度信息 B:能够探测气象信息并能够给出气象轮廓 C:能够准确提供飞机的距离信息

飞机导航系统

飞机导航系统 一、判断题 1、导航是一个时间和空间的联合概念,需要在特定的时刻描述在特定空间位置的状态,空间位置的描述可以采用地理坐标,由于导航通常是相对于某一具体目的地面而言的,因此采用地理坐标是方便而合理的. 2、无线电导航具有不受时间、天气的限制,精度高,定位时间短,设备简单,可靠等优点. 3、测距询问脉冲有用户发出,该询问脉冲需要经过特殊的编码以区别是哪个用户的询问脉冲,导航台站收到该脉冲后,及时向该用户发射应答脉冲,由用户接收并测量询问脉冲和应答脉冲之间的时间间隔,由导航台测量载体和导航台之间的距离. 4、无线电导航中的角参量可以分为两类:一类用于描述载体与导航台之间的相对角度关系;另一类用于描述载体的飞行状态,如导航、俯仰、横滚等. 5、频率测距通常是利用发射信号与反射信号的频率差来进行距离测量的,不一定要有反射面,因此作为频率测距系统. 6、载体航行状态指的是载体作为一个刚体在空间运动时所表现的非物理状态,通常与一定的参照量(如载体坐标系,当地理坐标系)相联系,他们可以从不同的角度进行描述,如方位、距离、位置、速度、姿态等. 7、 VOR方位飞机所在未知的磁北方向顺时针测量到飞机与VOR连线之间的夹角,是以飞机为基准来观察VOR台在地理上的方位. 8、无线电高度表,又称雷达高度表是一种等幅调频测距无线电导航设备。利用普通雷达的工作原理,以地面为发射体,在飞机上发射电波,并接收地面的反射波以测定飞机到地面的高度. 9、仪表着陆系统(ILS)决断高度(DH)是指驾驶员对飞机着陆或复飞做出判断的最低高度,在决断上,驾驶员必须看见跑到才能着陆,否则放弃着陆,进行复飞. 10、ADF指示的角度是飞机横轴方向到地面导航台的相对方位,因此,若要得到飞机相对于导航台的方位,还必须获知飞机的航向,这需要与磁罗盘或其他航向测量设备相结合. 二、选择题 1、无线电导航距离测量主要有___________________________三种测量方法。 2、导航参量的方位以经线北端为基准,顺时针测量到水平面上某方向线的高度 3、 ADF无线电罗盘,是一种_________________测向无线电导航系统,利用设置在地面的无方向信标(NDB)发射无线电波,在机上用环形方向性天线接收和处理电波信号,获取飞机到地面导航台的相对方位. 4频率测距的基本原理实际上的发射信号为__________________信号,由于颠簸的传播需要时间,那么在某一时刻,反射回来的信号的频率与正在发射的信号的频率之间的差频将反映这段时间,而这段时间同时也代表往返的距离. 5、 VOR伏尔是一种__________比较测向进程导航系统。机载设备通过接收地面VOR导航台发射的甚高频电波,可直接测量从飞机所在位置的磁北方向到地面导航台的位置,以近一步确定飞机相对于所选航道的偏离状态. 6、位置线或位置面,单值确定载体的位置,至少需要测定____条位置线或____

民航常用无线电导航设备

民航常用无线电导航设备 简介

第一节仪表着陆系统(Instrument Landing System — ILS) 仪表着陆系统由地面设备和机载设备组成。地面设备可以分为三个部分:航向信标台、下滑信标台、指点信标台或测距仪台。当测距仪成为仪表着陆系统的一部分时,其通常安装在下滑信标台。机载设备则包括相应的天线、接收机、控制器及指示器等。 1.地面设备的组成 ①航向信标:航向信标的主要作用是给进近和着陆的飞机提供对准跑道中心延长线航向道(方位)信息。 工作在VHF频段,频率范围为108.1~111.975MHz,每个频道之间的间隔为0.05MHz;并优先使用以MHz为单位的小数点后一位为奇数的那些频率点,例如109.7、110.3等;小数点后一位为偶数的那些频率点则分配给了全向信标。因此,航向信标只有40个频道可使用。 ②下滑信标:下滑信标的主要作用是给进近和着陆的飞机提供与地面成一定角度的下滑道(仰角)信息。 工作在UHF频段,频率范围为328.6~335.4MHz,每个频道之间的间隔为0.15MHz,其工作频道与航向信标的工作频道配对使用,因此也只有40个频道可供使用。 ③指点信标:用于给进近和着陆的飞机提供距跑道入口固定点的距离信息。工作在VHF 频段,固定频率为75MHz。 ④测距仪:用测距仪代替指点信标时,能给进近和着陆的飞机提供至测距仪台或着陆点或跑道入口的连续距离。工作在L波段,频率范围为962~1215MHz。与ILS合用时,其工作频率与航向信标配对使用。 各台的典型位置如图1—1所示。 图1—1 ILS典型位置示意图 2.ILS的基本定义和性能类别 2.1.基本定义 调制度差(ddm):较大音频信号对射频的调制度百分数减去较小音频信号对射频的调制度百分数的值。 航道线:在任何水平面内最靠近跑道中心线的ddm为零的各点的轨迹。

无线电导航的发展历程

无线电导航的发展历程 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

1.无线电导航的发展历程 无线电导航是20世纪一项重大的发明 电磁波第一个应用的领域是通信,而第二个应用领域就是导航。早在1912年就开 始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass),工作频率一兆赫兹。1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为一兆赫兹,已停止发展。1939年便开始研制仪表着陆系统(ILS),1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异(Gee),工作频率为28一85兆赫兹。1943年,脉冲双曲线型中程无线电导航系统罗兰A(Loran-A)投入 研制,1944年又进行近程高精度台卡(Dessa)无线电导航系统的研制。 1945年至1960年研制了数十种之多,典型的系统如近程的伏尔(VOR)、测向器( D ME)、塔康(Tacan)、雷迪斯特、哈菲克斯(Hi-Fix)等;中程的罗兰B(Loran-B)、低频罗兰(LF-Loran)、康索尔(Consol)等;远程的那伐格罗布((Navaglohe)、法康(Facan)、台克垂亚(Dectra)、那伐霍(Navarho),罗兰C(Loran-C)和无线电网(Radionrsh)等;超远程的台尔拉克(Delrac)和奥米加(Omega)与。奥米加;空中交通管制的雷康(Rapcon)、伏尔斯康(VOLSCAN)、塔康数据传递系统(Tacandata-link)和萨特柯((Satco)等,另外还有 多卜勒导航雷达(Doppler navigation tadar),这期间主要保留下来的系统如表1 表1主要地基无线电导航系统运行年代表 1.1 无线电导航发展的重大突破 1960年以后,义发展了不少新的地基无线电导航系统。如近程高精度的道朗((TORAN)、赛里迪斯(SYLEDIS)、阿戈(ARGO)、马西兰(MAXIRAN)、微波测距仪(TRISPONDER)以及MRB-201,NAV-CON,RALOG-20,RADIST等等;中程的有罗兰D (Loran-D)和脉冲八(Pulse8)等;远程的恰卡(Chayka);超远程的奥米加((Omega与);突破在星基的全球导航系统,还有新的飞机着陆系统。同时还开始发展组合导航与综合导航系统,以及地形辅助导航系统等。表2列出几种常用的系统及主要性能与用量。 表2几种常用的地基系统性能与用量 *D为飞行距离。

导航原理(pdf版)

导航原理(V0.1) 导航贯穿于飞行全过程。正确实施导航,是完成任务的先决条件。对于每一个想要在虚拟战线任务中顺利找到目标,完成任务并安全返航的飞友,熟练的掌握导航技术是必须的。 第一节导航仪表 与导航有关的仪表主要有罗盘和无线电导航仪,罗盘又分为磁罗盘和综合远读罗盘(也叫做转发罗盘),综合远读罗盘实际上是把远读罗盘和无线电导航仪合二为一,比如德机的罗盘中的小飞机就是无线电导航仪的指针,它指向无线电导航台或电台的方位,德机的罗盘外圈的刻度是活动的,跟随航向的变化而旋转,正12点的位置就是当前航向。美国海军飞机的罗盘中的双针就是无线电导航仪的指针,它指向电台方向,单针指示的是当前航向,而美国陆航的指针定义刚好相反,单针是无线电导航仪的指针,双针指示当前航向。苏机的无线电导航仪是单独的,它的使用我们以后再说。磁罗盘实际上跟指南针是一样的,只是它的刻度盘是做在磁体上的,跟磁体一起旋转,因此它只能在水平状态下使用。导航仪表中还包括航空时钟,它跟我们平时用的钟一样,这里就不讲了。 综合远读罗盘(德)综合远读罗盘(美)磁罗盘(美) 磁罗盘(苏)无线电导航仪(苏)

第二节判读航图和导航计算 航图的判读是导航的基础,游戏中的航图,跟我们常见的地图大体相同,所用的图标也很相似,但由于游戏本身的特点,以及我们在飞行中的实际需要,因此也有一些不同的地方。 图1 图例图2放大后的图1局部游戏中的航图图标大多与真实地图相同,如浅蓝色不规则线条表示河流,较大面积浅蓝色区域表示湖泊,黑色线条表示铁路,但公路却分为两种,红线表示泥土公路,黄色带棕色边的线表示沥青或水泥公路,大块的绿色区域表示森林,森林间的浅色区域表示草地,不规则的小块黄色区域表示城镇,城镇上面标有城镇名称。图中的蓝色菱形图标表示空军基地。 游戏中的航图跟真实地图一样是上北下南,左西右东,并且也采用 经度和纬度,图2是放大后的地图,可以看到地图边缘标有经度和纬度, 但游戏中的航图主要采用英文字母和数字来表示位置。图1是我们看航 图时最常用的一种比例,图中经线和纬线交叉将地图划分为一个个区 域,用英文字母代表纵列(经度),用数字代表横列(纬度),两条经线 和两条纬线之间的距离是10千米,因此地图上每一个区域的边长是10 千米。每一个区域可以用字母和数字来表示,如D5、E3等等。图3 区域分划但用这样的方法来表示位置不够精确,因此我们在此基础上将每一个区域分为9个小区,每个小区用一个数字来表示,以增加精度。如图3,将一个区域(图中为D3)均分为9个小区,用小键盘上的数字键位置进行编号,这样每一个小区就可以这样表示,如D3-1,D3-6。图1中的空军基地,如果用D3来表示,因为D3地区有10×10千米,因此精度很低,而如果用D3-5来表示,由于D3-5小区只有3.3×3.3千米,精度大为提高。 一般的航图显示比例分为两个档次,既每格10千米和每格1千米,而在太平洋地区的一些地

MHT 4006.3-1998 航空无线电导航设备 第3部分 测距仪(DME)技术要求

MH/T 4006.3-1998 航空无线电导航设备第3部分:测距仪(DME)技术要求 1 范围 本标准规定了民用航空测距仪设备的通用技术要求,它是民用航空测距仪设备制定规划和更新、设计、制造检验以及运行的依据。 本标准适用于民用航空行业各种地面测距仪(DME)设备。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。GB6364-86 航空无线电导航台站电磁环境要求 MH/T 4003-1996 航空无线电导航台和空中交通管制雷达站设置场地规范 中国民用航空通信导航设备动行维修规程(1985年4月版) 国际民用航空公约附件十航空电信(第一卷)(第4版1985年4月) 国际民用航空级织8071文件无线电导航设备测试手册(第3版 1972年) 3 定义 本标准采用下列定义和符号。 3.1 测距仪 distance measuring equipment (DME) 一种工作于超高频波段,通过接收和发送无线电脉冲对而提供装有相应设备的航空器至该地面设备连续而准确斜距的导航设备。 3.2 寂静时间 dead time 应答器接收机在收到一对正确询问脉冲对并产生译码脉冲后的一段封闭时间,以防上对应答脉冲的再次应答,并可防止多路径效应引起和回波响应。 3.3 发键时间 key down time 正在发射莫尔斯码的点或划的时间 3.4 脉冲幅度 pulse amplitude 脉冲包络的最大电压值。 3.5 脉冲上升时间 pulse rise time 脉冲包络前沿10%振幅点至90%振幅点之间的时间。 3.6 脉冲下降时间 pulse decay time 脉冲包络后沿90%振幅点到10%振幅点之间的时间。 3.7 脉冲宽度 pulse duration 脉冲包络前、后沿上50%振幅点之间的时间间隔。 3.8 X、Y模式 mode X、Y 用脉冲对的时间间隔来进行DME发射编码的一种方法,以便一个频率可以重复使用。 3.9 应答效率 reply efficiency 应答器所发射的应答数与其所收一的有效询问总数的比值,以百分比表示。 3.10 等值各向同性辐射功率 equivalent isotropically radiated power 馈送到天线上的功率与天线在给定方向上的增益(相对于各向同性天线的绝对增益或各向同性增益)的乘积。 3.11 pp/s pulse-pairs per second 脉冲对/秒。

无线电导航原理与系统课件

无线电导航原理与系统课件 无线电导航原理与系统 第三章无线电导航理论基础 一.空间坐标系无线电导航的基本任务就是确定被引导的航行体在运动过程中的状态参数,包括位置、速度、加速度、姿态等,这些参数是在一定的空间坐标系内定义的,因此要进行导航首先必须建立适当的参考坐标系。地球是人类的活动中心,在选择导航空间坐标系的时候,总是以地球为考虑的出发点。首先介绍一下地球的几何形状及其参数, 以便于认识和理解下面介绍的各种空间坐标系。一.空间坐标系地球的几何形状及其参数地球是一个旋转椭球;但是地球又不是一个理想的旋转椭球体,其表面起伏不平,很不规则,有高山、陆地、大海等。在实际应用中,人们采用一个旋转椭球面按照一定的期望指标(如椭球面和真实大地水准面之间的高度差的平方和为最小)来近似大地水准面,并称之为参考椭球面。参考椭球面的大小和形状可以用两个几何参数来描述,即长半轴a和扁率f。一.空间坐标系地球的几何形状及其参数目前应用中两个比较重要的参考椭球系是克拉索夫斯基椭球和WGS-84椭球。我国使用了40多年的1954北京坐标系(京-54坐标系),就是基于克拉索夫斯基椭球系。一.空间坐标系参考椭球上的主要面、线和曲率半径 1 参考椭球的法截面和法截线如图所示,O为参考椭球的中心。过地面点P作椭球面的垂线PK,称之为法线。包含过P点的法线的平面叫法截面。法截面与椭球面的交线叫做法截线。一.空间坐标系一.空间坐标系在实际计算中,为了方便往往在某一范围内把椭球面当作球面来处理,一般取该点所有方向的法截面曲率半径的平均值作为近似球面半径,称为平均曲率半径R,可推导出它的计算公式为:一.空间坐标系一.空间坐标系常用导航坐标系天球坐

航空无线电导航设备第一部分:仪表着陆系统(ILS)技术要求

航空无线电导航设备 第1部分:仪表着陆系统(ILS)技术要求 MH/T 4006.1-1998 1 范围 本标准规定了民用航空仪表着陆系统设备的通用技术要求,它是民用航空仪表着陆系统设备制定规划和更新、设计、制造、检验以及运行的依据。 本标准适用于民用航空行业各类仪表着陆系统设备。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列要求最新版本的可能性。 GB 6364—86 航空无线电导航台站电磁环境要求 Mt{/T 4003—1996航空无线电导航台和空中交通管制雷达站设置场地规范 中国民用航空通信导航设备运行、维护规程(1985年版) 中国民用航空仪表着陆系统Ⅰ类运行规定(民航总局令第57号) 国际民用航空公约附件十航空电信(第一卷)(第4版1985年4月)国际民航组织8071文件无线电导航设备测试手册(第3册1972年)

3 定义、符号 本标准采用下列定义和符号。 3.1航道线course line 在任何水平面内,最靠近跑道中心线的调制度差(DDM)为。的各点的轨迹。 3.2航道扇区course sector 在包含航道线的水平面内,最靠近航道线的调制度差(DDM)为0.155的各点迹所限定的扇区。 3.3半航道扇区half course sector 在包含航道线的水平面内,最靠近航道线的调制度差(DDM)为0.0775的各点轨迹所限定的扇区。 3.4调制度差difference in depth of modulatlon(DDM) 较大信号的调制度百分比减去较小信号的调制度百分比,再除以100。 3.5位移灵敏度(航向信标)displacement sensitivity(10calizer) 测得的调制度差与偏离适当基准线的相应横向位移的比率。 3.6角位移灵敏度angular displacemeat seusitivity 测得的调制度差与偏离适当基准线的相应角位移的比率。 3.7仪表着陆系统下滑道ILS glide path 在包含跑道中心线的垂直平面内.最靠近水平面的所有调制度差(DDM)

飞机无线电导航设备自动测试系统设计

飞机无线电导航设备自动测试系统设计 0 概述 机载设备装机前为保证可靠性必须对各设备进行测试,这不仅需要操作大量精密昂贵的仪器仪表及通信板卡,而且测试过程相当复杂繁琐,测试数据需要整理记录,花费时间长,测试任务重,测试人员要求素质高,这对进行大量机载设备测试带来了极大的挑战。而在这些机载设备测试中,无线电导航设备的测试最为复杂,应某机型生产的需要,专门设计一套无线导航设备自动测试系统对无线电导航设备的功能和性能进行评估和测试;同时提供一个地面交联环境,模拟装机后各设备间的通信数据,技术人员可以对各无线电设备之间的匹配性、一致性、兼容性等进行验证。 1 系统组成及工作原理 无线导航设备自动测试系统功能如下: (1)ADF、MMR、RA、TCAS和DME总线输出数据的采集、处理和存储; (2)仿真ADF、MMR、RA、TCAS和DME的总线数据; (3)设备的激励信号控制和产生; (4)设备输出离散信号和音频信号的采集; (5)被测航电设备控制盒仿真。 为完成上述功能,无线导航设备自动测试系统被设计为图1所示的系统,由图1可知该系统由专用激励源、PXI测试机箱、GPIB通信模块、429通信模块、数字I/O模块、音频采集卡、矩阵开关模块、接口适配箱、测控计算机组成。测试系统所测航电设备包括组合接收设备(MMR)、无线电罗盘(ADF)、交通告警和防撞系统(TCAS)、无线电高度表(RA)及测距仪(DME)等五类被测航电设备。 测控计算机完成被测航电设备测试中的组织管理,测试任务的调度,测试中ARINC 429总线数据的仿真,测试结果的判读;激励单元

负责提供所有被测航电设备运行所需的激励信号;PXI系统负责与所有被测航电设备进行1553B、ARINC 429、RS 232及HDLC总线通信,音频信号的采集,离散量的采集;适配单元负责接口适配与信号调理。 在测试中测控计算机控制激励单元给相关的设备加载激励(或输入)信号,并由控制盒或仿真控制盒设置无线电导航设备处于相应的工作状态,PXI平台通过信号采集与数据通信获得被测航电设备的工作状态和相应的工作数据,达到对被测航电设备测试的目的[2?3]。 另外测试系统还可以进行手动测试,主要用于系统联试出现异常时,可以在手动状态下进行故障注入调试;包括通过开关切换系统对物理线路开断构造开路故障、通过调试接口接地构造短路故障、通过软件通信设置进行奇偶校验、码率、编码,标号位的设置构造相关通信故障。 2 适配单元设计 接口适配单元是保证被测航电设备接入到测试平台进行正确测试的重要部件;接口适配单元主要完成信号转接分配、信号调理、被测航电设备多型号接口适配及信号检测和指示等功能,测试平台接口适配单元工作原理如图2所示。 由图2可知,每个适配单元中包含多块接口适配板、信号切换模块、设备信号检测孔、型号指示灯、机载设备插座和测试系统连接器,安装于一个适配箱内。其中接口适配板的功能是对被测设备的输入和输出离散信号进行调理(放大、衰减、调整);信号切换模块主要有4个功能:将测试仪表切换连接到被测试信号线上;将激励源输出的仿真信号切换并连接到被测设备的输入端口上;完成自动和手动测试功能的切换;完成电源加电控制和监测切换。信号检测孔安装在适配箱面板上,用于测试过程中对关键信号的监测;型号指示灯用于显示被测设备的不同型号;机载设备连接器和测试系统连接器分别用于被测航电设备与测试系统的连接。 接口适配箱的另一个重要功能是适应同类多型被测航电设备的匹配,包括已知的和未知的设备型号变化导致的连接器型号及插针定

无线电导航系统 罗兰-C

无线电导航系统罗兰-C 【概述】 罗兰的全称是远程导航,是一种远程双曲线无线电导航系统,作用距离可达2000公里,工作频率为100千赫。罗兰-C是低频、脉冲式的双曲线无线电导航与定位系统,它是在40年代由美国麻省理工学院应美国陆军的要求而研制的。罗兰-C是一种远距离(1850km)、低频(100kHz)的含标准时间频率信息的双曲线无线电导航系统、定位系统,它的作用距离大,覆盖面广,导航、定位精度高,在全球范围内得到广泛应用。 它使用两个同步发射器信号到达的时间差来定位。较低的频率允许地波沿地球表面曲面传播较远的距离,多脉冲允许接收机把天波与地波区分开来。根据不同的几何条件、接收机测时精度及传播条件,罗兰-C可以提供100~200m的精度。 【原理】 罗兰C定位原理 到两定点距离差为一常数: 双曲线(具有双值性) 副台延时:ts=β主副+Δ β主副:主台→副台电波传播时间 Δ:副台编码延时 船台测时间差:Δt=β主副+Δ+t副-t主 β主副:消除双值性;Δ:识别各副台 罗兰C系统由设在地面的1个主台与2~3个副台合成的台链和飞机上的接收设备组成。测定主、副台发射的两个脉冲信号的时间差和两个脉冲信号中载频的相位差,即可获得飞机到主、副台的距离差。距离差保持不变的航迹是一条双曲线。再测定飞机对主台和另一副台的距离差,可得另一条双曲线。根据两条双曲线的交点可以定出飞机的位置。这一位置由显示装置以数据形式显示出来。由于从测量时间差而得到距离差的测量方法精度不高,只能起粗测的作用。副台发射的载频信号的相位和主台的相同,因而飞机上接收到的主、副台载频

信号的相位差和距离差成比例。测量相位差就可得到距离差。由于100千赫载频的巷道宽度(见奥米加导航系统)只有1.5公里,测量距离差的精度很高,能起精测的作用。测量相位差的多值性问题,可以用粗测的时间差来解决(见无线电导航)。罗兰C导航系统既测量脉冲的时间差又测量载频的相位差,所以又称它为低频脉相双曲线导航系统。1968年研制成功的罗兰D导航系统提高了地面发射台的机动性,是一种军用战术导航系统。 【应用领域】 罗兰C 系统是一种陆基远程无线电导航系统,用于舰船、飞机及陆地车辆的导航定位。该系统的主要特点是覆盖范围大, 岸台采用固态大功率发射机, 峰值发射功率可达2MW, 因此其抗干扰能力强,可靠性高。我国建有3 个罗兰C 导航台链, 是一种为我国完全掌握的无线电导航资源, 可覆盖我国沿海的大部分地区, 在战时具有重要意义。卫星导航是通过在地球上空布设若干个导航卫星, 发播导航电文, 接收机通过接收到卫星导航电文数据来解算出位置数据。由于卫星导航覆盖范围广( 可全球覆盖) 、全天候、高精度等优点, 得到了广泛应用。目前可用的卫星导航系统有美国的GPS、俄罗斯的GLONASS 以及我国的双星导航卫星, 欧洲的GALILEO 导航卫星系统将在2008 年建成使用, 日本也计划发展区域卫星导航系统。但卫星导航系统也有其弱点, 卫星导航系统是星基导航, 由于卫星距地面较高, 卫星发射信号功率受到限制等因素, 使得卫星导航信号微弱, 易被干扰。由于星基无线电导航和陆基无线电导航各有其优缺点, 并且各自独立, 因此, 研究罗兰C 和卫星导航的优势互补以及它们的组合应用具有一定的现实意义。 【背景】 Loran(罗兰)是远程导航的缩写,罗兰C(Loran C)是于五十年代末在第二次世界大战中期成功研制罗兰A的基础上改进并投入使用的远程双曲线导航系统,1974年向民用开放。罗兰C的地面发射系统是由至少3个发射台组成的台链,彼此精确同步。用户接收来自2个台的信号时,只要测出它们到达的时间差,便知道自己处于一条以这两个台为焦点的双曲线上;同时又测出另外两个台信号的时间差,便又得知处于另一条双曲线上;显而易见,用户必然处于这两条双曲线的交点上,从而可确定出用户的位置。从1945年到1974年,罗兰仅由美、苏两个大国掌握,苏联建立了类似于罗兰C的恰卡(Chayka)导航系统,后加拿大加入美国的罗兰C应用体系,八十年代中期国际航空界正式启用罗兰C,随后欧盟建立了多个罗兰C台链,日本、韩国、我国、印度也都相继建了台链。到目前为止,全世界共建成了30多个罗兰C台链。在陆基无线电导航系统中,罗兰C的用户是最多的,大多数是用于航海,也用作航空和陆上导航。虽然GPS的问世对罗兰C的应用有较大影响,但罗兰C具有它的独到之处,不可能完全被GPS所取代;若把罗兰C与GPS组合使用,则将在覆盖范围、实用性、完善性等方面得到改善。由此可知,罗兰C的优点:罗兰C采用100 kHz单一的低频,该频率传播距离远、稳定性好,使罗兰C具有作用距离远的优点。但罗兰C无法覆盖全球。 在六十年代中期,美国海军提出了“Timation”计划,美国空军提出了621B计划,并付之实施。但在发射了数颗实验卫星和进行了大量实验后发现各自都还存在一些大的缺陷。所以在此背景下,1973年美国国防部决定发展各军种都能使用的全球定位系统(GPS Global Positioning System),并指定由空军牵头研制.在项目的实施中,参加的单位有美国空军、陆军、海军、海军陆战队、海岸警卫队、运输队、国防地图测绘局、国防预研计划局,以及一些北大西洋公约组织和澳大利亚。历时20多年,耗资数百亿美元,于1994年3月10日,24颗工作卫星全部进入预定轨道,GPS系统全面投入正常运行,技术性能达到了预期目的,其中粗码(C/A码)的定位精度到达20m,远远超过设计指标。GPS是现代科学的结晶,它的推广应用有力地促进了人类社会进步。 【美国、北欧Loran-C链的技术改造】

航空无线电导航台站电磁环境要求

航空无线电导航台站电磁环境要求 1 引言 航空无线电导航是以各种地面和机载无线电导航设备,向飞机提供准确、可靠的方位、距离和位置信息。来自非航空导航业务的各类无线电设备,高压输电线,电气化铁路,工业、科学和医疗设备等引起的有源干扰和导航台站周围地形地物的反射或再辐射,可能会对导航信息造成有害影响。为使航空无线电导航台站与周围电磁环境合理兼容,保证飞行安全,特制订本标准。 本标准适用于航空无线电导航台站电磁环境管理和作为非航空导航设施与航空无线电导航台站电磁兼容的准则。 2 中波导航台(NDB) 2.1中波导航台是发射垂直极化波的无方向性发射台。机载无线电罗盘接收中波导航台发射的信号,测定飞机与中波导航台的相对方位角,用以引导飞机沿预定航线飞行、归航和进场着陆。 2.2中波导航台包括机场近距导航台、机场远距导航台和航线导航台。近距导航台和远距导航台通常设置在跑道中心延长线上,距跑道端1000—11000m之间。航线导航台设置在航路或航线转弯点、检查点和空中走廊进出口。 2.3中波导航台工作在150—700kHz范围内国家无线电管理部门划分给无线电导航业务和航空无线电导航业务的频段。 2.4远距导航台和航线导航台覆盖区半径为150km(白天)。近距导航台的覆盖区半径为70km(白天)。2.5中波导航台覆盖区内最低信号场强,在北纬40o以北为70μV/m(37dB),在北纬40o以南为120μV /m(42dB)。 2.6在中波导航台覆盖区内,对工业、科学和医疗设备干扰的防护率*为9 dB, 对其它各种有源干扰的防护率为15dB。 2.7 以中波导航台天线为中心,半径500 m以内不得有110kV及以上架空高压输电线;半径150m以内不得有铁路、电气化铁路、架空金属线缆、金属堆积物和电力排灌站;半径120m以内不得有高于8m的建筑物;半径50 m以内不得有高于3 m的建筑物(不合机房)、单棵大树和成片树林。 3 超短波定向台(VHF/UHF DF) 3.1 超短波定向台是一种具有自动测向装置的无线电定向设备,通过接收机载电台信号,测定飞机的方位,引导飞机归航,辅助飞机进场着陆,配合机场监视雷达识别单架飞机。 3.2超短波定向台通常设置在跑道中心延长线上,亦可与着陆雷达配置在一起。 3.3超短波定向台工作在118~150MHz和225~400MHz两个频段中,国家无线电管理部门划分给移动业务和航空移动业务的频段。 * 防护率系指保证导航接收设备正常工作的接收点处信号场强与同频道干扰场强的最小比值,以分贝 (dB)表示。

无线电导航的发展历程.

1.无线电导航的发展历程 无线电导航是 20世纪一项重大的发明 电磁波第一个应用的领域是通信,而第二个应用领域就是导航。早在 1912年就开始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass,工作频率 0.1一 1.75兆赫兹。 1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为 0.2一 0.4兆赫兹,已停止发展。 1939年便开始研制仪表着陆系统 (ILS,1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异 (Gee, 工作频率为 28一 85兆赫兹。 1943年,脉冲双曲线型中程无线电导航系统罗兰 A(Loran-A投入研制, 1944年又进行近程高精度台卡 (Dessa无线电导航系统的研制。 1945年至 1960年研制了数十种之多, 典型的系统如近程的伏尔 (VOR、测向器 ( D ME、塔康 (Tacan、雷迪斯特、哈菲克斯 (Hi-Fix等 ; 中程的罗兰 B(Loran-B、低频罗兰 (LF-Loran、康索尔 (Consol等 ; 远程的那伐格罗布 ((Navaglohe、法康 (Facan、台克垂亚 (Dectra、那伐霍 (Navarho,罗兰 C(Loran-C和无线电网(Radionrsh等 ; 超远程的台尔拉克 (Delrac和奥米加 (Omega与。奥米加 ; 空中交通管制的雷康 (Rapcon、伏尔斯康 (VOLSCAN、塔康数据传递系统 (Tacandata-link 和萨特柯 ((Satco等,另外还有多卜勒导航雷达 (Doppler navigation tadar, 这期间主要保留下来的系统如表 1 表 1主要地基无线电导航系统运行年代表 1. 1 无线电导航发展的重大突破 1960年以后, 义发展了不少新的地基无线电导航系统。如近程高精度的道朗((TORAN、赛里迪斯 (SYLEDIS、阿戈 (ARGO、马西兰 (MAXIRAN、微波测距仪(TRISPONDER 以及 MRB-201,NA V-CON,RALOG-20,RADIST 等等 ; 中程的有罗兰 D (Loran-D和脉冲八 (Pulse8等 ; 远程的恰卡 (Chayka;超远程的奥米加 ((Omega 与 ; 突破在星基的全球导航系统,还有新的飞机着陆系统。同时还开始发展组合导

中国民用航空无线电频率划分表

中国民用航空无线电频率划分表中国民用航空无线电频率划分表 频率划分(KHz)无线电频率划分脚注 160-190 固定 航空无线电导航 190-200 航空无线电导航 固定 200-285 航空无线电导航 [航空移动] 285-325 航空无线电导航 水上无线电导航(无线电信标) 325-405 航空无线电导航 [航空移动] 405-415 无线电导航 [航空移动] 415-495 水上移动 航空无线电导航S5.77 在中国,415-495KHz频带以主要使用条件划分给航空无线电导航业务。国家主管部门应采取一切切实可行的措施,保证在435-495KHz频带内的航空无线电导航电台不对接收船舶电台通信的海岸电台产生干扰,这些船舶电台的发信频率是指定给船舶电台用于全球范围通信的频率。 S5.82 在水上移动业务中,从完全执行GMDSS的日期开始,490KHz频率专用于由海岸电台通过窄带直接印字电报向船舶发送导航和气象告警及紧急信息,使用 490KHz频率的条件在S31和S52条中规定。要求各主管部门在航空无线电导航业务使用415-495kHz频带时,保证不对490kHz频率产生有害干扰。 505-526.5 水上移动 航空无线电导航 [航空移动] [陆地移动] 526.5-535 广播 航空无线电导航

[移动] 535-1 606.5 广播 [航空无线电导航] 2 850- 3 025 航空移动(R)S5.111 按照已经生效的地面无线电通信业务的程序,2182kHz、3023kHz、 5680kHz、8364kHz载波频率以及121.5MHz、156.8MHz 和243MHz频率,也可用于有人驾驶空间飞行器的搜索和救援工作。.这些频率的使用条件在第S31条和附录S13中规定。 上述规定同样适用于10003kHz、14993kHz和19993KHz这三个频率,但其发射必须限制在各频率±3KHz频带内。 S5.115 根据第S31条和附录S13,参与经过协调的搜索和救援工作的水上移动业务电台也可使用载波(基准)频率3025kHz和5680kHz 3 025-3 155 航空移动(OR) 3 400-3 500 航空移动 3 900-3 950 航空移动 广播CHN4 2-64.5MHz可有限制地用于无线电定位业务,不得对其它业务产生有害干扰。 4 063-4 438 水上移动 [固定] [陆地移动] [航空移动]S5.128 在中国,位于离海岸至少600公里的功率受到限制的固定业务电台,在对水上移动业务不产生干扰的条件下,可以使用4063-4123KHz、4130-4133KHz和4408-4438KHz频带。 S5.129 在不对水上移动业务产生有害干扰的条件下,仅在其国境内通信的固定业务电台,其平均功率不超过50W者,可例外地使用4063-4123KHz和4130-4438KHz频带中的频率。 CHN5 4292-4305KHz、6443-6457KHz、8803-8813KHz、10555-10655KHz、10740-10760KHz、13155-13165KHz、14815-14825KHz、17155-17165KHz、19750- 19760KHz、22510-22520 KHz、25080-25090 KHz系国内保护频带,用于水上移动业务。20015 KHz为国内保护频点。 4 650-4 700

相关主题