搜档网
当前位置:搜档网 › 半固态成形技术及应用

半固态成形技术及应用

半固态成形技术及应用
半固态成形技术及应用

半固态成形技术及应用

摘要

介绍了半固态成形技术的工艺原理,分析了机械搅拌、电磁搅拌、应变诱导、冷却斜

坡等浆料制备方法和流变加工、触变加工、注射加工等成形方法。分析了各种计算机模拟技术和模拟方法在半固态成形方面的应用,论述了目前国内外半固态成形技术的应用状况和发展趋势。随着半固态成形技术研究水平的不断提高,成形产品及应用不断增多,发展前景广阔。

关键词: 半固态加工; 浆料制备; 成形工艺; 计算机模拟

0引言

20世纪70年代初,美国麻省理工学院D.B.Sepcner等研究人员在自制的高温粘度计中测量Sn-15Pb合金高温粘度时,发现了金属在凝固过程中的特殊力学行为图,即金属在凝固过程中进行强力搅拌,使枝晶破碎,得到一种液态金属母液中均匀地悬浮着一定固相组分的固液混合浆料(固相率甚至可高达60%),具有很好的流动性,易于通过普通加工方法制成产品,并冠以半固态加工[1],人们一直沿用至今。

半固态成形技术与其它的成行技术的区别在于:①半同态浆料具有流变性和触变性,变形抗力小,可提高成形速度,进行复杂件成形,缩短加工周期,利于节能节材,也可进行连续形状的高速成形;②与液态金属加工相比,半固态浆料随着同相分数的降低,呈现粘性流体特性,在微小外力作用下可发生变形流动,但粘度比液态金属高,容易控制;③当固相分数在极限值(约75%)以下时,浆料可以进行搅拌,并可很容易混入异种材料的粉末、纤维,完成复合材料制备和成形;④应用广泛,凡具有固液两相区的合金均可实现半固态加工,适用于多种加工工艺,如铸造、轧制、挤压和锻压,也正是这个优点,才产生了多种金属半固态成形工艺[2],所以被誉为2l世纪最有发展前景的现代加工新技术。

半固态金属成形过程的模拟仿真,如半同态材料的二次加热过程、凝固过程的温度场的模拟仿真,充型过程流动场的模拟仿真,触变成形过程工件应力应变场的模拟仿真和组织变化的模拟仿真等,通过对这些单一或复合过程的模拟仿真技术的研究,可以对SSM过程中产生的诸如裂纹、气孔缺陷等各种品质问题进行分析,对工艺方案进行优化,对产品品质和性能进行预测,从而达到改善产品品质、提高生产率和降低成本的目的。

半固态金属成形技术在许多发达国家如美国、意大利、瑞士、法国、德国、日本等已进入了工业应用阶段。半固态金属成形制品的主要市场是汽车工业,如空压机、制动器、发动机、燃料供给装置、悬挂装置及汽车轮毂等。由于制品质量优异,大量用于安全性能要求较高的地方。另外,在电子、军事和娱乐设施等方面也有着广泛的用途。而我国的半固态金属加工技术起步较晚,开始于20世

纪70年代末。直到90年代以后,随着国内轿车工业的发展,先后有以下高校和科研机构开展了这方面的研究:兰州理工大学、哈尔滨工业大学、东南大学、北京科技大学、北京有色金属研究总院、上海交通大学、清华大学、东北大学以及华中科技大学等[3],并取得了可喜的进步。

1半固态成形的科学含义

1.1科学含义

半固态加工利用了金属从液态向固态或固态向液态转变时固液共存的特性,在成形中降低了加工温度,例如铝合金,与铸造相比,加工温度可降低120℃;变形抗力小,可一次加工形状复杂、精度要求高的零件。这些特性,为零件近净成形实现,提供了一条新途径。

半固态加工应该是一个温度概念,即从合金相图上所看出的,该加工是在固一液温度区间内完成并未涉及合金在固一液温度区间内完成,并没有涉及金属在半固态区间处何种组织状态和持某种特性,即所谓流变性和触变性。由半固态加工的名称起源可知,半固态加工,不仅是温度的函数,而且是组织的函数,更确切说是性能函数[4]。

1.2半固态在相图中的位置

图1是二元系共晶合金状态图的一部分,化学组成为A的合金在液相线温度

T L 以下,在固相线温度(这里指共晶温度)T

S

以上的温度区域里,固相与液相共存,

即处于半固态[5]。在这个范围中的温度T下,合金为保持平衡状态,由成分为A'的固相和成分为A"的液相以a:b之比共存,这就是合金的半固态区。

图1 合金的半固态区

2半固态浆料制备

半固态坯料的制备就是采用一定手段使半固态浆料中的固相以球状或椭球状颗粒分布于液相中,目前采用的方法有以下几种:

2.1 机械搅拌法[6]

机械搅拌时搅拌叶片与金属熔体直接接触,设备构造简单、工艺参数容易控制。机械搅拌过程中可以获得很高的剪切速率,利于形成细小的近球形微观结构,但是搅拌槽内部往往存在搅拌到的死区,影响浆料的均匀性,搅拌叶片的腐蚀以及它对半固态金属浆料的污染,都会对坯料质量带来不利的影响。机械搅拌制备的半固态金属浆料固相颗粒尺寸在50一1001μm之间。

2.2 电磁搅拌法[7]

电磁搅拌属于非接触式搅拌技术,利用电磁感应力将初生的枝晶破碎,工作原理如图2所示,其特点是金属液纯净,适用于高熔点合金和大批量生产。但由于感应电磁力从熔池边界到熔体中心逐渐衰减,当熔融金属四周有凝固外壳形成时,搅拌效果大大减弱,因此不适合制备大尺寸的半固态金属锭料。同时,电能消耗大,能源供给和搅拌器定子等装置体积大。电磁搅拌与连铸设备相结合可以为后续触变成形连续生产锭料。

图2 电磁搅拌法

2.3 应变诱导熔化激活技术[8]

应变诱导熔体活化法(strain induced meltactivation, SIMA)的工艺过程是,首先制备铸锭,然后对铸锭进行大的挤压变形,以获得晶粒细小的SIMA原料,再将铸锭加热到固液两相区,进行半固态成形。SIMA的关键是如何对铸锭

进行大的挤压变形,以获得细小晶粒组织的铸锭。

2.4 冷却斜坡法[9]

冷却斜坡法的工作原理如下:熔体首先流过冷却斜坡,产生局部降温、强烈滚动和翻转,再注人铸型,产生强烈的搅拌;然后通过控制铸型温度,使金属液冷却到半固态温度后保温;当达到要求的固相体积分数时,再进行流变成形或触变成形。

2.5 双螺旋流变注射成形法[10]

双螺旋流变注射成形法工作原理如图3所示,双螺旋挤压器本身就是半固态浆料制备器,液态金属在双螺旋挤压器制备成半固态浆料,进入压室后通过活塞形成一定的挤压力和挤压速度,挤入模具中使半固态浆料成形。

图3双螺旋流变注射成形法

2.6 其他方法

Flemings等提出的新MIT工艺。在快速热释放的同时对合金进行搅拌,使合金在半固态区进行短时间缓慢冷却或处于绝热状态,最后将合金冷却到指定的温度进行成形。获得半固态金属浆料的方法还有剪切冷却法、晶粒细化热处理法、喷射沉积法、超声振动法、粉末冶金法等,但这些方法目前还处于实验研究阶段,尚不能投入工业化生产应用。

3 金属半固态成形工艺

当前,金属半固态成形的基本工艺方法可分为流变成形和触变成形。流变成形是利用流变浆料直接进行成形。而触变成形是将流变浆料凝固成锭,按需要将此金属锭切成一定大小,然后重新加热至金属的半固态温度区,这时的金属锭称为半固态金属坯料,再利用金属的半固态坯料进行成形加工。

3.1 半固态金属的触变成形

3.1.1触变注射成形

触变注射成形工艺(图 4)是由美国Dow Chemical公司开发的技术,1992年由日本制钢所引入并完成成形机的研制开发,现在是半固态加工领域中最成功、应用最广的技术之一。触变注射成形技术采用了一种所谓“一体化”的成形方式,将压铸和注塑工艺合二为一,其中模具和成形材料与压铸工艺相似,而工艺过程接近于注塑成形。此外,该方法集半固态金属浆料的制备、输送和成形过程于一体,较好解决了半固态浆料的保存和输送难题,提高了生产效率。

图4 触变注射成形

该设备由原料料斗、预热装置、螺旋注射机、加热装置以及压铸机等组成。触变注射成形过程首先将碎化的颗粒状原料,由料斗送入高速螺旋注射机进行加热、搅拌到半固态状态,在靠近喷嘴端处,将半固态浆料温度控制在固相线温度以上,最后通过喷嘴将半固态浆料高速注射到压铸模具中,凝固成形得到成形件。

3.1.2 触变挤压

仿照 Thixomolding 模型产生了触变挤压成形工艺[11](图 5)。触变挤压成形是注塑和挤压成形过程的结合。半固态浆料的二次加热类似于注塑成形,而模具则为挤压成形模具。

图5 触变挤压成形

这种成形方法为许多难于铸造和塑性加工的特殊材料,如金属基复合材料、脆性材料和易偏析材料。该工艺是将半固态坯料由料口进入二次加热室,经过加热处理,使半固态坯料变成浆状,然后流入搅拌器,搅拌后,在液态金属中均匀悬浮着一定固相组分的固液混合体,最后通过模具型口得到理想形状的材料。

3.1.3 触变锻造

1994年,斯图加特大学的成形技术学院(IFU)开始了对铝、黄铜等金属的触变锻造研究,将半固态金属坯料移入锻压模具内,利用感应加热器进行二次加热,使半固态坯料处于具有成分确定且均匀的液态和固态之间,然后模具的一部分向另一部分运动并加压成形,其成形原理及半固态金属向模具型腔流动的情况如图6所示。

图6 触变锻造

半固态锻造成形的优点是扩大了复杂成形件的范围,因半固态金属的流动性好,又易于控制,可准确称量,所以锻造耗能低,切削量少,材料利用率较高。

3.2 半固态金属的流变成形

3.2.1 螺旋式半固态流变成形

美国 Cornell大学 Wang KUO K等人应用注射成形原理研制了流变射铸成形技术(图 7),将高温液态合金通过进料口注入到搅拌室,液态合金在重力和螺旋杆的搅拌作用下,缓慢冷却,形成半固态浆料,当在注射口堆积一定体积时,由注射装置注射成形[11}。

图7 流变射铸成形

3.2.2 锥桶式半固态流变成形

北京科技大学的孙建林等人利用金属浆料通过旋转的斜锥形内外筒之间的缝隙时,受到剧烈剪切应力场作用的原理,成功地研制开发了一种新型的具有独特结构的半固态金属浆料制备与直接流变成形装置——锥桶式半固态流变成形装置[12](图8)。

图8 锥桶式半固态流变成形装置

半固态浆料制备与流变成形装置主要由送料装置、剪切机构、射压机构、温度控制装置和气体保护系统构成。剪切机构由内、外两个同心圆锥筒构成,其内筒由电机带动转动,外筒固定,通过调整内筒转速和升降内筒高度(即调整内、外筒之间的缝隙),使半固态金属浆料在内、外筒缝隙之间受到剧烈剪切作用,从而制备出晶粒细小、组织均匀的半固态金属浆料,可进行后续的压铸、挤压、压轧或锻造加工。

3.2.3 流变铸轧[11]

半固态镁合金板带连续铸扎是比较典型的触变铸轧成形工艺(图9)。触变铸轧是对半固态金属进行铸轧成形,是将铸造和热轧两种工艺合为一体,让铸轧辊把熔融浆料的大量热能带走,使浆料在很短时间内完成铸造结晶过程,同时,又对已形成铸造组织的镁板进行了压力加工。

图9 流变铸轧

通常,流变铸轧包括3个工序,首先先将合金原料加入到电阻坩埚中加热熔化,进行质变处理。其次,在室温下,待温度降至固液两相区温度时,对熔体进行机械搅拌,生成半固态浆料。最后,在固相线温度以上,将半固态浆料导入铸轧辊进行铸扎成形。

3.2.4 低过热度倾斜板浇注式流变铸造[11]

非机械或非电磁搅拌的低过热度倾斜板浇注式流变铸造技术,是一种全新的流变铸造工艺(图9),与机械搅拌和电磁搅拌依靠外力来打碎枝晶,而获得球形非枝晶不同,它是直接从球形晶粒形核、长大的热力学和动力学条

件着手,获得球形晶粒。

图9 低过热度倾斜板浇注式流变铸造

其工艺过程首先是降低浇注合金的过热度,将合金熔体流入收集坩埚,再向坩埚中吹气,让金属液慢慢冷却凝固,这时候在金属液中产生球状的初生固相,

均匀的分布在低熔点的残余液相中,最后对收集坩埚中的合金浆料进行温度调整和翻转,使获得尽可能均匀的温度场和固相分数,最后,可进行后续的压铸、挤压或锻造加工。

从整个工艺流程,这种新型制备方式简单,且便于控制,是金属半固态成形的新思路。

3.3 注射成形

注射成形是直接把熔化的金属液冷却至适宜的温度,并辅以一定的工艺条件压射入型腔成形,该方法类似于塑料的注射成形法。其工作原理是

由普通铸锭利用专用的装置以机械的方式切成3一6mm的粒状,在室温下通过料斗送入高温螺旋混合机,当金属加热到半固态后进入定量触变浆

料收集器,通过喷嘴高速射入压铸模内,凝固后得

到制品,目前应用最成功的是AZ91D。

3.4流变成形与触变成形的对比[13]

经过研究者30多年的研究,半固态成形技术经历从流变成形到触变成形然后再到流变成形这样的发展历程。以前。半固态合金浆料的制备技术得到限制,并且浆料的保存、输送极为不便,流变成形技术发展速度相对很慢。而触变成形技术中半固态浆料的输送以及半固态坯料的加热是极为便利的,而且极易实现自动化.所以半固态金属触变成形技术是当时半固态成形技术中最广泛应用的工艺手段.如被用于铝合金的触变压铸、锻造和镁合金的触变射铸。伴随着触变成形技术的工业化实际应用,使用者也发现了很多缺陷。

(1)触变成形技术主要利用电磁搅拌法生产半固态坯料,以前的电磁搅拌功率大、能耗高、效率低、装置设备投资大,生产成本高,并且电磁搅拌制备的半固态浆料成分与微观组织不均匀。

(2)电磁感应加热半固态浆料损耗能源大,浆料表面极易被氧化。影响使用性能。

(3)坯料的切分和二次加热过程中的会有材料的流失.浇注系统以及废品也不能马上回收再利用,必须经过重新处理之后才可以进行二次利用.这样势必增加生产成本。

性价比是使用性能和成本之间的比例,也是决定半固态成形技术在工业生产上的决定性因素。因此工艺流程较长和生产成本较高的触变成形技术并不足以充分体现半固态成形技术的诸多优点.所以触变成形技术并不一定有着远大的发展前途。因此,工艺流程长.生产成本高的半固态触变成形技术已不能完全体现出半固态金属加工成形的诸多优点。因此,流变成形技术具有环保、节能、工艺流程短、回炉料可以马上使用等优点.所以半固态铝合金流变成形技术已经成为加工半固态金属技术的研究主题。目前对于镁合金,成熟的半固态金属成形技术只

有流程长、成本高的触变成形.因此研究工艺流程更短、更经济的流变成形技术并进行工业推广具有重要的经济意义。

4半固态成形计算机模拟技术[10]

4.1模拟技术进展

半固态金属在压力作用下具有良好的流变性和填充性,但变形过程非常复杂,目前对触变成形过程的模拟研究大多在一些商业有限元或有限差分软件平台上进行。Zavaliangos在商业软件FLOW一3D上应用简化的数学模型,采用有限元法对Sn一15%Pb半固态材料的流变行为进行模拟,导出了固相和液相的连续性方程。

Kapranos利用FLOW一3D软件分别对半固态铝合金挤压成形进行了模拟,并与实测压力一时间曲线进行了比较,揭示了粘度、应变速率和时间相互之间的密切关系。

4.2 模拟方法

半固态成形的充型过程模拟主要有以下几种方法:

(1) SIMPLE法SIMPLE法又称压力连续方程的半隐式方法,该方法由Patankar提出,可以用来计算非定域、不稳定速度场。

(2) MAC与SMAC方法MAC ( marker afvd cell)方法由美国Los Alamos国家实验室提出,基于有限差分网格,将动量守恒方程和连续性方程进行离散,并将二者合并成一个与压力有关的泊松方程,通过动量守恒方程和泊松方程的迭代,求解出流动的速度场和压力场。

(3) SOLA一VOF法SO LA一VOF(solution algorithm一volume of fluid)法由Los Alamo s科学实验室提出,求解速度场及压力场时,每个计算单元的校正压力直接由连续性方程计算出的速度求出,然后校正速度场。

(4)SOLA一MAC法SOLA一MAC法在求解流动问题时,利用SOLA方法计算速度场和压力场,利用MAC方法中的标识粒子显示流动范围的变化,跟踪自由表面的位置。该方法可以得到速度分布图、流线图、环流的位置、对铸型材料的冲击和剧烈流动的范围等结果。

此外,还有数值计算方法和有限体积法、Fan法(flow analysis network method)、格子气流体动力学法等。20世纪90年代后还开发了连续统

一模型,适用于凝固区、固液两相区和液相区。

由于半固态合金触变性能的特殊性,目前还没有找到符合实际情况的真实物理模型和数学模型,借助铸造过程仿真软件进行研究的结果尚不能完全解释变形过程中的一些现象,还需要深入研究,需要把粘度模型、模具内的热交换及凝固等复杂过程加以综合考虑。

5工业应用现状[14]

在过去的二十年,随着航空、航天、船舰、现代交通、机械制造业快速发展,轻合金材料需求量越来越大,性能要求越来越高,并利用半固态成形技术工艺来近净成形轻合金制件。哈尔工业大学罗守靖教授总结了我国半固态成形的发展现状。半固态加工方法能够生产形状复杂的零部件,半固态加工在镁合金产品的商业性生产主要是Thixomolding(触变射铸)工艺,在铝合金生产方面,进行生产的主要集中在半固态触变成形。北京有色金属研究总院已建成国内第一条年产300吨的铝合金半固态材料制备生产线,可批量生产A356、A390、7075、6061等多种合金牌号的半固态坯料,同时还可以进行半固态坯料制备、流变制浆机、二次加热专用加热设备等半固态加工成套设备的生产。北京交通大学n71利用半固态流变挤压技术成功地制造碳钢ZG230—450基座和低合金钢齿轮和箱体。南昌大学利用流变压铸技术实现了传统压铸专用合金如ADCl0的压铸。

在国外,英国康明斯公司利用半固态技术进行高品质零部件的生产,如增压涡轮发动机叶轮、自动变速器齿轮变速杆、引擎座,控制臂上、悬挂、发动机支架、柴油发动机泵体等。意大利Annalisa Pola采用半固态技术生产铅锑合金生产车用电池上的金属零件,以提高其机械性能和抗腐蚀能力[49|。泰国J.Wan —nasin气泡诱导半固态流变压铸工艺生产了转子盖、修复管接、修复脚适配器等零部件。

6总结

随着机械搅拌、电磁搅拌、应变诱导、冷却斜坡等浆料制备方法和流变加工、触变加工、注射加工等成形方法的不断发展,数字化模拟技术的完善,半固态加工以广泛用于工业化生产。目前,金属半固态加工技术的发展方向主要是进一步简化工艺流程、降低加工成本和拓宽半固态加工技术的应用范围。作为“21世纪的新一代金属成形技术”,相信半固态成形技术将会在21世纪的金属成形技术中占重要地位。

参考文献

[1] Flemings. M C. Behavior of Metal Alloys in the Semi-solid State. Met. Trans.

1991,22(B):269一293.

[2] 杨妮,葛正浩,任威,等.金属半固态成形工艺概述[J].铸造技术,

2007,28(1):142—145.

[3] 黄晓锋,梁艳,王韬,谢锐,曹喜娟,朱凯,田载友.金属半固态成形技术的研究进展[J]. 造装

备与技术,2009,2(3): 6-8.

[4] 罗守靖,田文彤,李金平. 21世纪最具发展前景的近净成形技术—半固态加工[J]. 特种铸

造及有色合金,

2001,1(64): 175-180.

[5] 蒋鹏,贺小毛.半固态成形的工艺概况与模具材料选用.模具技术,1998,(2):54-60.

[6] 康永林,毛卫民,胡壮麒,等.金属材料半固态加工理论与技术[M]. 北京: 科学出版社,

2004.

[7] 张大辉,李志强,胡泽,等.半固态加工成形技术及其发展现状[J]. 航空制造技术,

2002,11(3):28-31.

[8] 江海涛,李森泉.半固态金属材料的制备技术及应用[J]. 重型机械,2002,2 (1): 12-15.

[9] 王益志.半固态成形中的某些关键技术[J].特种铸造及有色合金,2001,9(增):192-194.

[10] 王羽,胡建华,龙安.半固态成形技术及其应用[J]. 中国机械工程,2006,10(17): 223-226.

[11] 杨妮,葛正浩,任威,李晓芳. 金属半固态成形工艺概述[J].铸造技术,2007,

01(28):142-148.

[12] 孙建林,康永林,肖邦国,等.镁合金半固态材料成形与浆料制备工艺研究[J]. 稀有金

属,

2004,(2): 104.

[13] 张毅,杨宇.半固态流变成形技术的应用与发展[J]. 铸造技术,2012,4(33): 456-459.

[14] 杨湘杰.半固态成形技术最新进展——第11届合金与复合材料半固态成形国际会议技

术报告综述[A].特种铸造及有色合金,2010,10(30):918-920.

金属半固态成型技术发展详解

4 金属半固态加工 4.1概述 4.1.1半固态加工的概念与特点 4.1.1.1半固态加工的概念 传统的金属成形主要分为两类:一类是金属的液态成形,如铸造、液态模锻、液态轧制、连铸等;另一类是金属的固态成形,如轧制、拉拔、挤压、锻造、冲压等。在20世纪70年代美国麻省理工学院的Flemimgs教授等提出了一种金属成形的新方法,即半固态加工技术。金属半固态加工就是在金属凝固过程中,对其施以剧烈的搅拌作用,充分破碎树枝状的初生固相,得到一种液态金属母液中均匀地悬浮着一定球状初生固相的固-液混合浆料(固相组分一般为50%左右),即流变浆料,利用这种流变浆料直接进行成形加工的方法称之为半固态金属的流变成形(rheoforming);如果将流变浆料凝固成锭,接需要将此金属锭切成一定大小,然后重新加热(即坯料的二次加热)至金属的半固态温度区,这时的金属锭一般称为半固态金属坯料。利用金属的半固态坯料进行成形加工,这种方法称之为触变成形(thixoforming)。半固态金属的上述两种成形方法合称为金属的半固态成形或半固态加工(semi-solid forming or processing of metals),目前在国际上,通常将半固态加工简称为SSM(semi-solid metallurgy)。 就金属材料而言,半固态是其从液态向固态转变或从固态向液态转变的中间阶段,特别对于结晶温度区间宽的合金,半固态阶段较长。金属材料在液态、固态和半固态三个阶段均呈现出明显不同的物理特性,利用这些特性,产生了凝固加工、塑性加工和半固态加工等多种金属热加工成形方法。 凝固加工利用液态金属的良好流动性,以完成成形过程中的充填、补缩直至凝固结束。其发展趋势是采用机械压力替代重力充填,从而改善成形件内部质量和尺寸精度.但从凝固机理角度看,凝固加工要想完全消除成形件内部缺陷是极其困难的,甚至是不可能的。 塑性加工利用固态金属在高温下呈现的良好塑性流动性,以完成成形过程中的形变和组织转变。与凝固加工相比,采用塑性加工成形的产品质量明显好,但由于固态金属变形抗力高,所需变形力大,设备也很庞大,因此要消耗大量能源,对于复杂零件往往需要多道成形工序才能完成。因此,塑性加工的发展方向是降低加工能耗和成本、减小变形阻力、提高成形件尺寸精度和表面与内部质量。由此出现了精密模锻、等温锻造和超塑性加工等现代塑性加工方法。 半固态加工是利用金属从液态向固态转变或从固态向液态转变(即液固共存)过程中所具有的特性进行成形的方法。这一新的成形加工方法综合了凝固加工和塑性加工的长处。即加工温度比液态低、变形抗力比固 态小,可一次大变形量加工成形形 状复杂且精度和性能质量要求较高 的零件。所以,国外有的专家将半 固态加工称为21世纪最有前途的材 料成形加工方法。 图4-l表示金属在高温下 三态成形加工方法的相互关系。

铝合金半固态锻造工艺研究

轻金属半固态模锻工艺研究 1、前言 20世纪70年代初,美国麻省理工学院研究人员发现,金属材料在凝固过程中施加强烈的搅拌,可以打破传统的枝晶凝固模式,形成近球状的组织,从而得到一种液态金属母液中均匀悬浮着一定球状或类球状初生固相的固—液混合浆料,即半固态浆料,这种浆料具有良好的流变性和触变性,采用这种既非液态又非完全固态的金属浆料跟常规加工方法如压铸、挤压、模锻等结合实现成形加工的方法称为半固态金属加工(Semi-Solid Metal Processing,简称SSM)。从理论上讲,凡具有两相区的合金及其复合材料均可以实现半固态成形加工。该方法之所以能够发展成为一种先进的成形加工技术,完全基于半固态金属材料所具有的特殊流变学性能,即触变性:当半固态金属坯料所受的剪切力不大时,坯料具有很高的粘度近似固态,可以方便地放置和搬运;而当受到较大剪切变形时,坯料便表现出较小的粘度可以像液态一样随意流动成形。但是采用具有枝晶状初生相组织的固—液混合体成形加工时,由于枝晶状组织的相互搭结、缠绕,变形阻力大,流动性很差,固液相极易分离,产生严重的热裂与宏观偏析。因此,半固态金属成形具有多方面的优点:相对于普通液态成形(如压力铸造或挤压铸造),由于半固态浆料中已有一半左右的固相存在而且温度低于液态金属近100℃,因此可以消除常规铸件固有的皮下气孔和疏松等缺陷,而且模具寿命成倍提高;相对于常规固态成形(如模锻或挤压),由于半固态浆料具有很好的流动性,因此变形抗力极低,可以一次加工成形复杂的零件,减少了成形道次、模具投入及后续机加工量,而力学性能则与固态锻造相当。正是半固态金属锻造技术具有高效、优质、节能和近终成形等突出优点,可以满足现代汽车制造业对有色合金铸件高致密度、高强度、高可靠性、高生产率和低成本等要求,因此倍受汽车制造厂商以及零部件配套生产厂商的重视。 半固态金属锻造与半固态金属触变压铸实质上并无明显差别,其主要不同之处在于前者是用半固态金属在锻造设备上加工成形。锻造半固态金属可以在较低的压力下进行,这使得一些传统锻造无法成形的形状复杂构件可以在半固态金属锻造方法来生产,其锻造设备可分为立式和卧式压力机两种。半固态锻造是将加热到半固态的坯料,在锻模中进行以压缩变形为主的模锻以获得所需形状、性能制品的加工方法。半固态锻造可以成形变形力较大的高固相率的半固态材料,并

半固态镁合金成形技术概述

重庆科技学院 课程结业考试(论文)题目半固态镁合金成形技术概论 院(系)冶金与材料工程学院 专业班级材料工程技术08-02 学生姓名刘明强学号2008630578 任课教师孙建春职称讲师 评定成绩___ _ __ 评语: 年月日

半固态镁合金成形技术概述 姓名:刘明强学号:2008630578 摘要:半固态镁合金制备是在20世纪末新起的最新制备镁合金的技术,半固态技术被认为是21世纪最具发展前途的近终成形技术之一[1]。本文旨在为大家阐述半固态镁合金成形技术的基本概论,包括镁合金的相关阐述(性能、应用、加工技术等);半固态成形技术的概念,半固态金属浆料的制备,以及半固态加工材料的制备技术等;重点是镁合金与半固态成形技术的结合,包括半固态镁合金浆料的制备,半固态镁合金材料的制备,半固态镁合金材料的热处理,半固态镁合金成形技术的国内国外现状和未来展望,同时阐述半固态镁合金制备的优缺点。 关键词:半固态、镁合金、浆料、半固态成形、流变成形 前言:镁及镁合金作为一种新型的应用材料,近年来已广泛应用于军用、民用领域,如在航空航天、航海、通信、医疗、广播电视、音响影像器材、微电子技术、光学仪器等领域内,在汽车、摩托车、工具、家电电器、手机、计算机及电子设备等制品中都可看到镁合金的终极,在炼钢脱硫、铝合金生产、防腐工程中都离不开镁原料。在汽车行业,上海汽车集团公司、一汽集团、东风汽车集团、江铃汽车公司等国内大的汽车公司均开始使用镁制零部件。根据相关研究,汽车单车自重没减轻100Kg,每百公里耗油可减少0.7L左右,每节省1L燃料可减少二氧化碳排放量 2.5g。而通过镁合金零部件的使用可有效的实现汽车轻量化目标。镁合金应用于交通工具,除减中和降低油耗,还可以提高整车加速、制动性能,还能降低行驶振动和噪声,提高舒适度,可以加快散热,使发动机的综合性能提高一个档次,具有良好的经济效益。 镁合金的半固态成形目前是各国研究的热点:Ya-no Ei ji等利用余热的冷却斜槽近液相线铸造或得了半固态AZ91D镁合金组织;J M Kim等利用两步加热法得到了半固态AZ91镁合金浆料;Czerwinski F开发了半固态加工与挤压、喷射成形结合在一起的心的镁合金加工技术,一Mg-9% Al-1%Zn为例分析力组织性能变化规律;Chen J Y和Fan Z研究了半固态浆料的流变模型;Koren Z等研究了AZ91和AM503镁合金半固态热压铸和冷压铸成形。[2] 可以看到镁合金半固态的研究虽然很多,但主要之中在浆料制备、二次加热重熔、触变成形几个方面,仅有几个流变成形研究也只是在实验室,工艺还不成

铝合金半固态成形工艺的研究现状

铝合金半固态成形工艺的研究现状 作者:上海大学 余忠土 张恒华 邵光杰 许珞萍 新型的成形技术─―半固态成形 技术(SSM )是一种近终成形(Near-net-shape )的成形工艺。与传统的成形工艺相比,它有一系列突出的优点:成形温度低,成形件力学性能好,并较好地综合了固态金属模锻与液态压铸成形的优点。本文阐述了铝合金半固态成形技术的主要工艺方法,其工艺参数与传统液态压铸成形的差异,以及半固态成形件在不同状态下的力学性能 图1 半固态金属压铸流程图 20世纪70年代初,美国麻省理工学院Flemings 等人在实验中发现了半固态金属的流变性能,到70年代中期,Joly 等人进一步探索了半固态金属的这种性能,并出现了半固态金属加工的概念。所谓半固态金属加工技术即在金属凝固过程中,进行剧烈搅拌,将凝固过程中形成的枝晶打碎或完全抑制枝晶的生长,然後直接进行流变铸造或制备半固态坯锭後,根据产品尺寸下料,再重新加热到半固态温度,然後进行成形加工。铝合金的半固态加工技术主要有三道工序:半固态坯料的制备、二次重熔和触变成形。触变成形作为半固态加工技术的最後一道工序,是影响半固态成形件组织和性能的关键工序,直接影响着半固态成形件的组织和性能。自该技术被开发以来,已经历了30馀年的研究发展,并已召开了六次有关半固态的国际会议,发达国家已经进入生产实用阶段。因为半固态成形技术有一系列突出的优点:半固态金属成形技术具有高效、优质、节能和近终成形等优点,可以满足现代汽车制造业对有色合金铸件高致密度、高强度、高可靠性、高生产率和低成本等要求,因此倍受汽车制造厂商以及零部件配套生产厂商的重视。

半固态材料成形技术的研究和应用

半固态材料成形技术的研究和应用 程 钢 樊 刚 (昆明理工大学,昆明50093) 摘 要:半固态成形具有加工温度低,变形抗力小的特点,为高效低能实现金属近净成形提供了现实可能。对半固态金属加工的工艺方法进行了论述,以期推动其理论研究和工业应用。 关键词:半固态;成形;应用 中图分类号:T G249.9 文献标识码:A 文章编号:1004 244X(2001)05 0066 03 金属材料从固态向液态或从液态向固态的转换过程中,均要经历半固态阶段,在这阶段中合金内既存在固相又存在流体液相。半固态加工是将金属或合金在固相线和液相线温度区间进行加工成近终形产品的一种新方法。 与传统的全液态金属成形工艺相比,半固态加工技术概括起来有如下特点[1,2]: (1)用途广泛。流变铸造可以直接成形,也可用于压铸、挤压铸造、模锻成形和金属型、砂型铸造。另外,还能精炼金属,制造复合材料等; (2)铸造过程中不需变质处理即可获得均匀细晶组织; (3)凝固收缩少,可实现近终形加工,并可通过热处理获得优越的机械性能; (4)加工温度低,使成形装置的热负荷减轻,使模具寿命延长; (5)半固态金属粘度高,充型时不喷溅、无湍流;冷却凝固时间短,可大幅提高生产率; (6)节约原材料和能源,降低生产成本。 因此,半固态加工技术被认为是21世纪最具发展前途的近净成形技术和新材料制备技术之一[3]。 1 半固态成形技术 半固态成形是针对固、液态共存的半熔化或半凝固金属进行成型加工的工艺方法。目前,半固态成形方法大致可分为半固态挤压、半固态压铸(包括流变铸造和触变铸造)等几种主要工艺类型[4~6]。 1.1 半固态挤压 半固态挤压是用加热炉将坯料加热到半固态,然后放入挤压模腔,用凸模施加压力,通过凹模模口挤出所需制品。半固态的坯料在挤压模腔内处于密闭状态,流动变形的自由度低,内部的固相成分、液相成分不易独流动,在进入正常挤压状态后,两者一起从模口挤出,在长度方向上得到稳定均一的制品。半固态挤压和其他半固态成型方法相比,研究得最多的是各种率合金和铜合金的棒、线、管、型材等制品。制品的内部组织及机械性能均匀,是难加工材料、粒子强化金属基复合材料、纤维前化金属基复合材料形成加工的不可缺少的技术。 1.2 半固态压铸 半固态压铸主要有两种工艺,分别被称为流变铸造和触变铸造。众所周知,流变铸造的固-液混合金属浆料不仅具有流变性,还具有触变性。半固态铸造用的这种具有流变性和触变性的固-液混合金属浆料,其关键在于要打碎液态金属正在凝固时的树枝状晶,使其成为球状或近似球状的一次相(衰退枝晶)固体质点。 普通压铸工艺有一个缺点是液态金属射入时空气卷进制品中形成气泡,在半固态压铸时,通过控制半固态浆料的粘度和固相率,可以抑制气泡的产生,因此可以加工容易产生气泡,普通压铸工艺难以制造的复杂形状的制品。 1.3 射铸成形 将直接熔化的金属液冷却至一定的温度,在一定的工艺条件下压射入型腔成形,以获得所需的加工件。如美国威斯康辛的触变成形中心及康奈尔大学等研制出镁合金射铸成形装置,将金属从料管加入,经适当加热后压射入型腔成形。 第24卷 第5期2001年 9月 兵器材料科学与工程 ORDNANCE M AT ERIAL Vol.24 N o.5 收稿日期:2000-11-10 基金项目:云南省教委科研基金资助 作者简介:程 钢(1971-),山东大学材料学院,博士2001级

半固态成型技术

半固态成形技术及其应用 【摘要】本文介绍了半固态成形技术的基本原理、技术优点,重点论述了搅拌、非搅拌浆料制备方法的优缺点及触变、流变、注射成形工艺的特点,并阐述了半固态成形技术工业化应用的现状和发展前景. 【关键词】半固态成形技术原理浆料制备成形方法应用 1前言 20世纪70年代,美国麻省理工学院的Flemimgs提出了金属半固态成形技术(SSM),就是金属在凝固过程中,进行剧烈搅拌,或控制固一液态温度区间,得到一种液态金属母液中均匀地悬浮着一定固相组分的固液混合浆料(固相组分甚至可高达60%),这种半固态金属浆料具有流变特性,即半固态金属浆料具有很好的流动性,易于通过普通加工方法制成产品,采用这种即非完全液态,又非完全固态的金属浆料加工成形的方法,就称为半固态成形技术。 2半固态成形工艺的基本原理 2.1半固态组织的形成机理 2.1.1枝晶断裂机制 在合金的凝固过程中,当结晶开始时晶核是以枝晶方式生长的。在较低温度下结晶时,经搅拌的作用,晶粒之间将产生相互碰撞,由于剪切作用致使枝晶臂被打断,这些被打断的枝晶臂将促进形核,形成许多细小的晶粒。随着温度的降低,这些小晶粒从蔷薇形结构将逐渐演化成更简单的球形结构。 2.1.2 枝晶熔断机制 在剧烈的搅拌下,晶粒被卷入高温区后,较长的枝晶臂容易被热流熔断,这是由于枝晶臂根部的直径要比其它部分小一些,而且二次枝晶臂根部的溶质含量要比它表面稍微高一些,因此枝晶臂根部的熔点要低一些,所以搅拌引起的热扰动容易使枝晶臂根部发生熔断。枝晶碎片在对流作用下,被带入熔体内部,作为新的长大核心而保存下来,晶粒逐渐转变为近球形。 2.1.3 晶粒漂移、混合—抑制机制 在搅拌的作用下,熔体内将产生强烈的混合对流,凝固过程是就在激烈运动的条件下进行,因而是一种动态的凝固过程。结晶过程是晶体的形核与长大的过程,强烈的对流使熔体温度均匀,在较短的时间内大部分熔体温度都降到

新型半固态铝合金的设计与优化研究

收稿日期:2005211228; 修订日期:2005212226 基金项目:国家高技术研究发展计划(863计划)资助项目 (2002AA336080) 作者简介:徐 骏(19542  ),江苏镇江人,博士,教授.从事金属半固态加工技术研究. Vol.27No.3Mar.2006铸造技术 FOUNDR Y TECHNOLO GY ?有色合金及其熔炼 Non 2ferrous Alloy and Its Smelting ? 新型半固态铝合金的设计与优化研究 徐 骏1,王海东1,2,张志峰1,杨必成1,田战峰1,石力开1,韩静涛2 (1.北京有色金属研究总院国家有色金属复合材料工程技术研究中心,北京100088;2.北京科技大学材料科学与工程学院,北京100083) 摘要:结合半固态加工基本原理,利用热力学计算方法,设计出了新型半固态铝合金,主成分为Al 26%Si 22%Mg ,并利用实验方法优化选择了微量元素Zr 、Sr 。结果显示:Zr 元素具有明显的细化晶粒作用,Sr 元素的加入具有改善共晶硅形态的作用。合金中Zr 含量为0.10%~0.14%、Sr 含量为0.02%~0.04%的新合金AlSi6Mg2,表现出良好的半固态组织和力学性能。关键词:铝合金;半固态;合金设计 中图分类号:T G146.2+1 文献标识码:A 文章编号:100028365(2006)0320249203 De s i g n a n d Op ti miz a ti o n of A d v a nc e d S e mi 2s oli d Al u mi n u m All o y XU Jun 1,WANG H ai 2dong 1,2,ZHANG Zhi 2feng 1,YANG Bi 2cheng 1,TIAN Zh an 2feng 1,SHI Li 2k ai 1,H AN Jing 2tao 2(1.N ational E ngineering R esearch Center for Nonferrous Metal Composites ,B eijing G eneral R esearch Institute for Nonferrous Metals ,B eijing 100088,China ;2.School of Materials Science and E ngineering ,U niversity of Science and T echnology B eijing ,B eijing 100083,China) Abs t rac t :A main component Al 26%Si 22%Mg of an advanced semi 2solid aluminum alloy was de signed by thermodynamic calculations with the consideration of the basic principle of semi 2solid proce ssing (SSP ).Tiny Zr and Sr addition were selected by optimizing experiment methods.Re sults show that the new alloy AlSi6Mg2with 0.10%~0.14%Zr and 0.02%~0.04%Sr has good micro structure and mechanical propertie s in SSP. Ke y w ords :Aluminum alloy ;Semi 2solid ;Alloying de sign 半固态加工技术是极具潜力的近终成形技术之一[1,2]。目前,国内关于半固态加工技术的研究主要集中在对其工艺技术本身的研究上,采用的材料多为传统铸造铝合金,如A356、A357。由于传统铸造铝合金的局限性,使其并不能充分发挥半固态加工技术的优势,因而限制了半固态加工技术在工业上特别是汽车零部件制造业上的推广和应用。针对这一情况,研制开发出能充分发挥半固态加工技术特点,又具有市场应用前景的的半固态专用铝合金具有很大的现实意义[3,4]。本文以Al 2Si 2Mg 系作为研究对象,利用热力学计算设计出新型半固态铝合金的主成分为Al 26%Si 22%Mg ,并实验优化选择了微量元素Zr 和Sr 。1 新型半固态铝合金主成分设计1.1 新合金设计的基本条件 为了获得适合半固态加工成形的新合金,在合金设 计时需要根据半固态加工成形的特点来考虑新合金应 满足的基本条件[4]:①合适的固2液相温度区间ΔT S -L ,在参照常用铸造和变形铝合金固相线与液相线数据的 基础上,设定30℃≤ΔT S -L ≤150℃,以利于半固态初生相形成和固相体积分数的控制;②固相分数f S 对温度的敏感性,如果固相分数对温度的敏感性太高,温度的微小波动就会引起固相分数较大的变化,这将会使加工过程难以控制,并导致最终产品的质量不稳定。为此,在合金设计时设计固相分数随温度的变化率df S / d T ≤0.015;③Mg 2Si 是Al 2Si 2Mg 系主要的强化相,在 合金设计时应有尽可能多的析出量,使合金具有良好的热处理强化能力,以获得高性能的半固态零部件。1.2 热力学计算与设计结果 根据新合金设计的基本条件,采用国际通用的Thermo 2Calc 软件对Al 2Si 2Mg 系合金进行了计算。 表1是影响半固态加工主要参数的计算结果,其中列出了商用铝合金A356、A357及6061的相关参数,以便于比较。新合金具有合适的液相线温度,液固相温 度区间ΔT S -L =58.5℃,满足合金设计的基本条件。在计算d f S /d T 时,分2种情况:f S =0.3和f S =0.6 ? 942?

半固态成形技术研究

半固态成形技术研究 发表时间:2014-09-11T16:11:59.530Z 来源:《科学与技术》2014年第4期下供稿作者:胡绵凯[导读] 我国的技术水平稍显落后,发展速度也较慢。但多年来的研究也让我们国家在该领域取得了不少的研究成果。 西南交通大学材料科学与工程学院胡绵凯摘要:如今随着中国的科研技术、制造技术还有工业生产理念的不断发展与创新,我国逐渐对各产业的生产技术有了更高的要求和标准,并逐渐呈现出轻量化和环保化的趋势。无论是汽车新能源的开发还是高速列车的提速和安全问题,我国都渴望寻求新的突破。除了技术的开发和设备的引进,材料的选择是一个重要的突破口,而且如今材料业拥有一个良好的发展前景。从学术角度来看,不管是对传统材 料的改进还是新型材料的开发,都具有广阔的研究空间和无限的可能性。而材料的发展离不开制坯技术的革新,半固态制坯这种新技术正在逐渐进入人们的视野。21 世纪以来,半固态制坯技术已经开始慢慢被了解和使用,对于任何一种材料,在具有独特的性能优势的同时,也必定存在其固有的缺陷。而半固态制坯技术对材料的组织改善可以起到积极的作用,也许可以在保证材料具有自身优点的同时,大幅度地改善在性能上的不足。 关键词:半固态;制坯技术;成形方法1.半固态技术1.1 半固态原理及优势半固态技术是指将材料利用加热到半固态状态下,形成一种固相与液相均匀混合的半固态组织,通过调整加热温度和时间来控制其固相率,在该状态下进行加工成型的方法。经半固态处理后的组织有着良好晶粒形貌,在控制过程中对技术的要求不高,金属不易发生烧毁,同时能耗低,大大提高了合金的利用率。 1.2 半固态特点半固态合金具有流变性和触变性的特点流变性是指合金在加热到半固态的状态下外力作用下发生流动和变形。对于所有的流体,当其内部发生相对运动的时候,会产生摩擦力,阻碍形变的进行。摩擦力的大小取决于速度变化率。牛顿曾对两者的关系进行过分析,随着速度变化率的增大,摩擦力也相应的提高,但不是所有的情况下两者均成正比关系,若温度发生改变,则材料的粘度会随之变化,那么两者呈现出的关系则是非线性的。 触变性宏观上表现为流体合金在流动过程中剪切力对流体粘稠度的影响,受力时流体的粘稠度大于不受力时的粘稠度。 流体在某一特定温度下有两种状态:凝胶状态和溶胶状态。归根到底,触变性即是在两种状态之间彼此的变换,这是一个可逆过程。转换过程的演变取决于时间和机械强度。 2.半固态形变理论2.1 树枝晶搅拌断裂理论半固态制坯的核心在于生成非树枝晶的等轴晶,在材料处于半固态的状态下对其进行搅拌处理,搅拌过程中,搅拌力度和速度越大,晶粒所承受的剪切力和来自液体的冲击也会越大,当力大于晶粒的强度极限时,晶粒就会发生断裂,断裂后的部分将作为核心重新形核,从而形成均匀的等轴晶组织。 2.2 树枝晶熔断理论在搅拌过程中,液体、搅拌工具、晶粒之间存在相对运动并产生摩擦,摩擦过程会有热量的产生。当搅拌过于剧烈时,由于热量来不及扩散,固液组织中可能会产生局部过热的现象,使树枝状的晶粒局部融化脱落,形成新的晶核而导致等轴晶的形成。 2.3 晶粒漂移和混合抑制理论当合金在电磁作用下进行搅拌时,晶粒由于机械作用而断裂的几率不大,晶粒断裂并不是改变晶粒形核状况的主要原因。 在强烈的搅拌作用下,合金的晶粒将发生大规模的移动和晶粒间的混合,这种现象的出现促使非均匀形核的产生,使固液相混合组织内部出现较多的新生晶核,降低了晶粒尺寸,抑制了晶粒的各向异性,使生成的晶粒具有较高的圆整度。 3.半固态制坯方法3.1 电磁搅拌法电磁搅拌法利用了电磁感应现象。在金属溶液外部附加了旋转磁场,使金属液发生切割磁感线运动产生感应电流,由于电流磁效应使金属液发生剧烈的搅拌而促使非树枝晶的形成。 液体的搅拌速度可通过外加磁场的磁场强度和磁场的旋转速度共同控制。而旋转磁场的产生有两种方法:感应线圈两端通入交流电和永磁体在电机的配合下旋转。 电磁搅拌法的优势在于搅拌过程不需要使用搅拌工具(叶片或棒),可提高合金金属的纯度。另外被处理的金属可在密闭的容器中进行,避免了气体的融入可减小成型过程中气孔的产生,减小坯料的缺陷。同时操作性强可控程度高,搅拌的速度可通过磁场强度和旋转速度控制,控制精确,范围广。但是不足之处在于能耗大,制成的坯料造价高,不利于生产大规格构件。 3.2 机械搅拌法机械搅拌法是最古老且简单的搅拌方法,它区别于电磁搅拌法的是利用叶片旋转或搅拌棒来实现搅拌功能,形成非树枝晶的原理与电磁搅拌法类似,。合金的固相率的控制需要通过改变合金周围的环境温度来实现。剪切速度的大小则取决于搅拌工具的转动速度。 机械搅拌法的好处在于搅拌所需的装置比较简单,成本低、操作性强且容易控制。同样缺点也很明显,搅拌速度有限导致生产效率不高,搅拌环境难以密封,容易混入杂质和气体。 4.应用推广如今世界上半固态技术已得到认可和应用。美国最早着手研究该技术,是世界上水平最高的国家。在美国半固态技术主要用于汽车零件的生产,比如发动机的泵体。紧随其后的是欧洲国家,Stampal-Saa 公司曾为福特公司生产齿轮箱的箱盖和传动的摇臂。而日本则在钢铁行业、有色金属和重工业方面大力推广半固态成形技术,并不断与欧美国家展开交流和合作。 比之下,我国的技术水平稍显落后,发展速度也较慢。但多年来的研究也让我们国家在该领域取得了不少的研究成果。目前我国触变成形技术以小有成就,流变成形技术稍显乏力;而应用范围主要是Al、Mg、Pb 此类低熔点的合金;各类模拟软件也逐渐被开发中。 参考文献:[1]毛卫名.半固态金属成形技术[M]. 北京:机械工业出版社.2004.6[2]谢水生,黄宏生.半固态金属加工技术及其应用[M]. 北京:冶金工业出版社.1999[3]毛卫名,赵爱民,钟雪友.半固态金属成形应用的新进展和前景展望[J][4]谢建新.材料加工新技术与新工艺[M].北京:冶金工业出版社

铝合金半固态锻造工艺研究

铝合金半固态锻造工艺研究

————————————————————————————————作者:————————————————————————————————日期:

轻金属半固态模锻工艺研究 1、前言 20世纪70年代初,美国麻省理工学院研究人员发现,金属材料在凝固过程中施加强烈的搅拌,可以打破传统的枝晶凝固模式,形成近球状的组织,从而得到一种液态金属母液中均匀悬浮着一定球状或类球状初生固相的固—液混合浆料,即半固态浆料,这种浆料具有良好的流变性和触变性,采用这种既非液态又非完全固态的金属浆料跟常规加工方法如压铸、挤压、模锻等结合实现成形加工的方法称为半固态金属加工(Semi-Solid MetalProcessing,简称SSM)。从理论上讲,凡具有两相区的合金及其复合材料均可以实现半固态成形加工。该方法之所以能够发展成为一种先进的成形加工技术,完全基于半固态金属材料所具有的特殊流变学性能,即触变性:当半固态金属坯料所受的剪切力不大时,坯料具有很高的粘度近似固态,可以方便地放置和搬运;而当受到较大剪切变形时,坯料便表现出较小的粘度可以像液态一样随意流动成形。但是采用具有枝晶状初生相组织的固—液混合体成形加工时,由于枝晶状组织的相互搭结、缠绕,变形阻力大,流动性很差,固液相极易分离,产生严重的热裂与宏观偏析。因此,半固态金属成形具有多方面的优点:相对于普通液态成形(如压力铸造或挤压铸造),由于半固态浆料中已有一半左右的固相存在而且温度低于液态金属近100℃,因此可以消除常规铸件固有的皮下气孔和疏松等缺陷,而且模具寿命成倍提高;相对于常规固态成形(如模锻或挤压),由于半固态浆料具有很好的流动性,因此变形抗力极低,可以一次加工成形复杂的零件,减少了成形道次、模具投入及后续机加工量,而力学性能则与固态锻造相当。正是半固态金属锻造技术具有高效、优质、节能和近终成形等突出优点,可以满足现代汽车制造业对有色合金铸件高致密度、高强度、高可靠性、高生产率和低成本等要求,因此倍受汽车制造厂商以及零部件配套生产厂商的重视。 半固态金属锻造与半固态金属触变压铸实质上并无明显差别,其主要不同之处在于前者是用半固态金属在锻造设备上加工成形。锻造半固态金属可以在较低的压力下进行,这使得一些传统锻造无法成形的形状复杂构件可以在半固态金属锻造方法来生产,其锻造设备可分为立式和卧式压力机两种。半固态锻造是将加热到半固态的坯料,在锻模中进行以压缩变形为主的模锻以获得所需形状、性能制品的加工方法。半固态锻造可以成形变形力较大的高固相率的半固态材料,并

半固态流变铸造和触变铸造

半固态流变铸造和触变铸造 所谓流变铸造(压铸)是将液态金属制备成半固态浆糊料然后将其压铸成形的方法,主要设备由一台流变浆液连续制备器和一台压铸机组成。 所谓触变铸造(压铸),是将由浆液连续制备器出来的浆液不直接压铸成形,而先制成料锭,并将料锭熔成一定的尺寸,可作为商品出售,用户在使用时先将其加热,并送入压铸机内压铸成型的方法。整个系统包括压铸机、感应炉和刚玉质的料锭软度指示计组成。 1970年,美国马萨诸塞州技术研究所在研究部分凝固合金的流动性时,意外地发现了应用半凝固金属糊状浆料进行压铸的可能性。这种糊状浆料的初生固体颗粒包含有粗化的树枝晶或是球形的团块。它们彼此不连结,并且冷在液态基质中,其固相体积比可高达80%,可以在任意长的搅拌时间内阻止这些固相颗粒进行接触,得到具有流变性和触变性的半固态糊浆料(其粘度随剪切速率或随时间的增加而减小,并有可逆性)。近30年来,有关流变铸造和触变铸造压铸专利技术的报道不断涌现。 由于二次加热能耗大,工艺过程较复杂,加之具有触变性的金属材料种类不多。因此,半固态金属铸造的工业应用受到限制。近年来,世界各国的研究人员们在研究新的半固态金属压铸工艺技术时,将塑料的注射成形原理应用于固态金属铸造工艺中,形成了流变注射成形(1theo.moulding)和触变注射成形(1~ixomoulding)新工艺,它们集半固态金属浆料的制备、输送、成形等过程于一体,较好地解决了半固态金属浆料的保存、输送、成形控制困难等问题,使得半固态金属铸造技术的大量工业应用出现了光明的前景。 (一)触变注射成形 由美国’Fhixomat公司提出的半固态金属触变注射成形工艺(‘rhixomoulding),采用了塑料注射成型的方法和原理,它由给料器、驱动及注射系统、剪切螺旋、加热剪切镁合金的粒料或屑料可变成含固相率在60%以上的半固态浆料,剪切螺旋的平移速度为380cra/s。 其成形过程为:被制成粒料、屑料或细块料的镁合金原料从料斗中加入;一定量的半固态金属液在螺旋的前端累积;最后在注射缸的作用下,半固态金属液被注射入模具成形。 (二)流变注射成形 美国(~onell大学的K.K.Wang等,首先将半固态金属流变铸造(sSM.Rheocasting)结合起来,形成了一种 称之为“流变注射成形”(]Rheomoulding)的半固态金属成形新工艺。 流变注射成形的工作原理是:液态金属依靠重力从熔化保温炉中进入搅拌筒体,然后在螺旋的搅拌作用下(螺旋没有向下的推压力)冷却至半固态,积累至一定量的半固态金属液后,由注射装置注射成形。上述过程全在保护气体下进行。 温度控制精度是半固态金属成形的关键因素之一。

半固态加工成形技术及其发展现状

半固态加工成形技术及其发展现状 Semi2Solid Metal Processing Forming T echnology and Its Current Development Situation 北京航空制造工程研究所 张大辉 李志强 胡 泽 盛蔼伦 梁慧凤 北京科技大学 钟雪友 [摘要] 简述了半固态加工技术的起源和特点,重点介绍了该技术的两个重要环节———半固态合金坯料制备和零件成形工艺,综述了这种加工技术的工业化应用现状和发展前景。 关键词:半固态加工 坏料制备 成形工艺 [ABSTRACT] The origin and characteristics of semi2solid metal processing technology(SSM)are intro2 duced briefly.As two important stages of SSM semi2sol2 id billets making and parts forming are emphatically de2 scribed.The present industrialization status and the ap2 plication in future of SSM are summarized. K eyw ords:Semi2solid processing Billet making Forming process 半固态加工(Semi2Solid Manufacturing或Semi 2Solid Metal processing,SSM)起源于美国。20世纪70年代初,麻省理工学院Spencer和Flemings等人[1]发现,凝固过程中的金属材料经强力搅拌,会生成近球状晶或球状晶组织。 在液固两相区内,含有这种组织的材料具有优异的流变性和触变性,成形时流动阻力小,对之实施的加工技术称为半固态加工。 30多年的发展历程中,SSM技术在制坯、重熔加热、零件成形、组织与力学性能、加工环节数值模拟以及合金流变学研究等许多方面取得重大进展。目前,这项技术已广泛应用于汽车工业领域,在航空、航天以及国防工业领域也正处于应用的起步阶段,具有广阔的前景。 1 半固态加工技术的特点 SSM技术是一种生产效率高、近无余量精确成形技术。从变形机理分析,其变形是一个从塑性变形到超塑性变形的过程。这种技术具有如下几个特点[1~6]。 (1)应用范围广泛。凡具有固液两相区的合金均可实现半固态加工,如铝合金、镁合金、锌合金、镍合金、铜合金以及钢铁合金等。 (2)半固态加工过程中,浆料充型平稳,无湍流和喷溅。相对铸造等液态加工技术而言,加工温度较低,对模具的热冲击较小,可成形十分复杂的零件。与锻造和挤压等固态加工技术相比,变形抗力较小,可以成形一些难加工合金材料如高锰钢和高速钢的零件。 (3)SSM技术可以实现近净成形,成形件尺寸精度高,表面平整光滑。制品内部组织致密,晶粒细小,内部气孔、偏析等缺陷少,力学性能高,可接近或达到变形材料的力学性能。 (4)应用SSM技术可改善制备金属基复合材料中非金属材料的飘浮、偏析以及与金属基体不润湿等技术难题,为金属基复合材料的制备和成形提供了有利条件。 (5)采用SSM技术可进一步节约能源和资源。以生产单位质量零件为例,半固态加工与常规压铸相比,节能35%左右,省材20%~30%,加工用模具寿命延长1~2倍。 2 半固态合金坯(浆)料的制备方法 制备优质的半固态合金棒坯是SSM技术中的一个关键问题。在半固态合金棒坯制备过程中,凝固过程中合金熔体的冷却速度和搅拌力是两个重要参数,这两个参数的变化将直接影响到半固态合金坯料的质量。 在金属冷却过程中强烈搅拌使已形成的枝晶破碎,同时也抑制树枝晶的形成,可获得非枝晶的卵形或近球状结构。搅拌力的大小和搅拌均匀程度将直接影响半固态锭坯组织结构的均匀性。因此,在半固态合金坯料的制备过程中,搅拌技术是关键。 通常,半固态金属浆料的制备方法有机械搅拌法、电磁搅拌法和应变诱发熔化激活法(Strain Induced Melt Activation,SIMA)。此外,还有喷射成形法、紊流效应法和粉末法等[1~7]。 2.1 机械搅拌法 机械搅拌法是最早采用的方法,其设备构造简单,可以通过控制搅拌温度、搅拌速度和冷却速度等工艺参数,使初生树枝状晶破碎而成为近球状结构。机械搅拌装置一般分为连续式和间歇式两种类型。 连续式装置包括棒式和螺旋式。棒式装置具有金

(工艺技术)半固态金属铸造工艺

半固态金属铸造工艺 3.1 概述 自1971 年美国麻省理工学院的D.B.Spencer 和M.C.Flemings 发明了一种搅动铸造(stir cast )新工艺,即用旋转双桶机械搅拌法制备出Sr15% Pb 流变浆料以来,半固态金 属(SSM铸造工艺技术经历了20余年的研究与发展。搅动铸造制备的合金一般称为非枝晶 组织合金或称部分凝固铸造合金(Partially Solidified Casting Alloys )。由于采用该 技术的产品具有高质量、高性能和高合金化的特点,因此具有强大的生命力。除军事装备上的应用外,开始主要集中用于自动车的关键部件上,例如,用于汽车轮毂,可提高性能、减轻重量、降低废品率。此后,逐渐在其它领域获得应用,生产高性能和近净成形的部件。半固态金属铸造工艺的成形机械也相继推出。目前已研制生产出从600吨到2000吨的半固态 铸造用压铸机,成形件重量可达7kg 以上。当前,在美国和欧洲,该项工艺技术的应用较为广泛。半固态金属铸造工艺被认为是21 世纪最具发展前途的近净成形和新材料制备技术之 一。 3.2 工艺原理 在普通铸造过程中,初晶以枝晶方式长大,当固相率达到0.2 左右时,枝晶就形成连续网络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌,则使普通铸造成形时易于形成的树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中。这种颗粒状非枝晶的显微组织,在固相率达0.5-0.6 时仍具有一定的流变性,从而可利用常规的成形工艺如压铸、挤压,模锻等实现金属的成形。 3.3 合金制备 制备半固态合金的方法很多,除机械搅拌法外,近几年又开发了电磁搅拌法,电磁脉冲加载法、超声振动搅拌法、外力作用下合金液沿弯曲通道强迫流动法、应变诱发熔化激活法 (SIMA)、喷射沉积法(Spray)、控制合金浇注温度法等。其中,电磁搅拌法、控制合金浇注温度法和SIMA法,是最具工业应用潜力的方法。 3.3.1 机械搅拌法 机械搅拌是制备半固态合金最早使用的方法。Flemings 等人用一套由同心带齿内外筒组成的搅拌装置(外筒旋转,内筒静止),成功地制备了锡- 铅合金半固态浆液;H.Lehuy 等人用搅拌桨制备了铝-铜合金、锌- 铝合金和铝- 硅合金半固态浆液。后人又对搅拌器进行了改进,采用螺旋式搅拌器制备了ZA-22合金半固态浆液。通过改进,改善了浆液的搅拌效 果,强化了型内金属液的整体流动强度,并使金属液产生向下压力,促进浇注,提高了铸锭的力学性能。 3.3.2 电磁搅拌法电磁搅拌是利用旋转电磁场在金属液中产生感应电流,金属液在洛伦磁力的作用 下产生 运动,从而达到对金属液搅拌的目的。目前,主要有两种方法产生旋转磁场:一种是在感应线圈内通交变电流的传统方法;另一种是1993 年由法国的C.Vives 推出的旋转永磁体法,其优点是电磁感应器由高性能的永磁材料组成,其内部产生的磁场强度高,通过改变永磁体的排列方式,可使金属液产生明显的三维流动,提高了搅拌效果,减少了搅拌时的气体卷入。 3.3.3 应变诱发熔化激活法(SIMA) 应变诱发熔化激活法(SIMA是将常规铸锭经过预变形,如进行挤压、滚压等热加工制成半成品棒料,这时的显微组织具有强烈的拉长形变结构,然后加热到固液两相区等温一定时间,被拉长的晶粒变成了细小的颗粒,随后快速冷却获得非枝晶组织铸锭。 SIMA工艺效果主要取决于较低温度的热加工和重熔两个阶段,或者在两者之间再加一

半固态成形技术及应用

半固态成形技术及应用 摘要 介绍了半固态成形技术的工艺原理,分析了机械搅拌、电磁搅拌、应变诱导、冷却斜 坡等浆料制备方法和流变加工、触变加工、注射加工等成形方法。分析了各种计算机模拟技术和模拟方法在半固态成形方面的应用,论述了目前国内外半固态成形技术的应用状况和发展趋势。随着半固态成形技术研究水平的不断提高,成形产品及应用不断增多,发展前景广阔。 关键词: 半固态加工; 浆料制备; 成形工艺; 计算机模拟 0引言 20世纪70年代初,美国麻省理工学院D.B.Sepcner等研究人员在自制的高温粘度计中测量Sn-15Pb合金高温粘度时,发现了金属在凝固过程中的特殊力学行为图,即金属在凝固过程中进行强力搅拌,使枝晶破碎,得到一种液态金属母液中均匀地悬浮着一定固相组分的固液混合浆料(固相率甚至可高达60%),具有很好的流动性,易于通过普通加工方法制成产品,并冠以半固态加工[1],人们一直沿用至今。 半固态成形技术与其它的成行技术的区别在于:①半同态浆料具有流变性和触变性,变形抗力小,可提高成形速度,进行复杂件成形,缩短加工周期,利于节能节材,也可进行连续形状的高速成形;②与液态金属加工相比,半固态浆料随着同相分数的降低,呈现粘性流体特性,在微小外力作用下可发生变形流动,但粘度比液态金属高,容易控制;③当固相分数在极限值(约75%)以下时,浆料可以进行搅拌,并可很容易混入异种材料的粉末、纤维,完成复合材料制备和成形;④应用广泛,凡具有固液两相区的合金均可实现半固态加工,适用于多种加工工艺,如铸造、轧制、挤压和锻压,也正是这个优点,才产生了多种金属半固态成形工艺[2],所以被誉为2l世纪最有发展前景的现代加工新技术。 半固态金属成形过程的模拟仿真,如半同态材料的二次加热过程、凝固过程的温度场的模拟仿真,充型过程流动场的模拟仿真,触变成形过程工件应力应变场的模拟仿真和组织变化的模拟仿真等,通过对这些单一或复合过程的模拟仿真技术的研究,可以对SSM过程中产生的诸如裂纹、气孔缺陷等各种品质问题进行分析,对工艺方案进行优化,对产品品质和性能进行预测,从而达到改善产品品质、提高生产率和降低成本的目的。 半固态金属成形技术在许多发达国家如美国、意大利、瑞士、法国、德国、日本等已进入了工业应用阶段。半固态金属成形制品的主要市场是汽车工业,如空压机、制动器、发动机、燃料供给装置、悬挂装置及汽车轮毂等。由于制品质量优异,大量用于安全性能要求较高的地方。另外,在电子、军事和娱乐设施等方面也有着广泛的用途。而我国的半固态金属加工技术起步较晚,开始于20世

浅谈金属半固态成形技术

江苏理工学院 JIANGSU UNIVERSITY OF TECHNOLOGY 材料先进制备与成形加工技术 课程论文 学院名称:材料工程学院 专业:机械工程 2013年04 月 浅谈金属半固态成形技术 摘要本文综述了半固态成形技术,介绍了半固态成形技术的定义及其成形工 艺,研究现状及发展应用,半固态浆料的制备方式及浆料的特点,最后对半固态技术进行了展望。 关键词半固态成形触变成形流变成形 1.半固态成形技术定义

金属半固态加工就是在金属凝固过程中,对其施以剧烈的搅拌作用,充分破碎树枝状的初生固相,得到一种液态金属母液中均匀地悬浮着一定球状初生固相的固-液混合浆料(固相组分一般为50%左右),即流变浆料,利用这种流变浆料直接进行成形加工的方法称之为半固态金属的流变成形;如果将流变浆料凝固成锭,接需要将此金属锭切成一定大小,然后重新加热(即坯料的二次加热)至金属的半固态温度区,这时的金属锭一般称为半固态金属坯料。利用金属的半固态坯料进行成形加工,这种方法称之为触变成形。半固态金属的上述两种成形方法合称为金属的半固态成形技术。如下图一所示。 图一半固态成形技术 2、半固态加工的成形工艺 目前,金属半固态成形的工艺路线主要有两种:一种是触变成形,把制浆与成形结合在一起;另一种是流变成形,将制坯和成形结合在一起。 2.1 触变成形 触变成形的工艺路线是将半固态合金浆料铸造成锭坯,根据产品尺寸需要进行下料,经二次加热后,在半固态温度下进行压力加工成形。由于半固态坯料的加热、输送工艺较为方便,并易于实现自动化操作,因而触变成形工艺在得到了广泛应用。如半固态金属触变压铸、触变锻造、触变挤压工艺目前都已成熟,并进入实际应用。随着触变成形工艺的推广和应用,生产实践中发现触变成形工艺也存在一些不足,如成本高,坯料损耗过多,坯料重熔时固相率难以精确控制。工艺图如图二所示。 2.2 流变成形 流变成形是将制备的半固态合金熔体直接转移到成形设备进行成形的工艺方法。Flemings在20纪70年代通过间歇式或连续式机械搅拌制备半固态金属浆料,通过流变铸造,在制备半固态浆料的同时也直接进行了流变压铸成形各种零件。由于直接获得的半固态金属浆料的保存和输送很不方便,因而流变成形技术进展很缓慢。但与触变成形相比,流变成形有工艺流程短、生产效率高等优点,近年来引起了人们的关注,从而出现了一些流变成形新技术。

相关主题