搜档网
当前位置:搜档网 › 手性拆分方法——包结拆分法原理及应用

手性拆分方法——包结拆分法原理及应用

手性拆分方法——包结拆分法原理及应用
手性拆分方法——包结拆分法原理及应用

手性拆分方法——包结拆分法原理及

应用

摘要:简要介绍了包结拆分方法的原理及其应用

关键词:包结拆分、包结复合物、氢键

A novel method of resolution—Chiral Inclusion

Complexation

Abstract:The resolution of racemic compound by chiral inclusion complexation .The chiral recognition principles in inclusion complex is also discussed.

Key words:resolution, chiral recognition, hydrogen bond.

手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子[1]。基本物质如氨基酸、糖类等都是手性分子。手性分子的重要性不仅表现在与生物相关的领域,在功能材料领域,如液晶、非线性光学材料、导电高分子方面也显示出诱人前景。

医药和生物技术的发展,人们对光学活性化学物质的需求不断增加。目前在市场上手性药物占有很大的比例,许多具有生物活性的化合物,其对映异构体一般具有不同程度的话性,甚至具有不同的生理作用。手性对映体药物在吸收、分布、代谢与排泄过程中,通过与体内大分子的不同立体结合,产生不同的药理作用。它们的药理作用是通过与体内大分子之间的严格手性匹配与分子识别来实现的,在人体内的药理活性、代谢过程及毒性上均存在着显著差异[2]。

随着对手性分子认识的不断深入,人们对单一手性物质的需求量越来

越大,对其纯度的要求也越来越高。单一手性物质的获得方法大致有3种[3]:○1手性源合成法:最常用的方法,但由于天然手性物质的种类有限,要合成多种多样的目的产物会遇到很大困难,而且合成路线步多,也使得产物成本十分高昂。○2不对称合成法:是在催化剂或酶的作用下合成得到过量的单一对映体化合物的方法。不对称化学合成高旋光收率的反应仍然有限,所得产物的旋光纯度对于多数应用仍不够高;生物的不对称合成具有很高的选择性,反应条件温和,但对底物要求高、反应慢、产物的分离困难,因而在应用上也受到一定的限制。○3外消旋体拆分法:是在拆分剂的作用下,将外消旋体拆分成对映体。成本较低,应用广泛。通过不对称合成方法获取单一对映体药物虽然更为合理和诱人,但外消旋体药物或中间体拆分仍是获取单一对映体药物的主要方法。据报道,大约有65%的非天然手性药物是由拆分得到的。

外消旋体的拆分用的最多的是化学拆分法,经典的化学拆分是化学拆分法,利用光学活性的有机酸或碱与对映异构体作用形成非对映异构体衍生物(或盐),通过分步结晶而分离,然后再用无机酸或碱分解,从而获得有光学活性的产物。由于必须使被拆分化合物变为酸或碱,这种方法在被拆分化合物类型上受到了很大的限制。

1 包结拆分法

外消旋体拆分又可分为化学拆分、酶法拆分、色谱拆分、逆流萃取和膜分离拆分。经典的化学拆分通常是应用光学纯的拆分试剂与消旋体形成两个非对映体盐,通过结晶法将两个盐分开,再将其转化成两个相应的对映体。例如,应用D-酒石酸拆分肾上腺素、苯肾上腺素、对羟基苯甘氨酸

和乙胺丁醇中间体消旋氨基丁醇;应用D一樟脑磺酸拆分苯甘氨酸和四咪唑;应用辛可尼定拆分萘普生等。经典拆分方法的局限性在于只适用于有机酸或有机碱。

1.1包结拆分法的过程

包结拆分不涉及化学反应,操作简单,实施包结拆分的主要有结晶法和悬浮法[4]。

1.1.1结晶法

结晶法操作简单,所需时间短,是目前使用最多的方法。结晶法是将一构型光学纯的主体化合物与客体(消旋体)共同溶于特定的溶剂中,主客体了通过氢键作用或电子次级作用形成包结络和物析出。通常主体分子能选性地包结某一个对映异构体,形成更稳定、溶解度更小的包结络合物,以结晶形式析出来,通过过滤把固体和母液分离。从而达到分离对映异构体的目的。

1.1.2悬浮法

悬浮法一般在室温搅拌下进行,以正己烷、水等作为溶剂,客体溶于其中;主体以固体形式悬浮于前者中,在两相的界面上,固态主体分子与客分子经过一定的时间达到包结和溶解的平衡,主体分子选择性地包结某一个对异构体形成更稳定的包结络合物,平衡逐渐向包结络合物

方向移动,同样通过滤分离固液相,从而实现分离对映异构体的目的。但这一过程比结晶出要慢得多,所需时间较长。该方法的适用范围也不太广。

1.2包结拆分的优点

包结拆分中使用的主体化合物是手性分子,被识别的客体化合物是一对手性对映异构体,其识别过程是手性的识别过程。包结拆分中主体分子与客体分子之间不发生任何化学反应,因此与经典的化学拆分相比,包结拆分具有以下的优点:可以拆分各种官能团的化合物,如醇、醚、环氧化合物、酮、酯、内酰胺、亚砜、亚磷脂等化合物;拆分的产率和e.e值都很高;主体很容易通过如柱、溶剂交换以及逐级蒸馏等手段与客体分离和可循环使用,拆分条件温和,操作简单;手性主体拆分剂容易回收利用。所以,包结拆分法操作简单,易于规模生产,具有很高的工业价值。

1.3包结拆分法原理

包结拆分方法是外消旋化合物拆分的一种新方法,近20年来新发展起来的一种拆分方法。最早是由日本的Toda教授发现和报道,其采用氯化N-苄基辛可尼定作为包结主体在甲醇中首次成功地拆分了外消旋的联二

萘酚[5]。

此方法是超分子化学在拆分上的一个应用,该方法基本原理是利用手性的主体化合物通过弱的分子间作用力,如氢键、或分子间作用力选择性地与外消旋的客体化合物中的一个对映异构体形成稳定的超分子配合物(supra molecule),即包结复合物(inclusion complex)析出,从而达到使对映异构体分离的目的。同时,包结络合物的形成要求主体化合物(如联萘二酚或称为2,2’—二羟基—1,1’—联萘、2,2’—二羟基—9,9’—联二蒽)对客体分子之间形成有效的且较强的分子识别能力。

2,2’—二羟基—1,1’—联萘2,2’—二羟基—9,9’—联二蒽

虽然包结复合物中主客体分子间并没有形成化学键,它们分子间的紧密结合仍然使包结复合物与单独的主、客体化合物的物理化学性质存在极大差异。包结复合物中主客体分子间的相互作用程度可以用荧光光谱、紫外光谱、红外光谱、拉曼光谱、CD光谱、核磁共振氢谱、热值滴定、X射线衍射、分子理论计算等方法来进行研究。其中,最直观的方法是X射线衍射,用这种方法可以直接得到分子基团相互作用的信息,并可以进一步推测分子选择性识别的机理。

近二十年来,包结拆分方法得到了长足的发展。但是到目前为止,这种拆分方法仍然缺乏严格的理论指导,往往凭借经验,通过对拆分试

剂的尝试,然后才能寻找到理想的拆分试剂。

2包结拆分中的主体手性化合物

在包结拆分中,主体分子的设计与合成非常重要。事实上,由于在分析、合成及材料科学方面潜在的应用价值,如何设计新型包结体系引起科学界越来越多的关注。从已有的文献看。主体分子主要分为下面几大类[6]。

2.1 炔醇类化合物

手性包结拆分属于分子手性识别的范畴。早在年1933年,Easson和Stcdman就提出了分子手性识另中的“三点相互作用”概念,这种概念直到1948年Ogston解释了L-Serine的酶催化去羰基化反应后才为人们所接受。其后,“三点相互作用”被作为生物对映选择性的基本作用模型并迅速扩展到其它领域。有几篇文章很好地阐述了分子的手性识别原理,在分子的手性识别中,最主要的是手性主体分子的手性必须在与客体分子的相互作用中体现出来。在手性主体分子与客体分子形成的包结复合物中,比较重要的作用力就是氢键、π-π相互作用和空间位阻效应,几乎所有的包结复合物中都有氢键存在[7]。

早在1981年F.Toda作了大量的手性包结拆分研究工作,他用化合物Brucine成功地拆分了化合物1和化合物2。

F.Toda在研究中还发现化合物1、2的类似化合物3与Brucine不能形成包结复合物,这种结果似乎表明客体分子中的芳香官能团是它们与Brucine形成包结复合物所必须的。在进一步的研究中F.Toda用Sparteine 化合物H-2成功地拆分了化合物1和化合物2,而且光学纯的化合物1或化合物2同样能用于拆分Sparteine。在用Brucine拆分化合物4和化合物5时,发现包结复合物的形成依赖于分子中R基团的大小,R基团的增大有利于包结复合物的形成。F.Toda在用联二萘酚(化合物H-3)拆分化合物6和7时,发现化合物6的R基团位于间位时能被有效拆分;而用联二萘酚拆分化合物7时,7a和7b以100%e.e值得到,7b和7f仅能得到25%e.e值,7c和7e与联二茶酚无法形成包结复合物。

仔细对比联二萘酚(H-3)和化合物6a的晶体结构,可以发现它们具有类似的分子骨架形状,再结合用联二萘酚拆分化合物7的结果,似乎表明主客体分子骨架形状上的类似有利于分子间发生选择性包结。在上述研究结果的基础上,F.Toda设计了一系列具有高度位阻的羟基官能团芳香族主体化合物(H-4~H-9), 用于拆分各种不同类型的醇、酮、酯、亚砜等化合物。

2.2联二萘酚化合物

一级胺的光学拆分通常是先衍生为非对映异构的盐,再利用非对映异构体间物理性质的差异,用过柱、重结晶等方法把它们分开。由于一级胺的无机盐易与冠醚类化合物形成氢键,因而它们的光学拆分也可以采用包结拆分的方法。1973年,D . J .Cram研究了由联二萘酚衍生的冠醚类化合物(H-11~H-13)对α-苯乙胺盐(化合物43)的手性识别作用[8]。

D . J .Cram通过核磁共振研究发现,手性主体化合物(S,S)-H-11能选择性包结(R)-43。在0℃时,包结复合物(S,S)-H-11 比(S,S)-H-11稳定。实验结果还表明手性主体化合物H-11的手性识别能力强于H-12和H-13,作者认为具有C轴对称性的手性主体化合物能给客体化合物提供两个具有同样手性环境的接近面,这有助于手性主体分子对映识别能力的提高。

在此基础上D . J .Cram等又系统地研究了主客体分子上的取代基对客体分子的对映异构体分配系数对映异构体的分配系数的影响。研究结

果表明,主、客分子刚性的增加都有利于提高手性主体分子的对映识别能力。

2.3生物碱及天然产物衍生物

在J. Yamashitad等发现冠衍生物的对α-苯基甘氨酸甲醋高氯酸盐具有一定的手性识别能力后,J. S. Bradshaw等用X射线衍射和核磁共振氢谱及经验力场计算方法研究了吡啶并18-冠-6-体系(H-16~H-18)对有机胺高氯酸盐(46)的手性识别作用。

J. S. Bradshaw等研究发现,客体分子上的取代基R极大地影响着包结复合物的稳定性,通过适当地选择取代基R(如苯基、萘基等),增强R与吡啶环的π-π相互作用能进一步稳定包结复合物。研究结果表明,当化合物的R基团为萘环时,萘环与手性主体化合物的吡啶环平行,它们间的距离随客体分子的对映体构型不同而不同,然而手性主体上的取代基对包结复合物稳定性的影响并不呈现明显的规律性,原因可能是手性主体分子上大的取代基在增加分子刚性的同时也增加了分子间的立体阻碍作用,这种立体阻碍作用使客体分子的萘环与手性主体化合物的吡啶环不能很好地平行,从而部分地影响了主客体分子间的π-π相互作用尽管如此,当手性主体化合物的取代基为苯基和萘基时,仍观察到了对映识别能力的增加。在以上研究结果的基础上,J. S. Bradshaw等又设计了

大环穴醚来拆分有机胺盐化合物。

2.4酒石酸类衍生物

酒石酸类衍生物是一类非常重要的手性拆分剂,目前许多手性化合物就是被酒石酸及其衍生物拆分的。目前已应用到亚砜类化合物、烷基吡啶亚砜类化合物。其变现出很强的识别对映异构体的能力,一般认为它的高分子识别能力来源于分子的刚性,二氧杂环和四个苯基以及两个羟基间的分子内氢键。还有酰胺类化合物、肽类化合物等多作为活性主体。

3.应用

3.1环糊精手性选择体系包结拆分的应用

环糊精(CD)是一种由D(+)-葡萄糖单元通过1,4-糖苷键连接起来的环状寡糖。它们有着一个锥形去顶的空腔,内腔相对疏水,并且外壳由于羟基群(葡萄糖的2,3,6位)的存在而相对亲水。CD的分子结构呈圆锥形,一端口径宽另一端窄,中间为一空穴,这是CD形成包结物础[10]。

由于CD的特殊结构与性质,其在手性包结拆分法中受到广泛的重视。从总体上来看,各种类型CD对色谱和电泳分析中的各种基本参数,包括保留值、效率、分辨率都有影响,从而可以定性定量地分离许多对映体。

3.2在工业生产中的应用

兰索拉唑(1ansoprazole)是一种具有抗溃疡活性的苯并咪哇类衍生物,它是继奥美拉唑之后第二个上市的质子泵抑制剂。临床试验结果表

明它的一种异构体的生理活性要超出另一种异构体活性的一倍,然而一直以来都没有获得光学纯兰索拉哇的有效方法[11-12]。

中国科学院成都有机化学研究所邓金根研究员应用一种构型的联二萘酚(BINOL)对抗溃疡药奥美拉唑(ome-prazole)和进行了拆分,同时得到两种构型的光学纯异构体,产品的光学纯度大于99%,收率在60%以上,手性拆分试剂循环使用率大于80%。与其它拆分方法相比,该方法显示很大的优越性:拆分过程中不涉及化学反应,光学纯主体分子与消旋客体分子的一种异构体通过氢键作用,以及电子次级等非共价作用形成包结络合物;手性源可以很方便的回收,重复使用操作简便、易规模化,具有较高的工业价值。在手性抗抑郁药洛西汀的生产中也应用到此技术。

3.3包结拆分法在合成手性药物手性药物等应用

手性叔丁基亚磺酰胺的制备手性叔丁基亚磺酰胺是很重要的手性中间体,可用于多种手性胺的不称合成中。关于它的合成的报道很少,但是氨解二叔丁基亚磺酸硫酯是不错的合成方法。对于包结拆分得到的不同构型的二叔丁基亚磺酸硫酯。氨解以得到两种构型的光学纯的叔丁基亚磺酰胺。作者通过包结拆分的方法成功的实现了两种构型的光学纯的二叔丁基亚磺酸硫酯的大量制备,分别氨解可以叔丁基亚磺酰胺[12]。

另有文献报导利用包结拆分法合成手性亚砜。螺环二酚的包结拆分采用辛可宁定苄基氯化物作为拆分剂[13-14]。

总结

虽然手性包结拆分方法在近二十年来得到了很大的发展,但对于手

性主体分子在包结复合物形成过程中的对映识别能力,目前还没有一个

成熟的理论。一些经验规律可以总结如下:手性包结拆分能力强的分子应是分子中有、等能形成氢键的官能团,且这些官能团附近有位阻较大的取代基,分子骨架刚性较大,分子中有能产生次级作用如π-π相互作用的官能团,与客体分子对称性类似,分子的不对称中心与主、客体分子的相互作用基团空间位置近。尽管缺乏严格的理论知识,由于手性包结拆分方法与其它拆分方法相比具有操作工艺简单、手性拆分试剂易回收、拆分收率高等优点,必将继续受到大家的广泛关注。

由于手性包结拆分方法与其它拆分方法相比具有操作工艺简单,手性拆分试剂易回收,拆分收率高等优点,必将继续受到广泛关注,并在手性药物分离中发挥越来越大的作用。

参考文献:

[1] 谭松暖,刘汉标. 包结拆分法[J]. 中山大学研究生学刊(自然科学、医学版), 2002, (03) .

[2] 陈元雄. 包结拆分在手性药物分离中的机理与应用[J]. 安徽化工, 2005, (01) .

[3] 王普善,王宇梅. 手性化学促进单一对映体药物开发[J]. 化学研究与应用, 1999, (05)

[4] 李根容,李志良. 手性药物拆分技术研究进展[J]. 中国新药杂志, 2005, (08)

[5] 冯小明,曾德超,蒋耀忠. 一种新的手性拆分方法—包结拆分[J]有机化学, 2000, (02) .

[6] 任国宾,詹予忠,郭士岭. 手性拆分技术进展[J]河南化工, 2002, (01) .

[9] 何山震. 手性拆抗抑郁药物度洛西汀的合成研究[D]广州:中山大学有机化学系, 2008.

[10] 邓金根. 手性亚砜类化合物的包结拆分[J]. 化学研究与应用, 1999, (05)

[11] 谢坤. 手性亚砜类辅酶NADH模型化合物的合成与反应研究[D]中国科学技术大学, 2007.

[10] 彭小华,朱槿,邓金根. 兰索拉唑的包结拆分研究[J]厦门大学学报(自然科学版), 1999, (10) .

[11] 崔欣,付方敏,朱槿. 奥美拉唑、兰索拉唑对映体及相关物质在不同手性柱的分离比较[J]

河南化工, 2002, (01) .

[12] 孙晓霞. 手性叔丁基亚磺酰胺的制备及其双亚胺的金属有机试剂不对称加成反应的研究[D]

中国科学院成都有机化学研究所, 2005.

[13] 贾春荣,乐嘉赛. 萘普生拆分法概述[J]中国医药工业杂志, 1990, (8) .

[14] 程旭. 手性螺二芴双膦配体的合成及其应用研究[D]南开大学, 2005.

手性分子的拆分技术

手性分子的拆分技术 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

手性分子的拆分技术 郝婷玉 57 15级材料工程 摘要:对外消旋体实施拆分是获得手性物质的重要途径。本文综述了外消旋体的拆分方法,主要有直接结晶拆分法、化学拆分法、动力学拆分法、色谱拆分法( 含毛细管电泳法) 和手性膜拆分法等五大类。其中, 包括目前作为手性拆分主要方法的色谱技术在内的前 4 类方法, 由于批处理能力小、工业放大成本高 ,不适合大规模生产 ; 相反,膜分离技术具有能耗低、易于连续操作等优点 ,被普遍认为是进行大规模手性拆分非常有潜力的方法之一,具有良好的应用前景。 关键词:手性分子;拆分;对映体;外消旋化合物 手性是自然界存在的一种普遍现象, 在药物化学领域尤为突出 ,已知药物中有 30 %~ 40 %是手性的。手性是生物体系的一个基本特征, 很多内源性大分子物质,如酶、蛋白、核酸、糖, 以及各种载体、受体等都具有手性特征。此外,手性还在医药、食品添加剂、杀虫剂、昆虫性信息素、香料和材料等领域有着深刻影响。特别是在医药行业,手性药物对映体通过与体内大分子的立体选择性结合, 产生不同的吸收、分布、代谢和排泄过程, 可能具有不同的药理毒理作用。随着医药行业对手性单体需求量的增加和对药理的探究,如何获得高纯度手性单体已成为一个令人困扰的问题。因此 ,手性药物的分离分析就显得尤为重要。随着对手性分子认识的不断深入,人们对单一手性物质的需求量越来越大,对其纯度的要求也越来越高。 单一手性物质的获得方法大致有以下三种:(1)手性源合成法:是以手性物质为原料合成其它手性化合物,这是最常用的方法。但由于天然手性物质的种类有限,要合成多种多样的目的产物会遇到很大困难,而且合成路线步骤繁多,也使得产物成本十分高昂。(2)不对称合成法:是在催化剂或酶的作用下合成得到过量的单一对映体化合物的方法。化学不对称合成高旋光收率的反应仍然有限,即使如此,所得产物的旋光纯度对于多

手性化合物的拆分技术

手性化合物的拆分技术研究进展 许多药物具有光学活性。一般显示光学活性的药物分子,其立体结构必定是手性的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 1.生成非对映体拆分 此方法是利用外消旋混合物与手性试剂反应后生成有不同性质的非対映体,从而利用生成物的不同物理性质(溶解度、蒸汽压、结晶速率等)将其分离,再将分离后的物质分别还原成之前的対映体。 还可以使用拆分剂家族代替单一拆分剂进行拆分,所谓拆分剂家族是指有类似结构的2~3个手性剂拆分剂。组合拆分提高了产品收率和纯度。 2.动力学拆分 利用两个対映体和手性试剂发生反应的速度不一样,在混合物中添加不足量的手性试剂。一个対映体与手性试剂结合,从而得到纯的反应慢的対映体。可以分为经典动力学拆分和动态动力学拆分,动态动力学拆分是指将经典动力学拆分和底物消旋化相结合的拆分方法,理论产率可以达到100%。底物消旋化分为化学消旋化和酶消旋化,由于酶消旋化具有操作条件温和、产率高、副反应少等优点而具有广泛的工业应用价值[4]。 3.液膜拆分 将具有手性识别功能的物质溶解在溶剂中制备液膜,利用内外向间推动力(浓度差、pH 差等)使待分离物中的某种物质得到富集。液膜分离方法又分为本体液膜、乳化液膜、支撑液膜3种类型。 4.固体膜拆分 此方法是基于対映体间亲和力的差异,利用推动力(浓度差、压力差、电势差)进行分

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti 等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展 摘要:简要阐述了手性药物的世界销售市场。综述了目前实验室和工业生产领域手性药物的拆分方法,包括:结晶拆分法,化学拆分法,动力学拆分法,生物拆分法,色谱拆分法,手性萃取拆分法和膜拆分法等,并简要介绍了每种方法的应用情况及优缺点。 关键词:手性药物; 外消旋体; 手性拆分 自然界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[ 1 ]。美国FDA在1992年发布了手性药物指导原则,该原则要求各医药企业今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的发展,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和热点领域[ 2 ]。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。但是近年来单一对映体药物市场每年以20%以上的速度增长。1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年, 100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已增长到730亿美元; 2002年总销售额更是达到1720亿美元, 2010年可望超过2500亿美元[ 3~5 ]。广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。 不同的立体异构体在体内的药效学、药代动力学和毒理学性质不同,并表现出不同的治疗作用与不良反应,研究与开发手性药物是当今药物化学的发展趋势。随着合理药物设计思想的日益深入,化合物结构趋于复杂,手性药物出现的可能性越来越大;另一方面,用单一异构体代替临床应用的混旋体药物,实现手性转换,也是开发新药的途径之一[ 1 - 3 ]。1985~2004年上市的550个新化学合成药物中,有313个药物具有手性中心,其中以单一异构体上市的手性药物为167个,手性药物数量呈逐年上升趋势; 2005年世界药物的销售总额为6 020亿美元,而手性药物的销售总额为 2 250亿美元,占全球制药市场销售总额的37% , 2010年可望超过 5 000亿美元[ 4 - 6 ]。总之, 手性药物大量增长的时代已经来临,手性药物制备技术的发展亦日趋完善,这为以制备和生产手性药物为主要内涵的手性工业的建立和发展奠定了基础。 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。手性药物的化学控制技术可分为普通化学合成、不对称合成和手性源合成3类;手性药物的生物控制技术包括天然物的提取分离技术和控制酶代谢技术。以前手性化合物为原料,经普通化学合成可得到外消旋体,再将外消旋体拆分制备手性药物中间体或手性药物,这是工业生产手性药物的主要方法。1985~2004年上市的58个含有一个手性中心的手性药物中,有27个手性药物是通过手性拆分法生产的[ 4 ]。 1结晶法拆分 结晶法拆分包括直接结晶法拆分( direct crys ta llization resolution )和非对映异构体拆分( dias te reom er crys tallization resolution) ,分别适用于外消旋混合物( conglom e rate)和外消旋化合物( racem ic compound)的拆分。在一种外消旋混合物的过饱和溶液中,直接加入某一对映体的晶种,即可得到一定量的该对映体,这种直接结晶的拆分方法仅适用于外消旋混合物,其应用几率不到10%。外消旋化合物较为常见,大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物,扩大直接结晶法拆分的应用范围。 对于外消旋化合物,可采用与另一手性化合物(即拆分剂, reso lving agent)形成非对映异

手性药物的结晶拆分方法

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 手性药物的结晶拆分方法--直接结晶法---逆向结晶法 在优先结晶法中,通过加入不溶的添加物即晶种形成晶核,加快或促进与之晶型或立体构型相同的对映异构体结晶的生长。而逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。例如在外消旋的酒石酸钠铵盐的水溶液中溶入少量的(S)—(—)—苹果酸钠铵或(S)—(—)—天冬酰胺时,可从溶液中结晶得到(R,R)—(十)—酒石酸钠铵。 逆向结晶中的添加物必须和溶液中的化合物在结构和构型上有相关之处。这样所添加的物质才能嵌入生长晶体的晶格中,取代其正常的晶格组分并能阻止该晶体的生长。逆向结晶是一种晶体生长的动力学现象,添加物的加入造成了结晶速度上的差别。由于逆向结晶是晶体生长的动力学的现象,因此当结晶时间无限制的延长下之,最终得到的仍是外消旋的晶体。从化合物的性质上来看,逆向结晶只能用于能形成聚集体的化合物。在结晶法的拆分过程中,若能将优先结晶法中“加入某种单—对映异构体晶体可诱导相同构型结晶生长”的原理和逆向结晶中“加入另一个对映异构体溶液可抑制相同构型的对映异构体生长”的原理相结合,可使结晶拆分的效率大大提高 手性药物的结晶拆分方法--直接结晶法---优先结晶法 优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。优先结晶方法是在巴士德的研究基础上发现的。文献最早报道的优先结晶方法是用于肾上腺素的拆分。1934年Duschinsky第一次用该方法分离得到盐酸组氨酸,使人们认识到该方法的实用性。但直到1963年工业化学家Secor对该方法进行综述后,才引起人们关注并逐渐发展成为众所周知的科学实用方法。Secor根据优先结晶法是聚集物的结晶的原理,可用其溶解度曲线的相图来进行结晶分离过程的分析。20世纪60~70年代,优先结晶方法在工业生产上大规模的用于由丙烯腈制备L—谷氨酸的拆分,每年的产量可达1.3万吨。这一技术不仅在工业生产上有非常显著的应用价值,在'实验室也可用于拆分数克到数十克的光学活性的化合物。应当指出的是,优先结晶方法仅适用于拆分能形成聚集体的外消旋体,而且该聚集体是稳定的结晶形式。换句话讲,假若该外消旋体可以是以聚集物或外消旋化合物的形式存在,但在某一定的温度范围内,只可以以聚集物的形式结晶出来,而刁;是产生外消旋化合物的结晶。例如盐酸组氨酸在45℃以上温度进行的优先结晶拆分。减肥药物芬氟拉明(fenfluramine,6)及其前体去乙基芬氟拉明(7)的拆分研究说明了优先结晶拆分的局限性。在对(6)和(7)与非手性的有机酸形成的50多个盐进行聚集物性质研究时,发现只有五个(6)的盐和三个(7)的盐是聚集体,但其中有两个盐不能使用优先结晶法结晶,这两个盐是(6)的苯氧乙酸盐和(7)的二氯乙酸盐。(6)的苯氧乙酸盐在室温下以不稳定的聚集体和稳定的外消旋化合物的形式发生共结晶,而(7)的二氯乙酸盐在结晶过程中会发生异手性(heterochiral growth)生长,即—种对映异构体的晶体生长在另一种异构体晶体的表面,得到晶体的光学纯度很低。聚集体通常在一定的温度范围内是稳定的,一旦超过该温度范围则叫咱S形成聚集体的亚稳态的形式,这种亚稳态的形式也可以用优先结晶的方法拆分,但得到的将是亚稳态多晶型的形式。例如盐酸组氨酸在25℃时的结晶。也有些化合物,例如外消旋的3—(3—氯苯基)—3—羟基丙酸(8),可以形成热力学稳定的聚旧体的形式,但在溶剂中结晶时总是生成亚稳态的外消旋化合物,而且该外消旋化合物的溶解度约是其对映异构体的7倍,这种情况难以用优先结晶法进行结晶。优先结晶法是一种高效、简单而又快捷的拆分方法,晶种的加入造成两个对映异构体具有不同的结晶速率是该动态过程控制的关键。延长结晶时间可提高产品的产率,但产品的光学纯度有所下降。从优先结晶法中得到晶体后,如要进一步提高产物的光学纯度,可 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

手性拆分

手性拆分 手性拆分(Chiral resolution),亦称光学拆分(Optical resolution)或外消旋体拆分,为立体化学上,用以分离外消旋化合物成为两个不同的镜像异构物的方法。[1]为生产具有光学活性药物的重要工具。 与不对称合成法比较,手性拆分的缺点为尽有50%的产率。有时在拆分的同时将不需要的对映异构体外消旋化,使其不断转化为需要的一个对映体,将拆分和外消旋化同时进行,从而使拆分的产率超过50%。这种方法称为动态动力学拆分。酮的烯醇化是常用的外消旋化反应。 拆分方法 结晶拆分法 晶种结晶法:也称优先结晶法。是向热的饱和或过饱和的外消旋溶液中,加入一种纯光活性异构体的晶种,创造出不对称的环境。冷却到一定的温度。这时稍微过量的与晶种相同的异构体就会优先结晶出来。滤去晶体后,在剩下的母液中再加入水和消旋体制成的热饱和溶液,再冷却到一定的温度。这时另一个稍微过剩的异构体就会结晶出来。理论上讲,如果原料能形成聚集体的外消旋体,那么将上述过程反复进行就可以将一对对映体转化为纯的光学异构体。 没有纯对映异构体晶种的情况下,有时用结构相似的手性化合物,甚至用非手性的化合物作晶种,也能成功进行拆分。 晶种结晶法是在路易·巴斯德的工作的基础上发现的。文献上最早报道的应用是肾上腺素的拆分。 路易·巴士德首先发现酒石酸有右旋和左旋现象,并于1849年第一次进行手性拆分以分离两者。直到1882年,他示范了借着引晶技术从过饱和的酒石酸钠铵溶液中生成d-晶体及l-晶体,相反的手性晶体将会排列成相反的形状。 直接结晶拆分法:也称自发结晶拆分法。这是巴斯德最早发现的拆分方法。是指外消旋体在平衡时结晶自发形成聚集体(conglomerate),两个对映体都自发析出等量的互为镜像的对映结晶。对映结晶可以人工分开。 外消旋美沙酮可以通过这种方法拆分。[2]以50g的dl-美沙酮为起始原料,溶于石油醚并浓缩,加入两个毫米大小d-和l-晶体,在40°C下搅拌125小时后便可得到两个大的d-和l-晶体,产率各为50%。

手性拆分进展

手性拆分技术进展

手性拆分技术进展 手性拆分(chial resolution)称光学拆分或外消旋体拆分(optical resolution),为立体化学上,用以分离外消旋化合物成为两个不同的镜像异构的方法。近几十年在工业上应用很广,尤其在手性药物开发上,已逐渐成为新药发展重要方向和热点领域。当前,用于手性物质拆分的方法主要有:化学拆分法、毛细管电泳技术、色谱分析法、萃取拆分法、聚合膜拆分法。 一、化学拆分法 (一)晶种结晶法是在饱和或过饱和的外消旋体溶液中加入其中一个对映异构体的晶种, 使该对映异构体稍稍过量而造成不对称环境, 结晶就会按非平衡的过程进行。应当指出的是,优先结晶方法仅适用于拆分能形成聚集体的外消旋体, 而且该聚集体是稳定的结晶形式。换句话讲,假若该外消旋体可以是以聚集物或外消旋化合物的形式存在, 但在某一定的温度范围内,只可以用聚集物的形式结晶出来,而不是产生外消旋化合物的结晶。1934 年,Duschinsky【1】首次应用该方法实现了盐酸组氨酸的分离。 (二)外消旋体的不对称转换一对合成的外消旋体由于在非手性条件下物理、化学性质相同,普通的分离方法如蒸馏、重结晶等在这种情况下时无能为力的。因此要设法先将一对对映异构体变成非对映体,然后再借用二者物理、化学性质的区别,将他们分开,制纯,再分别将非对映异构体分解,得回两个纯的对映体。这种方法一般需要被拆分的分子中有一个易发生反应的基团,如羧酸、碱基等,然后让它们与一个纯的(+)或(-)光活性化合物反应,形成盐或酯,这样就形成了一对非对映异构体。如: 常用的光化学试剂有:光活性碱:奎宁、马钱子碱等 光活性酸:酒石酸、樟脑磺酸等 1853 年,Pastrure【2】对该种拆分方法进行了全面概括酸碱性的外消旋体的拆分方面具有明显的优势,但也存在一定的局限性拆分过程中使用的手性试剂是拆分成功与否的关键合适的拆分剂应具备以下条件: 1 、必须容易与外消旋体中的2、个对映体结合生成非对映异构体,经拆分后又容易实现原

手性药物的结晶拆分方法--直接结晶法---逆向结晶法

手性药物的结晶拆分方法--直接结晶法---逆向结晶法 在优先结晶法中,通过加入不溶的添加物即晶种形成晶核,加快或促进与之晶型或立体构型相同的对映异构体结晶的生长。而逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。例如在外消旋的酒石酸钠铵盐的水溶液中溶入少量的(S)—(—)—苹果酸钠铵或(S)—(—)—天冬酰胺时,可从溶液中结晶得到(R,R)—(十)—酒石酸钠铵。 逆向结晶中的添加物必须和溶液中的化合物在结构和构型上有相关之处。这样所添加的物质才能嵌入生长晶体的晶格中,取代其正常的晶格组分并能阻止该晶体的生长。逆向结晶是一种晶体生长的动力学现象,添加物的加入造成了结晶速度上的差别。由于逆向结晶是晶体生长的动力学的现象,因此当结晶时间无限制的延长下之,最终得到的仍是外消旋的晶体。从化合物的性质上来看,逆向结晶只能用于能形成聚集体的化合物。在结晶法的拆分过程中,若能将优先结晶法中“加入某种单—对映异构体晶体可诱导相同构型结晶生长”的原理和逆向结晶中“加入另一个对映异构体溶液可抑制相同构型的对映异构体生长”的原理相结合,可使结晶拆分的效率大大提高 手性药物的结晶拆分方法--直接结晶法---优先结晶法 优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。优先结晶方法是在巴士德的研究基础上发现的。文献最早报道的优先结晶方法是用于肾上腺素的拆分。1934年Duschinsky第一次用该方法分离得到盐酸组氨酸,使人们认识到该方法的实用性。但直到1963年工业化学家Secor对该方法进行综述后,才引起人们关注并逐渐发展成为众所周知的科学实用方法。Secor根据优先结晶法是聚集物的结晶的原理,可用其溶解度曲线的相图来进行结晶分离过程的分析。 20世纪60~70年代,优先结晶方法在工业生产上大规模的用于由丙烯腈制备L—谷氨酸的拆分,每年的产量可达1.3万吨。这一技术不仅在工业生产上有非常显著的应用价值,在'实验室也可用于拆分数克到数十克的光学活性的化合物。应当指出的是,优先结晶方法仅适用于拆分能形成聚集体的外消旋体,而且该聚集体是稳定的结晶形式。换句话讲,假若该外消旋体可以是以聚集物或外消旋化合物的形式存在,但在某一定的温度范围内,只可以

1手性化合物拆分与鉴定

手性物质提取分离 手性药物的结晶拆分方法: 手性化合物的拆分是给外消旋混合物制造一个不对称的环境,使两个对映异构体能够分离开来。 从方法学上来讲,可以分为结晶拆分法(物理拆分方法、化学拆分方法)、动力学拆分方法、生物拆分方法(相当部分是生物催化的动力学拆分)及色谱拆分方法。 --手性药物的拆分方法— 1、结晶拆分法 --直接结晶法---在光学活性溶剂中的结晶拆分 --直接结晶法---外消旋体的不对称转化和结晶拆分 --直接结晶法---逆向结晶法逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。 --直接结晶法---优先结晶法优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。 --直接结晶法---自发结晶拆分法自发结晶拆分(spontaneous resolution)是指当外消旋体在结晶的过程中,自发的形成聚集体。 --通过形成非对映异构体的结晶法--非对映异构体的形成和拆分原理 --通过形成非对映异构体的结晶法--用于碱拆分的拆分试剂(酸性拆分剂) 2、动力学拆分

--组合拆分拆分原理是采用一组同一结构类型的手性衍生物的拆分剂家族(resolving agent family)代替单一的手性拆分剂进行外消旋化合物的拆分。 --复合拆分方法---形成π电子复合物的拆分(通过形成π电子复合物或π电子转移复合物的拆分方法主要应用十含芳香环化合物的拆分,所用拆分剂是手性的含π电子的酸) --复合拆分方法---金属配合物的拆分方法:有机过渡金属化合物与被拆分物形成非对映异构体的配位物而被分离。 --包合拆分(inclusion resolution)方法--洞穴包合物拆分(拆分剂是手性的环状多元醚(冠醚)和环糊精) 3、色谱分离:气相色谱,液相色谱,薄层色谱、超临界色谱和电泳 -------气相色谱: 按照拆分机制 GC 手性固定相可分为三类:基于氢键的手性固定相;基于配位作用的手性金属配合物固定相;基于包含作用的环糊精衍生物固定相。 -----HPLC柱色谱法分离手性化合物: 直接法:手性固定相CSP拆分:手性流动相CMP拆分 间接法:手性试剂衍生化法CDF 直接法间接法 手性固定相拆分CSP 手性流动相拆分CMP 手性试剂衍生化法 CDF 定义将具有手性识别 作用的配基,通 过稳定的共价键 连接或以物理方 法涂敷于适当的 固相载体上,以 制备出手性固定 相。CMP手性流动相又称手 性添加剂法,这种拆分 法是在流动相中加入 手性试剂,利用手性试 剂与各对映体结合的 稳定常数不同,以及药 物与结合物在固定相 上分配系数的不同来 进行分离。有:配体交 换型手性添加剂、环糊 精添加剂、手性离子对 添加剂。 该法是药物对映体在 分离前与高光学纯度 衍生化试剂( C D A) 反应,形成非对映体, 再进行色谱分离测定。 优点分离时间短, 而手性选择性 和拆分能力 高,多数药物 在分离前都不 需要进行衍生此法不需昂贵的手性 柱,亦无须进行柱前衍 生,手性添加剂可视要 求而更换,使用比较方 便。 可使用已有的非 手性同定相,花费少, 通过选用具有强烈紫 外吸收或荧光吸收的 手性试剂,可提高检 测敏感度,而且多数

手性化合物及其拆分方法文献检索报告

检索报告 (1)数据库名称:万方数据库 (2)检索方法: 检索式:手性化合物and 拆分方法;时间范围:2004-今天; 范围:全部期刊; 匹配:模糊;其他条件…… (3)命中记录数:298条 手性化合物对映体拆分方法概述 作者:李水清黄延胜 摘要:回顾了对映体的研究历史,综述了手性化合物对映体的拆分方法,展望了该领域未来的发展 关键词:手性化合物;对映体;拆分 手性流动相添加剂法对两种手性化合物的直接拆分 作者:杨丽廖勇周志强江树人王鹏 摘要:以β-环糊精为手性流动相添加剂,于C8反相柱上建立了2种手性农药(包括杀菌剂己唑醇和杀虫剂SR-生物丙烯菊酯)对映体的高效液相色谱拆分方法.探讨了β-环糊精浓度、流动相pH、有机改性剂种类等因素对手性拆分的影响.结果表明:在流动相为β-环糊精水溶液、磷酸钠缓冲液(0.05mol/L)、乙腈、三乙胺(体积比50:30:20:0.5)条件下,己唑醇对映体在pH为7.4,β-环糊精溶液浓度为7 mmol/L时,SR-生物丙烯菊酯对映体在pH为6.4,β-环糊精浓度为10.5 mmol/L时得到最佳分离. 关键词:手性物质;外消旋体;手性拆分 手性化合物的动态动力学拆分研究进展 作者:杜志强王安明王华周成杨明张俊祝社民沈树宝 摘要:获得光学纯手性化合物已成为精细化学品和制药行业的重要目标,外消旋体的拆分是合成光学纯手性化合物最主要的途径之一[1],其中动力学拆分是常用的方法.然而经典的动力学拆分方法的缺点是最大理论产率仅为50%. 关键词:动态动力学拆分;手性;消旋;过渡金属 手性物质及其拆分方法 作者:刘凤艳庞小琳郑轶群甘秀石 摘要:简要介绍了手性化合物的概念和发展情况以及获得手性化合物单一对映体的几种拆分方法.包括:结晶拆分法,化学拆分法,微生物酶拆分法,色谱拆分法,膜拆分法及电泳技术拆分法.并简要介绍了每种方法的应用情况及优缺点. 关键词:手性物质;外消旋体;手性拆分

手性拆分技术

手性拆分技术 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。化学控制技术:普通化学合成、不对称合成和手性源合成. 生物控制技术:天然物的提取分离技术和控制酶代谢技术。 手性拆分法: 结晶法拆分、动力学拆分、色谱分离法拆分、膜拆分法、萃取拆分法 1.结晶拆分法 结晶法拆分包括直接结晶法拆分和非对映异构体拆分分别适用于外消旋混合物和外消旋化合物的拆分。 在一种外消旋混合物的过饱和溶液中, 直接加入某一对映体的晶种,即可得到一定量的该对映体, 这种直接结晶的拆分方法仅适用于外消旋混合物, 其应用几率不到10% 外消旋化合物较为常见, 大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物, 扩大直接结晶法拆分的应用范围使部分外消旋化合物转变为外消旋混合物。也可采用与另一手性化合物(即拆分剂)形成非对映异构体混合物的方法, 利用这对非对映异构体盐的溶解度和结晶速去率的差异, 通过结晶法进行分离, 最后脱去拆分剂即得单一构型的异构体。最常见的拆分剂是手性酸或手性碱。 近年出现了组合拆分、复合拆分、包合拆分和包结拆分等新技术, 是对非对映异构体拆分的有效补充。 1.1 组合拆分 组合拆分是指采用结构类型相同的2~3个手性化合物构成的拆分剂家族代替单一拆分剂进行外消旋化合物拆分的新方法。拆分剂家族一般是将常用的手性拆分剂(如α-甲基苄胺、α-氨基苯乙醇、酒石酸、扁桃酸等)进行结构修饰而形成的一组衍生物。在拆分剂家族中, 每个化合物之间要具有非常强的结构类似性和立体化学均一性。 实际操作过程是将拆分剂家族和被拆分的外消旋化合物以物质的量比1∶1

手性拆分方法——包结拆分法原理及应用

手性拆分方法——包结拆分法原理及应用 摘要:简要介绍了包结拆分方法的原理及其应用 关键词:包结拆分、包结复合物、氢键 A novel method of resolution—Chiral Inclusion Complexation Abstract:The resolution of racemic compound by chiral inclusion complexation .The chiral recognition principles in inclusion complex is also discussed. Key words:resolution, chiral recognition, hydrogen bond. 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子[1]。基本物质如氨基酸、糖类等都是手性分子。手性分子的重要性不仅表现在与生物相关的领域,在功能材料领域,如液晶、非线性光学材料、导电高分子方面也显示出诱人前景。 医药和生物技术的发展,人们对光学活性化学物质的需求不断增加。目前在市场上手性药物占有很大的比例,许多具有生物活性的化合物,其对映异构体一般具有不同程度的话性,甚至具有不同的生理作用。手性对

映体药物在吸收、分布、代谢与排泄过程中,通过与体大分子的不同立体结合,产生不同的药理作用。它们的药理作用是通过与体大分子之间的严格手性匹配与分子识别来实现的,在人体的药理活性、代谢过程及毒性上均存在着显著差异[2]。 随着对手性分子认识的不断深入,人们对单一手性物质的需求量越来越大,对其纯度的要求也越来越高。单一手性物质的获得方法大致有3种[3]:○1手性源合成法:最常用的方法,但由于天然手性物质的种类有限,要合成多种多样的目的产物会遇到很大困难,而且合成路线步多,也使得产物成本十分高昂。○2不对称合成法:是在催化剂或酶的作用下合成得到过量的单一对映体化合物的方法。不对称化学合成高旋光收率的反应仍然有限,所得产物的旋光纯度对于多数应用仍不够高;生物的不对称合成具有很高的选择性,反应条件温和,但对底物要求高、反应慢、产物的分离困难,因而在应用上也受到一定的限制。○3外消旋体拆分法:是在拆分剂的作用下,将外消旋体拆分成对映体。成本较低,应用广泛。通过不对称合成方法获取单一对映体药物虽然更为合理和诱人,但外消旋体药物或中间体拆分仍是获取单一对映体药物的主要方法。据报道,大约有65%的非天然手性药物是由拆分得到的。 外消旋体的拆分用的最多的是化学拆分法,经典的化学拆分是化学拆分法,利用光学活性的有机酸或碱与对映异构体作用形成非对映异构体衍生物(或盐),通过分步结晶而分离,然后再用无机酸或碱分解,从而获得有光学活性的产物。由于必须使被拆分化合物变为酸或碱,这种方法在被拆分化合物类型上受到了很大的限制。

手性分子的拆分技术

手性分子的拆分技术 郝婷玉1531025057 15级材料工程 摘要:对外消旋体实施拆分是获得手性物质的重要途径。本文综述了外消旋体的拆分方法,主要有直接结晶拆分法、化学拆分法、动力学拆分法、色谱拆分法( 含毛细管电泳法) 和手性膜拆分法等五大类。其中, 包括目前作为手性拆分主要方法的色谱技术在内的前 4 类方法, 由于批处理能力小、工业放大成本高,不适合大规模生产; 相反,膜分离技术具有能耗低、易于连续操作等优点,被普遍认为是进行大规模手性拆分非常有潜力的方法之一,具有良好的应用前景。关键词:手性分子;拆分;对映体;外消旋化合物 手性是自然界存在的一种普遍现象, 在药物化学领域尤为突出,已知药物中有30 %~40 %是手性的。手性是生物体系的一个基本特征, 很多内源性大分子物质,如酶、蛋白、核酸、糖, 以及各种载体、受体等都具有手性特征。此外,手性还在医药、食品添加剂、杀虫剂、昆虫性信息素、香料和材料等领域有着深刻影响。特别是在医药行业,手性药物对映体通过与体内大分子的立体选择性结合, 产生不同的吸收、分布、代谢和排泄过程, 可能具有不同的药理毒理作用[1]。随着医药行业对手性单体需求量的增加和对药理的探究,如何获得高纯度手性单体已成为一个令人困扰的问题。因此,手性药物的分离分析就显得尤为重要。随着对手性分子认识的不断深入,人们对单一手性物质的需求量越来越大,对其纯度的要求也越来越高。 单一手性物质的获得方法大致有以下三种:(1)手性源合成法:是以手性物质为原料合成其它手性化合物,这是最常用的方法。但由于天然手性物质的种类有限,要合成多种多样的目的产物会遇到很大困难,而且合成路线步骤繁多,也使得产物成本十分高昂。(2)不对称合成法:是在催化剂或酶的作用下合成得到过量的单一对映体化合物的方法。化学不对称合成高旋光收率的反应仍然有限,即使如此,所得产物的旋光纯度对于多数应用仍不够高;生物的不对称合成具有很高的选择性,反应介质通常为稀缓冲水溶液,反应条件温和,但对底物要求高、反应慢、产物的分离困难,因而在应用上也受到一定的限制。(3)外消旋体拆分法:是在拆分剂的作用下,将外消旋体拆分成对映体。因为化学法合成外消旋体

手性分子的拆分技术

精心整理 手性分子的拆分技术 郝婷玉级材料工程 摘要:对外消旋体实施拆分是获得手性物质的重要途径。本文综述了外消旋体的拆分方法,主要有直接结晶拆分法、化学拆分法、动力学拆分法、色谱拆分法(含毛细管电泳法)和手性膜拆分法等五大类。其中,包括目前作为手性拆分主要方法的色谱技术在内的前4类方法,由于批处理能力小、工业放大成本高,不适合大规模生产;相反,膜分离技术具有能耗低、易于连续操作等优点,被普遍认为是手性的。,,有限,因而在应用上也受到一定的限制。(3)外消旋体拆分法:是在拆分剂的作用下,将外消旋体拆分成对映体。因为化学法合成外消旋体比较简单,这种方法成本相对较低,因而得到广泛应用。据统计,大约有65%的非天然手性药物是由外消旋体或中间产物拆分得到的。本文依据国内外相关文献报道,总结了外消旋体的拆分方法。 迄今,手性拆分技术主要有直接结晶拆分法、化学拆分法、动力学拆分法、色谱拆分法(含毛细管电泳法)和手性膜拆分法等五大类[3]。

1.直接结晶拆分法 对于一个外消旋混合物,其两种对映体常自发地以宏观晶体分别析出,如果这些晶体可以用肉眼区别,那么就可在放大镜的帮助下,用镊子之类的工具将他们拣出分开,从而达到拆分的目的。这就是所谓的机械拆分法。机械拆分法的缺点是过于繁琐,不能应用于外消旋化合物和外消旋固体溶液。Wynbery等[4]用(-)-α-蒎烯作溶剂,通过直接结晶法拆分了类似七环杂螺烯的外消旋体。但这种方法需要寻找特殊的手性溶剂,且适于拆分的外消旋混合物的范围相当狭窄,故实际工业生 本。 2. 2.1 体, 拆分剂和溶剂的选择较为盲目;(2)拆分的产率和产品的旋光纯度不高;(3)适用于手性拆分的化合物的类型不多。近年来,随着主-客体化学的深入研究而开发出来的包结拆分和组合拆分等新型手性拆分技术,在一定程度上解决了经典成盐拆分方法的不足。 2.2包结拆分 由日本化学家Toda教授发明的包结拆分[6]与经典成盐拆分相比,所拆分的化合物不再局限于有机酸或者有机碱。此法主要利用主-客体分子之间存在很强的分子识别作用,而使得手性化合物

手性拆分方法——包结拆分法原理及应用

手性拆分方法——包结拆分法原理及 应用 摘要:简要介绍了包结拆分方法的原理及其应用 关键词:包结拆分、包结复合物、氢键 A novel method of resolution—Chiral Inclusion Complexation Abstract:The resolution of racemic compound by chiral inclusion complexation .The chiral recognition principles in inclusion complex is also discussed. Key words:resolution, chiral recognition, hydrogen bond. 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子[1]。基本物质如氨基酸、糖类等都是手性分子。手性分子的重要性不仅表现在与生物相关的领域,在功能材料领域,如液晶、非线性光学材料、导电高分子方面也显示出诱人前景。 医药和生物技术的发展,人们对光学活性化学物质的需求不断增加。目前在市场上手性药物占有很大的比例,许多具有生物活性的化合物,其对映异构体一般具有不同程度的话性,甚至具有不同的生理作用。手性对映体药物在吸收、分布、代谢与排泄过程中,通过与体内大分子的不同立体结合,产生不同的药理作用。它们的药理作用是通过与体内大分子之间的严格手性匹配与分子识别来实现的,在人体内的药理活性、代谢过程及毒性上均存在着显著差异[2]。 随着对手性分子认识的不断深入,人们对单一手性物质的需求量越来

越大,对其纯度的要求也越来越高。单一手性物质的获得方法大致有3种[3]:○1手性源合成法:最常用的方法,但由于天然手性物质的种类有限,要合成多种多样的目的产物会遇到很大困难,而且合成路线步多,也使得产物成本十分高昂。○2不对称合成法:是在催化剂或酶的作用下合成得到过量的单一对映体化合物的方法。不对称化学合成高旋光收率的反应仍然有限,所得产物的旋光纯度对于多数应用仍不够高;生物的不对称合成具有很高的选择性,反应条件温和,但对底物要求高、反应慢、产物的分离困难,因而在应用上也受到一定的限制。○3外消旋体拆分法:是在拆分剂的作用下,将外消旋体拆分成对映体。成本较低,应用广泛。通过不对称合成方法获取单一对映体药物虽然更为合理和诱人,但外消旋体药物或中间体拆分仍是获取单一对映体药物的主要方法。据报道,大约有65%的非天然手性药物是由拆分得到的。 外消旋体的拆分用的最多的是化学拆分法,经典的化学拆分是化学拆分法,利用光学活性的有机酸或碱与对映异构体作用形成非对映异构体衍生物(或盐),通过分步结晶而分离,然后再用无机酸或碱分解,从而获得有光学活性的产物。由于必须使被拆分化合物变为酸或碱,这种方法在被拆分化合物类型上受到了很大的限制。 1 包结拆分法 外消旋体拆分又可分为化学拆分、酶法拆分、色谱拆分、逆流萃取和膜分离拆分。经典的化学拆分通常是应用光学纯的拆分试剂与消旋体形成两个非对映体盐,通过结晶法将两个盐分开,再将其转化成两个相应的对映体。例如,应用D-酒石酸拆分肾上腺素、苯肾上腺素、对羟基苯甘氨酸

手性化合物的拆分方法研究检索报告

检索报告 一.数据库名称:中国知网 检索方法:表单检索 检索式: 内容检索条件: 主题;手性化合物 and 拆分方法研究 (精确匹配); 检索控制条件: 发表时间:2004-2014; 检索范围:期刊,特色期刊,中国博士学位论文全文数据库,中国优秀硕士学位论文全文数据库,中国重要会议论文全文数据库,国际会议论文全文数据库,报纸,学术辑刊,商业评论数据库 检索年限:不限; 支持基金:模糊; 文献来源:模糊; 作者:模糊; 作者单位:模糊; 命中记录数:23; 该数据库中相关重要文献的简单摘录: (1)手性化合物对映体拆分方法概述 作者:李水清;黄延胜 【机构】长江大学化学与环境工程学院;长江大学化学与环境工程学院湖北荆州434025;湖北荆434025; 【摘要】回顾了对映体的研究历史,综述了手性化合物对映体的拆分方法,展望了该领域未来的发展前景。更多还原 【关键词】手性化合物;对映体;拆分; (2)手性化合物包结拆分研究进展 【作者】张明;聂爱华; 【Author】 ZHANG Ming,NIE Ai-hua (Institute of Pharmacology and Toxicology,Academy of Military Science,Beijing 100850,China) 【机构】军事医学科学院毒物药物研究所; 【摘要】包结拆分作为一种重要的化学拆分方法,经常应用在手性化合物的制备中。作者试对其基本理论及其研究进展作一综述。更多还原 【关键词】手性化合物;包结拆分;化学拆分; (3)手性物质及其拆分方法 【作者】刘凤艳;庞小琳;郑轶群;甘秀石; 【Author】 LIU Feng-yan1,PANG Xiao-lin1,ZHENG Yi-qun1,GAN Xiu-shi2(1.Anshan Fine Chemical Technology and Research Center,Liaoning Anshan,114044,China;2.The General Chemical Company of Ansteel,114044,China)

相关主题