搜档网
当前位置:搜档网 › 高考中的常微分方程的解题方法

高考中的常微分方程的解题方法

高考中的常微分方程的解题方法
高考中的常微分方程的解题方法

“常微分方程”在高中数学的应用

高中已经学习了求导,并且进一步学习了定积分与不定几分,以及微积分基本定理。在高考题中也常常出现一些简单的常微分方程,这里谈及几种高考常见的微分方程,以及相应的解法。

一、理论基础

高考中常见的是简单的线性常微分方程,基本形式是()()x q y x p y =+',这类为题有其公

式可以求解,即()()()?

??=-dx e x q e y dx

x p dx x p 。高中阶段,可以用以下方法求解。

例1:函数()x f 在其定义域内满足()()x

x

x f x f x ln 2=+',其中()x f '为函数()x f 的导函数,()e

e f 21

=

,则函数()x f A 有极大值,无极小值 B 有极小值,无极大值 C 既有极大值又有极小值 D 既无极大值又无极小值

解:()()x x x f x f x ln 2=

+'化为()()2ln 2x x x f x x f =+'。考虑()x

x 2ln 2=',2ln 2x e

x

=, 将()()2ln 2x

x x f x x f =+'两边同时乘以2x ,可得()()x x xf x f x ln 22

=+'。

考虑()()()()'=+'x f x x xf x f x 222,所以有()()x x f x ln 2=',即()c x x x x f x +-=ln 2

。 即()2ln x c x x x x f +-=

。考虑()e e f 21=,解得2e c =,因此()2

22ln 2x e

x x x x f +-=。 所以()3

2ln x e

x x x x f -+-='。令()e x x x x g -+-=2ln ,则()x x g ln 1-='。

当()e x ,0∈时,()0>'x g ,当()+∞∈,e x 时,()0<'x g 。故当e x =时,()x g 取最大值0。 因此()0≤x g ,因此()()03

≤=

'x

x g x f 对任意0>x 恒成立,因此()x f 无极值,选D 。 理论上利用线性微分方程得解法是可以解决高中的所有问题,但是由于高中生只能作简积分,而对于一些函数的几分会无能为力,因此这种方法未必适合所有的高中生。 二、乘法法则的应用

有些高中阶段的微分方程可以参照乘法法则来求解。

例2:(2013辽宁,理12)设函数()x f 满足()()x e x xf x f x x =+'22

,()8

22

e f =,则0>x 时,

()x f ( ).

A 有极大值,无极小值

B 有极小值,无极大值

C 既有极大值又有极小值

D 既无极大值又无极小值

解:令()()x f x x F 2

=,则()()()x e x xf x f x x F x =+'='22

,()()2

2422

e f F ==,

由()()x e x xf x f x x =+'22

得()()3

2x x F e x f x -='。 令()()x F e x x

2-=φ,()()

3x x x f φ=

',()()()x

x e x e e x F e x x x x

x

222-=-='-='φ。

所以()x φ在()2,0上单调递减,在()+∞,2上单调递增,

所以()()()02222min =-==F e x φφ,即()0≥x φ,又因为0>x ,所以()()

03

≥='x

x x f φ,

所以()x f 单调递增在()+∞,0上无极值,选D 。

例3:函数()x f 导函数为()x f ',且满足()()x x xf x f x sin cos sin =+',求()x f 。 解:考虑到()()()()()()()x x xf x f x x f x x xf x f x sin sin sin sin cos sin ='

='+'=+',所以()c x x xf +-=cos sin 。

考虑0=x 有c +-=10,得1=c ,所以()2

tan sin cos 1x

x x x f =-=。

三、除法法则的应用

有的时候可以转化为除法法则,不过要先确定好分母的函数。

例4:(2015高考新课标2)设函数'

()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当

0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )

A .(,1)(0,1)-∞-

B .(1,0)(1,)-+∞

C .(,1)(1,0)-∞--

D .(0,1)(1,)+∞

解:由题意得当0x >时,()()02

<-'x x f x f x ,即()0<'

??

?

??x x f ,设()()x x f x g =, 所以()x g 在()+∞,0上单调递减。又因为()x f 为奇函数,并且(1)0f -=,所以()01=f 。 即()()01

11==

f g 。又因为()x g 在()+∞,0上单调递减,

所以()1,0∈x 时,()0x f ;当()+∞∈,1x 时,()0>x g ,()0x f 。 综上,()0f x >的解集为(,1)(0,1)-∞- ,选A 。

四、指数函数的应用

由于x

e 的导数是它本身,并且恒为正数,所以解决这类问题经常用到。

例5:已知定义在R 上的可导函数()x f 的导函数为()x f ',若对于任意实数x 有,

()()0>+'x f x f ,且()10=f ,则不等式()12>x f e 的解集为()

A ()0,∞-

B ()+∞,0

C ()e ,∞-

D ()+∞,e

解:两边同时乘以x e ,由于0>x

e ,所以()()0>+'x

f e x f e x x ,即()(

)0>'

x f e x

设函数()()x f e x F x =,所以()0>'x F ,因此()x F 单调递增。考虑()()1000==f e F 。所以()()1>=x f e x F x 的解集为()+∞,0,选B 。

例6:若函数()()x xe x f x f 2=-',()10=f ,其中()x f '为()x f 的导函数,则当0>x 时,

()()

x f x f '的取值范围是() A (]2,∞-

B (]2,0

C (]2,1

D (]3,2

解:()()x xe x f x f 2=-'两边乘以x

e -,有()()x x

f e x f e x x 2=-'--。

考虑()()()()()()()'='+'=-'-----x f e x f e x f e x f e x f e x x x x x

,所以()()

x x f e x 2='

-。

因此()c x x f e

x

+=-2,考虑()10=f ,解得1=c 。因此()()

12+=x e x f x 。

()(

)

122

++='x x e x f x

,设

()()2122

112111222=?+≤++=+++='x

x x x x x x x f x f ,当且仅当1=x 时等号成立。考虑

()()11212>++='x x x f x f ,所以()()

21≤'

常微分方程的初等解法与求解技巧

师大学本科毕业论文(设计) 常微分方程的初等解法与求解技巧 姓名娟 院系数学与计算机科学学院 专业信息与计算科学 班级12510201 学号1251020126 指导教师王晓锋 答辩日期 成绩

常微分方程的初等解法与求解技巧 容摘要 常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧. 【关键词】变量分离一阶隐式微分方程积分因子求解技巧

Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve. 【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

常微分方程简明教程-王玉文等编-习题解答-(1)

1.4习题答案 1. (1) 12150, (2) 2.52. 2(1) 0,200P P = =, (2) 0200P <<, (3) 200P >. 3.(1) 0,50,200P P P = = =, (2) 50200P <<, (3) 050,200P P << >. 4.解: 因为当 0dy dt =时, ()y t 将保持不变; 当0dy dt >时, ()y t 将增加; 当0dy dt <时, ()y t 将减少. 由3220dy y y y dt =--知, (1) 当3 2 200y y y --=, 即0,4,5y y y = =-=时, ()y t 将保持不变. (2) 当3 2 200y y y -->, 即40y -<< 或5y > 时, ()y t 将增加. (3) 当3 2 200y y y --<, 即4y <- 或05y << 时, ()y t 将减少. 5. 7071. 6.解: (1) 设 ()N t 为在时刻t 的放射性同位素质量. 则模型为dN kN dt =-, 0k >为比例系数, 方程的解为 ()kt N t ce -=, 由0t = 时, (0)50N =, 得(0)50N c ==,于是 ()50kt N t e -=, 又因为 2t = 时, (2)50(110%)45N =?-=, 得 24550k e -=, 110 ln 0.05329 k =≈, 因此 0.053()50t N t e -=. (2) 当 4t = 时, 0.0534 (4)5040.5N e -?== (3) 质量减半时 ()25N t =, 得1 0.053ln 2 t -=, 13t ≈. 7. (1) ln 20.000125730≈, (2) ln 2 0.866438 ≈, (3) 一样. 8.(1) 1065, (2) 17669, (3) 32600, (4) 168 9. 解: (1) (1)10dS S k S dt N =--. (2) 1 (1)3dS S k S S dt N =--. (3) (1)dS S k S dt N =--其中 l 是捕获量与总量平方根的比例系数. 10.(1) 趋向于2000, (2) 鱼的数量递减趋于0. 11.2()23y t t =+. 12.()ln ,0g t t t t =- >.

常微分方程解题方法总结.docx

常微分方程解题方法总结 来源:文都教育 复习过半,课本上的知识点相信大部分考生已经学习过一遍 . 接下来,如何将零散的知识点有机地结合起来,而不容易遗忘是大多数考生面临的问题 . 为了加强记忆,使知识自成体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴,他强调读 书要 “由薄到厚、由厚到薄 ”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 dy P ( x)dx P ( x) dx Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程解法:令 dy P( x) y Q( x) y n(n≠0,1) 代入得到dx —u y1 n,有 du(1 n) y n dy , du(1 n) P(x)u(1 n)Q(x) dx 求解特征方程: 2pq 0三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程y p x y q x y f ( x) (1)两个不等实根: 1 ,2 通解: y c1 e 1x c2 e 2x (2)两个相等实根:12 通解: y c1c2 x e x (3)一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x] 当i不是特征值时,令 欢迎下载2

(整理)常微分方程(含解答)

第八章 常微分方程 【教学要求】 一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。 二、熟练掌握一阶可分离变量微分方程的解法。 三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+' 的解法——常数变易法和公式法。 四、理解线性微分方程解的性质和解的结构。 五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。 会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。 六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'' )(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。 所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数 或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。 关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。 【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。 【典型例题】 。的阶数是微分方程例)(e )(12x y y y =-'+'' 2.1.B A 4. 3.D C 解:B 。的特解形式是微分方程例)( e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++ x x c b ax D cx b ax C e ).(e ).(++++ 解:C 是一阶线性微分方程。下列方程中例)( ,3 x x y y x B y A y x cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0 . 解:B ???=='++1)1(0)1(4y y x y y 求解初值问题例 ??-=+x x y y y d )1(d 解:由变量可分离法得 c x y y ln ln 1ln +-=+∴ 代入上式得通解为由21ln ln 1)1(=?=c y x y y 211=+ 的特解。满足求解微分方程例1)0(e 252==-'y x y y x 解:由公式法得 ]d e e 2[e d 12d 1c x x y x x x +???=---?

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate. Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method 1. 引言 一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解. 2. 一般变量分离 2.1 变量可分离方程 形如 ()()dy f x g y dx = (1.1) 或 1122()()()()M x N y dx M x N y dy = (1.2) 的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和 微分形式变量可分离方程[1] . (1) 显式变量可分离方程的解法 在方程(1.1)中, 若()0g y ≠,(1.1)变形为 ()() dy f x dx g y =

编译原理简明教程答案.doc

编译原理简明教程答案 【篇一:8000 份课程课后习题答案与大家分享~~】 > 还有很多,可以去课后答案网 (/bbs )查找。 ################## 【公共基础课-答案】 #################### 新视野大学英语读写教程答案(全) 【khdaw 】 /bbs/viewthread.php?tid=108fromuid=1429267 概率论与数理统 计教程(茆诗松著) 高等教育出版社课后答案 /bbs/viewthread.php?tid=234fromuid=1429267 高等数学(第五 版)含上下册高等教育出版社课后答案 d.php?tid=29fromuid=1429267 新视野英语听力原文及答案课后答 案 【khdaw 】 /bbs/viewthread.php?tid=586fromuid=1429267 线性代数(同济 大学应用数学系著) 高等教育出版社课后答案 /bbs/viewthread.php?tid=31fromuid=1429267 21 世纪大学英语 第3 册(1-4)答案 【khdaw 】 /bbs/viewthread.php?tid=285fromuid=1429267 概率与数理统计 第二,三版(浙江大学盛骤谢式千潘承毅著) 高等教育出版社课后答案 d.php?tid=32fromuid=1429267 复变函数全解及导学[西安交大第四版] 【khdaw 】 /bbs/viewthread.php?tid=142fromuid=1429267 大学英语精读第 三版2 册课后习题答案 /bbs/viewthread.php?tid=411fromuid=1429267 线性代数(第二版) 习题答案 /bbs/viewthread.php?tid=97fromuid=1429267 21 世纪(第三册) 课后答案及课文翻译(5-8)【khdaw 】 /bbs/viewthread.php?tid=365fromuid=1429267 大学英语精读第 2 册课文翻译(上外)

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

常微分方程简明教程王玉文等编习题解答

第三章 二阶线性常系数微分方程 1.考虑两个参数的线性方程组 .Y a b b a dt dY ??? ? ??= 若)0,0(分别是鞍点、汇、源,试在平面上确定出相应的区域。 解:方程的特征方程为0)(22 22=-+-b a a λλ. 解得特征根为b a b a ±=±=2 2,1λ。 需分类讨论: (I )当0>b 时,知b a b a +=<-=21λλ。 (i )当0<+<-b a b a ,即b a -<时,)0,0(是汇。 (ii )当b a b a +<<-0,即b a b <<-时,)0,0(是鞍点。 (ii )当b a b a +<-<0,即b a >时,)0,0(是源。 (II )当0-=21λλ。 (i )当0<-<+b a b a ,即b a <时,)0,0(是汇。 (ii )当b a b a -<<+0,即b a b -<<时,)0,0(是鞍点。 (ii )当b a b a -<+<0,即b a ->时,)0,0(是源。 图3-1

2.求解下列给定二阶微分方程的通解: (1)076 22=--y dt dy dt y d 解:方程的特征方程为0762 =--λλ. 解得特征根为1,721-==λλ. 因此,t t e t y e t y -==)(,)(271 为齐次方程的两个解。 设21,k k 为常数,使得 0271≡+-t t e k e k 。 将上式两端求导得 07271≡-t t e k e k 。 令0=t 得???=-=+. 07,02121k k k k 由此得021==k k 。因此,t e t y 71)(=与t e t y -=)(2线性无 关。则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为 t t e c e c t y -+=271)(。 (2)096 22=++y dt dy dt y d 解:特征方程:0962 =++λλ. 解得特征根为321-==λλ. 因此,t t te t y e t y 3231)(,)(--== 为齐次方程的两个解。 设21,k k 为常数,使得 03231≡+--t t te k e k 。 将上式两端求导得 03)3(32312≡----t t te k e k k 。 令0=t ,得021==k k 。因此,t e t y 31)(-=与t te t y 32)(-=线性无关。则由二阶齐次 常系数微分方程解的线性原理知,原方程的通解为 t t te c e c t y 3231)(--+=。 (3)0258 22=++y dt dy dt y d 解:特征方程:02582 =++λλ. 解得特征根为.34,3421i i --=+-=λλ. 因此,t e t y t e t y t t 3sin )(,3cos )(4241--== 为齐次方程的两个解。 设21,k k 为常数,使得 03sin 3cos 4241≡+--t e k t e k t t 。

常微分方程的初等解法与求解技巧

山西师范大学本科毕业论文(设计) 常微分方程的初等解法与求解技巧 姓名张娟 院系数学与计算机科学学院 专业信息与计算科学 班级12510201 学号1251020126 指导教师王晓锋 答辩日期 成绩

常微分方程的初等解法与求解技巧 内容摘要 常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧. 【关键词】变量分离一阶隐式微分方程积分因子求解技巧

Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve. 【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques

一阶常微分方程解法归纳

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy =

解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:01、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 02、 022 1 1≠b a b a ,???=++=++00 222111 c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( xy v xy f dx dy x ==),(2 22),(x y w x y xf dx dy == θθsin ,cos ,0))(,())(,(r y r x ydx xdy y x N ydy xdx y x M ===-++ 以上都可以化为变量可分离方程。 例2.1、 2 5 --+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 7 1+= - ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy

如何求解常微分方程

如何求解常微分方程? 常数变易法、积分因子法,函数变换法。 大致与微积分同时产生。事实上,求y′=f(x)的原函数问题便是最简单的微分方程。I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

徐芝纶编《弹性力学简明教程》第四版,全部章节课后答案详解

弹性力学简明教程(第四版)课后习题解答 徐芝纶 第一章绪论 【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体 【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。 【解答】均匀的各项异形体如:竹材,木材。 非均匀的各向同性体如:混凝土。 【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体一般的岩质地基和土质地基能否作为理想弹性体 【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。 【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。 【1-3】五个基本假定在建立弹性力学基本方程时有什么作用 【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。 均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整

个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。 各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。 小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来代替变形以后的尺寸。在考察物体的位移与形变的关系时,它们的二次幂或乘积相对于其本身都可以略去不计,使得弹性力学中的微分方程都简化为线性的微分方程。 【1-4】应力和面力的符号规定有什么区别试画出正坐标面和负坐标面上的正的应力和正的面力的方向。 【解答】应力的符号规定是:当作用面的外法线方向指向坐标轴方向时(即正面时),这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向为负。当作用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的负方向为正,沿坐标轴的正方向为负。 面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。 由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反。 正的应力正的面力 【1-5】试比较弹性力学和材料力学中关于切应力的符号规定。

用matlab求解常微分方程

实验六 用matlab 求解常微分方程 1.微分方程的概念 未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。常微分方程的一般形式为 0),,",',,()(=n y y y y t F 如果未知函数是多元函数,成为偏微分方程。联系一些未知函数的一组微分方程组称为微分方程组。微分方程中出现的未知函数的导数的最高阶解数称为微分方程的阶。若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,一般表示为 )()(')()(1)1(1)(t b y t a y t a y t a y n n n n =++++-- 若上式中的系数n i t a i ,,2,1),( =均与t 无关,称之为常系数。 2.常微分方程的解析解 有些微分方程可直接通过积分求解.例如,一解常系数常微分方程1+=y dt dy 可化为 dt y dy =+1,两边积分可得通解为 1-=t ce y .其中c 为任意常数.有些常微分方程可用一些技巧,如分离变量法,积分因子法,常数变异法,降阶法等可化为可积分的方程而求得解析解. 线性常微分方程的解满足叠加原理,从而他们的求解可归结为求一个特解和相应齐次微分方程的通解.一阶变系数线性微分方程总可用这一思路求得显式解。高阶线性常系数微分方程可用特征根法求得相应齐次微分方程的基本解,再用常数变异法求特解。 一阶常微分方程与高阶微分方程可以互化,已给一个n 阶方程 ),,",',()1()(-=n n y y y t f y 设)1(21,,',-===n n y y y y y y ,可将上式化为一阶方程组 ?????????====-),,,,(''''2113221n n n n y y y t f y y y y y y y 反过来,在许多情况下,一阶微分方程组也可化为高阶方程。所以一阶微分方程组与高阶常微分方程的理论与方法在许多方面是相通的,一阶常系数线性微分方程组也可用特征根法求解。 3.微分方程的数值解法 除常系数线性微分方程可用特征根法求解,少数特殊方程可用初等积分法求解外,大部分微分方程无限世界,应用中主要依靠数值解法。考虑一阶常微分方程初值问题 ???=<<=000)()),(,()('y t y t t t t y t f t y f

相关主题