搜档网
当前位置:搜档网 › 利用Kruskal算法求图的最小生成树

利用Kruskal算法求图的最小生成树

利用Kruskal算法求图的最小生成树
利用Kruskal算法求图的最小生成树

利用Kruskal算法求图的最小生成树

程序设计2007-10-09 22:23 阅读160 评论 1 字号:大大中中小小/*利用Kruskal算法求图的最小生成树(2007.8.7)*/

#include

#include

#define MaxVertexNum 12

#define MaxEdgeNum 20

#define MaxValue 1000

typedef int VertexType;

typedef VertexType vexlist[MaxVertexNum];

typedef int adjmatrix[MaxVertexNum][MaxVertexNum];

int visited[MaxVertexNum]={0};

struct edgeElem

{

int fromvex; /*边的起点域*/

int endvex; /*边的终点域*/

int weight; /*边的权值域*/

};

typedef struct edgeElem edgeset[MaxEdgeNum];

void Kruskal(edgeset GE ,edgeset C,int n)

{

int i,j,k,d,m1,m2;

adjmatrix s;

for(i=0;i

{

for(j=0;j

if(i==j) s[i][j]=1;

else s[i][j]=0;

}

k=1;

d=0;

while(k

{

for(i=0;i

{

if(s[i][GE[d].fromvex]==1) m1=i;

if(s[i][GE[d].endvex]==1) m2=i;

}

if(m1!=m2)

{

C[k-1]=GE[d];

k++;

for(j=0;j

{

s[m1][j]=s[m1][j]||s[m2][j];

s[m2][j]=0;

}

}

d++;

}

}

void Create(vexlist GV,edgeset GE,int n,int e) /*建立顶点数组GV和边集数组GE*/ {

int i,j,k,w;

printf("输入%d个顶点数据\n",n);

for(i=0;i

printf("输入%d条带权边\n",e);

for(k=0;k

{

scanf("%d %d %d",&i,&j,&w);

GE[k].fromvex=i;

GE[k].endvex=j;

GE[k].weight=w;

}

}

void outputEdgeset(edgeset GE,int e) /*输出一个图的邻接矩阵*/

{

int i;

for(i=0;i

printf("%d %d %d, ",GE[i].fromvex, GE[i].endvex,GE[i].weight);

printf("\n");

}

main()

{

int n,e;

vexlist gv;

adjmatrix ga;

edgeset ge,c;

printf("输入图的顶点数和边数:");

scanf("%d %d",&n,&e);

Create(gv,ge,n,e);

printf("利用Kruskal算法从顶点0出发求图的最小生成树:\n"); Kruskal(ge,c,n);

outputEdgeset(c,n-1);

getch();

}

/*

输入图的顶点数和边数:6 10

输入6个顶点数据

0 1 2 3 4 5

输入10条无向带权边

0 4 4

1 2 5

1 3 8

2 3 10

1 5 12

3 5 15

0 1 18

3 4 20

0 5 23

4 5 25

利用Kruskal算法从顶点0出发求图的最小生成树:

0 4 4, 1 2 5, 1 3 8, 1 5 12, 0 1 18,

*/

最小生成树问题的算法实现及复杂度分析—天津大学计算机科学与技术学院(算法设计与分析)

算法设计与分析课程设计报告 学院计算机科学与技术 专业计算机科学与技术 年级2011 姓名XXX 学号 2013年5 月19 日

题目:最小生成树问题的算法实现及复杂度分析 摘要:该程序操作简单,具有一定的应用性。数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。而最小生成树算法是算法设计与分析中的重要算法,最小生成树也是最短路径算法。最短路径的问题在现实生活中应用非常广泛,如邮递员送信、公路造价等问题。本设计以Visual Studio 2010作为开发平台,C/C++语言作为编程语言,以邻接矩阵作为存储结构,编程实现了最小生成树算法。构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM 经典算法的算法思想,最后用这种经典算法实现了最小生成树的生成。 引言:假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。n个城市之间最多可以设置n(n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。现在要选择这样一棵生成树,也就是使总的代价最小。这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。最小生成树是指在所有生成树中,边上权值之和最小的生成树,另外最小生成树也可能是多个,他们之间的权值之和相等。一棵生成树的代价就是树上各边的代价之和。而实现这个运算的经典算法就是普利姆算法。

贪心算法实验(最小生成树)

算法分析与设计实验报告第一次附加实验

附录: 完整代码(贪心法) //贪心算法最小生成树prim算法 #include #include #include #include #include using namespace std; #define inf 9999; //定义无限大的值const int N=6; template //模板定义 void Prim(int n,Type c[][N+1]); int main() { int c[N+1][N+1]; cout<<"连通带权图的矩阵为:"<

cin>>c[i][j]; } } cout<<"Prim算法最小生成树选边次序如下:"< //参数为结点个数n,和无向带权图中各结点之间的距离c[][N+1] void Prim(int n,Type c[][N+1]) { Type lowcost[N+1]; //记录c[j][closest]的最小权值 int closest[N+1]; //V-S中点j在s中的最临接顶点 bool s[N+1]; //标记各结点是否已经放入S集合| s[1]=true; //初始化s[i],lowcost[i],closest[i] for(int i=2;i<=n;i++) { lowcost[i]=c[1][i]; closest[i]=1; s[i]=false; } for(int i=1;i

最小生成树算法分析

最小生成树算法分析 一、生成树的概念 若图是连通的无向图或强连通的有向图,则从其中任一个顶点出发调用一次bfs或dfs后便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs亦可系统地访问所有顶点。在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图称为原图的生成树。 对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后一般不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。要访问其它顶点需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs 或dfs,这样得到的是生成森林。 由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。 可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。 二、求图的最小生成树算法 严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成回路,则称子图G’是图G的一棵生成树。 对于加权连通图,生成树的权即为生成树中所有边上的权值总和,权值最小的生成树称为图的最小生成树。 求图的最小生成树具有很高的实际应用价值,比如下面的这个例题。

例1、城市公交网 [问题描述] 有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权为在这两个城市之间修建高速公路的造价,研究后发现,这个地图有一个特点,即任一对城市都是连通的。现在的问题是,要修建若干高速公路把所有城市联系起来,问如何设计可使得工程的总造价最少。 [输入] n(城市数,1<=n<=100) e(边数) 以下e行,每行3个数i,j,w ij,表示在城市i,j之间修建高速公路的造价。 [输出] n-1行,每行为两个城市的序号,表明这两个城市间建一条高速公路。 [举例] 下面的图(A)表示一个5个城市的地图,图(B)、(C)是对图(A)分别进行深度优先遍历和广度优先遍历得到的一棵生成树,其权和分别为20和33,前者比后者好一些,但并不是最小生成树,最小生成树的权和为19。 [问题分析] 出发点:具有n个顶点的带权连通图,其对应的生成树有n-1条边。那么选哪n-1条边呢?设图G的度为n,G=(V,E),我们介绍两种基于贪心的算法,Prim算法和Kruskal算法。 1、用Prim算法求最小生成树的思想如下: ①设置一个顶点的集合S和一个边的集合TE,S和TE的初始状态均为空集; ②选定图中的一个顶点K,从K开始生成最小生成树,将K加入到集合S; ③重复下列操作,直到选取了n-1条边: 选取一条权值最小的边(X,Y),其中X∈S,not (Y∈S); 将顶点Y加入集合S,边(X,Y)加入集合TE; ④得到最小生成树T =(S,TE)

分别利用prim算法和kruskal算法实现求图的最小生成树

/*分别利用prim算法和kruskal算法实现求图的最小生成树*/ #include #include #define MaxVertexNum 12 #define MaxEdgeNum 20 #define MaxValue 1000 typedef int Vertextype; typedef int adjmatrix[MaxVertexNum][MaxVertexNum]; typedef Vertextype vexlist[MaxVertexNum]; int visited[MaxVertexNum]={0}; struct edgeElem {int fromvex; int endvex; int weight; }; typedef struct edgeElem edgeset[MaxVertexNum]; void Creat_adjmatrix(vexlist GV,adjmatrix GA,int n,int e) {int i,j,k,w; printf("输入%d个顶点数据",n); for(i=0;i

if(i==j) GA[i][j]=0; else GA[i][j]=MaxValue; printf("输入%d条无向带权边",e); for(k=0;k

kruskal算法求最小生成树

#include #include #include #include using namespace std; #define maxn 110 //最多点个数 int n, m; //点个数,边数 int parent[maxn]; //父亲节点,当值为-1时表示根节点 int ans; //存放最小生成树权值 struct eage //边的结构体,u、v为两端点,w为边权值

{ int u, v, w; }EG[5010]; bool cmp(eage a, eage b) //排序调用 { return a.w < b.w; } int Find(int x) //寻找根节点,判断是否在同一棵树中的依据 { if(parent[x] == -1) return x; return Find(parent[x]); } void Kruskal() //Kruskal算法,parent能够还原一棵生成树,或者森林{ memset(parent, -1, sizeof(parent)); sort(EG+1, EG+m+1, cmp); //按权值将边从小到大排序 ans = 0; for(int i = 1; i <= m; i++) //按权值从小到大选择边 { int t1 = Find(EG[i].u), t2 = Find(EG[i].v); if(t1 != t2) //若不在同一棵树种则选择该边,合并两棵树 { ans += EG[i].w; parent[t1] = t2; printf("最小生成树加入的边为:%d %d\n",EG[i].u,EG[i].v); } } } int main() { printf("输入顶点数和边数:"); while(~scanf("%d%d", &n,&m)) { for(int i = 1; i <= m; i++) scanf("%d%d%d", &EG[i].u, &EG[i].v, &EG[i].w); Kruskal(); printf("最小生成树权值之和为:%d\n", ans); } return 0; }

最小生成树经典算法

最小生成树的两种经典算法的分析及实现 摘要:数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM和KRUSKAL的两种经典算法的算法思想,对两者进行了详细的比较,最后用这两种经典算法实现了最小生成树的生成。 关键词:连通图,赋权图,最小生成树,算法,实现 1 前言 假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。n个城市之间最多可以设置n (n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。现在要选择这样一棵生成树,也就是使总的代价最小。这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。一棵生成树的代价就是树上各边的代价之和。 2图的概念 2.1 定义 无序积 在无序积中, 无向图,其中为顶点(结点)集,为边集,,中元素为无向边,简称边。 有向图,其中为顶点(结点)集,为边集,,中元素为有向边,简称边。 有时,泛指有向图或无向图。 2.2 图的表示法

有向图,无向图的顶点都用小圆圈表示。 无向边——连接顶点的线段。 有向边——以为始点,以为终点的有向线段。 2.3 概念 (1)有限图——都是有限集的图。 阶图——的图。 零图——的图。特别,若又有,称平凡图。 (2)关联 (边与点关系)——设边(或),则称与(或)关联。 无环 孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所对应的边叫悬挂边。 (3)平行边——关联于同一对顶点的若干条边称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。 简单图——不含平行边和环的图。 2.4 完全图 设为阶无向简单图,若中每个顶点都与其余个顶点相邻,则 称为阶无向完全图,记作。 若有向图的任一对顶点,既有有向边,又有有向边,则 称为有向完全图。 例如:

最小生成树(Prim、Kruskal算法)整理版

一、树及生成树的基本概念 树是无向图的特殊情况,即对于一个N个节点的无向图,其中只有N-1条边,且图中任意两点间有且仅有一条路径,即图中不存在环,这样的图称为树,一般记为T。树定义有以下几种表述: (1)、T连通、无圈、有n个结点,连通有n-1条边;(2)、T无回路,但不相邻的两个结点间联以一边,恰得一个圈;(3)、T连通,但去掉任意一边,T就不连通了(即在点集合相同的图中,树是含边数最少的连通图);(4)、T的任意两个结点之间恰有一条初等链。 例如:已知有六个城市,它们之间要架设电话线,要求任 意两个城市均可以互相通话,并且电话线的总长度最短。若用 六个点v1…v6代表这六个城市,在任意两个城市之间架设电话 线,即在相应的两个点之间连一条边。这样,六个城市的一个 电话网就作成一个图。任意两个城市之间均可以通话,这个图 必须是连通图,且这个图必须是无圈的。否则,从圈上任意去 掉一条边,剩下的图仍然是六个城市的一个电话网。图5-6是 一个不含圈的连通图,代表了一个电话线网。 生成树(支撑树) 定义:如果图G’是一棵包含G的所有顶点的树,则称G’是G的一个支撑树或生成树。例如,图5-7b是图5-7a的一个支撑树。 定理:一个图G有生成树的条件是G是连通图。 证明:必要性显然; 充分性:设图G是连通的,若G不含圈,则按照定义,G是一个树,从而G是自身的一个生成树。若G含圈,则任取G的一个圈,从该圈中任意去掉一条边,得到图G的一生成子图G1。若G1不含圈,则G1是G的一个生成树。若G1仍然含圈,则任取G1的一个圈,再从圈中任意去掉一条边,得到图G的一生成子图G2。依此类推,可以得到图G的一个生成子 图G K,且不含圈,从而G K是一个生成树。 寻找连通图生成树的方法: 破圈法:从图中任取一个圈,去掉一条边。再对剩下的图 重复以上步骤,直到不含圈时为止,这样就得到一个生成树。 取一个圈(v1,v2,v3,v1),在一个圈中去掉边e3。在剩下的图 中,再取一个圈(v1,v2,v4,v3,v1),去掉边e4。再从圈(v3,v4,v5,v3) 中去掉边e6。再从圈(v1,v2,v5,v4,v3,v1)中去掉边e7, 这样,剩下的图不含圈,于是得到一个支撑树,如图所示。 避圈法:也称为生长法,从图中某一点开始生长边,逐步扩展成长为一棵树,每步选取与已入树的边不构成圈的那些边。

最小生成树的Kruskal算法实现

#include #include #define M 20 #define MAX 20 typedef struct { int begin; int end; int weight; }edge; typedef struct { int adj; int weight; }AdjMatrix[MAX][MAX]; typedef struct { AdjMatrix arc; int vexnum, arcnum; }MGraph; void CreatGraph(MGraph *);//函数申明 void sort(edge* ,MGraph *); void MiniSpanTree(MGraph *); int Find(int *, int ); void Swapn(edge *, int, int); void CreatGraph(MGraph *G)//构件图 { int i, j,n, m; printf("请输入边数和顶点数:\n"); scanf("%d %d",&G->arcnum,&G->vexnum); for (i = 1; i <= G->vexnum; i++)//初始化图{ for ( j = 1; j <= G->vexnum; j++) { G->arc[i][j].adj = G->arc[j][i].adj = 0; } } for ( i = 1; i <= G->arcnum; i++)//输入边和权值

{ printf("请输入有边的2个顶点\n"); scanf("%d %d",&n,&m); while(n < 0 || n > G->vexnum || m < 0 || n > G->vexnum) { printf("输入的数字不符合要求请重新输入:\n"); scanf("%d%d",&n,&m); } G->arc[n][m].adj = G->arc[m][n].adj = 1; getchar(); printf("请输入%d与%d之间的权值:\n", n, m); scanf("%d",&G->arc[n][m].weight); } printf("邻接矩阵为:\n"); for ( i = 1; i <= G->vexnum; i++) { for ( j = 1; j <= G->vexnum; j++) { printf("%d ",G->arc[i][j].adj); } printf("\n"); } } void sort(edge edges[],MGraph *G)//对权值进行排序{ int i, j; for ( i = 1; i < G->arcnum; i++) { for ( j = i + 1; j <= G->arcnum; j++) { if (edges[i].weight > edges[j].weight) { Swapn(edges, i, j); } } } printf("权排序之后的为:\n"); for (i = 1; i < G->arcnum; i++) {

(完整word版)实验5 最小生成树算法的设计与实现(报告)

实验5 最小生成树算法的设计与实现 一、实验目的 1、根据算法设计需要, 掌握连通图的灵活表示方法; 2、掌握最小生成树算法,如Prim、Kruskal算法; 3、基本掌握贪心算法的一般设计方法; 4、进一步掌握集合的表示与操作算法的应用。 二、实验内容 1、认真阅读算法设计教材和数据结构教材内容, 熟习连通图的不同表示方法和最小生成树算法; 2、设计Kruskal算法实验程序。 有n个城市可以用(n-1)条路将它们连通,求最小总路程的和。 设计测试问题,修改并调试程序, 输出最小生成树的各条边, 直至正确为止。 三、Kruskal算法的原理方法 边权排序: 1 3 1 4 6 2 3 6 4 1 4 5 2 3 5 3 4 5 2 5 6 1 2 6 3 5 6 5 6 6 1. 初始化时:属于最小生成树的顶点U={}

不属于最小生成树的顶点V={1,2,3,4,5,6} 2. 根据边权排序,选出还没有连接并且权最小的边(1 3 1),属于最小生成树 的顶点U={1,3},不属于最小生成树的顶点V={2,4,5,6}

3. 根据边权排序,选出还没有连接并且权最小的边(4 6 2),属于最小生成树的顶点U={{1,3},{4,6}}(还没有合在一起,有两颗子树),不属于最小生成树的顶点V={2,5} 4. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,3,4,6}(合在一起),不属于最小生成树的顶点V={2,5}

5. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,6},,不属于最小生成树的顶点V={5} 6. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,5,6}此时,最小生成树已完成

求出下图的最小生成树

求出下图的最小生成树 解:MATLAB程序: % 求图的最小生成树的prim算法。 % result的第一、二、三行分别表示生成树边的起点、终点、权集合 % p——记录生成树的的顶点,tb=V\p clc;clear; % a(1,2)=50; a(1,3)=60; % a(2,4)=65; a(2,5)=40; % a(3,4)=52;a(3,7)=45; % a(4,5)=50; a(4,6)=30;a(4,7)=42; % a(5,6)=70; % a=[a;zeros(2,7)]; e=[1 2 20;1 4 7;2 3 18;2 13 8;3 5 14;3 14 14;4 7 10;5 6 30;5 9 25;5 10 9;6 10 30;6 11 30;7 8 2;7 13 5;8 9 4;8 14 2;9 10 6;9 14 3;10 11 11;11 12 30]; n=max([e(:,1);e(:,2)]); % 顶点数 m=size(e,1); % 边数 M=sum(e(:,3)); % 代表无穷大 a=zeros(n,n); for k=1:m a(e(k,1),e(k,2))=e(k,3); end a=a+a';

a(find(a==0))=M; % 形成图的邻接矩阵 result=[];p=1; % 设置生成树的起始顶点 tb=2:length(a); % 设置生成树以外顶点 while length(result)~=length(a)-1 % 边数不足顶点数-1 temp=a(p,tb);temp=temp(:); % 取出与p关联的所有边 d=min(temp); % 取上述边中的最小边 [jb,kb]=find(a(p,tb)==d); % 寻找最小边的两个端点(可能不止一个) j=p(jb(1));k=tb(kb(1)); % 确定最小边的两个端点 result=[result,[j;k;d]]; % 记录最小生成树的新边 p=[p,k]; % 扩展生成树的顶点 tb(find(tb==k))=[]; % 缩减生成树以外顶点 end result % 显示生成树(点、点、边长) weight=sum(result(3,:)) % 计算生成树的权 程序结果: result = 1 4 7 8 14 7 9 13 10 10 14 10 11 4 7 8 14 9 13 10 2 5 11 3 6 12 7 10 2 2 3 5 6 8 9 11 1 4 30 30 weight = 137 附图 最小生成树的权是137

离散数学--最小生成树实验报告

一、实验目的:掌握图的存储表示和以及图的最小生成树算法。 二、实验内容: 1.实现图的存储,并且读入图的内容。 2.利用克鲁斯卡尔算法求网络的最小生成树。 3.实现构造生成树过程中的连通分量抽象数据类型。 4.以文本形式输出对应图的最小生成树各条边及权值。 三、实验要求: 1.在上机前写出全部源程序; 2.能在机器上正确运行程序; 3.用户界面友好。 需求分析: 1、利用克鲁斯卡尔算法求网的最小生成树; 2、以用户指定的结点为起点,分别输出每种遍历下的结点访问序列; 3、输入为存在边的顶点对,以及它们之间的权值;输出为所得到的邻接矩 阵以及按权排序后的边和最后得到的最小生成树; 克鲁斯卡尔算法:假设WN=(V,{E}) 是一个含有n 个顶点的连通网,按照构造最小生成树的过程为:先构造一个只含n 个顶点,而边集为空的子图,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至只有一棵树,也即子图中含有n-1条边为止。 测试数据: 自行指定图进行运算

四、详细设计 源程序 #include #include #define M 20 #define MAX 20 typedef struct { int begin; int end; int weight; }edge; typedef struct { int adj; int weight; }AdjMatrix[MAX][MAX]; typedef struct { AdjMatrix arc; int vexnum, arcnum; }MGraph; void CreatGraph(MGraph *); void sort(edge* ,MGraph *); void MiniSpanTree(MGraph *); int Find(int *, int ); void Swapn(edge *, int, int); void CreatGraph(MGraph *G) {

Kruskal算法求最小生成树(java)

Kruskal算法求最小生成树(JA V A) 代码: package homework; import java.util.Scanner; import java.util.Arrays; import java.util.ArrayList; class Edge { public int start;//始边 public int end;//终边 public double cost;//权重 } public class MinSpanningTree_Kruskal{ private static int MAX = 100; private ArrayList edge = new ArrayList();//整个图的边 private ArrayList target = new ArrayList();//目标边,最小生成树private int[] parent = new int[MAX];//标志所在的集合 private static double INFINITY = 99999999.99;//定义无穷大 private double mincost = 0.0;//最小成本 private int n;//结点个数 public MinSpanningTree_Kruskal(){} public static void main(String args[]){ MinSpanningTree_Kruskal sp = new MinSpanningTree_Kruskal(); sp.init(); sp.kruskal(); sp.print(); }//初始化 public void init(){ Scanner scan = new Scanner(System.in); int p,q; double w; System.out.println("请输入结点个数:"); n = scan.nextInt(); System.out.println("请输入各条边及权值(每次输入一组数据按回车确认," + "最后输入-1 -1 -1 结束输入过程)"); while(true){ p = scan.nextInt(); q = scan.nextInt(); w = scan.nextDouble();

图的遍历及最小生成树实验报告

实验三最小生成树问题 班级:计科1101班 学号:05 姓名:杜茂鹏 2013年5月23日

一、实验目的 掌握图的存储表示和以及图的最小生成树算法。 二、实验内容 1.实现图的存储,并且读入图的内容。 2.利用普里姆算法求网络的最小生成树。 3.实现构造生成树过程中的连通分量抽象数据类型。 4.以文本形式输出对应图的最小生成树各条边及权值。 三、实验要求 1.在上机前写出全部源程序; 2.能在机器上正确运行程序; 3.用户界面友好。 四、概要设计、 首先采用图的邻接矩阵存储结构,然后从终端输入图的顶点名称、弧以及弧的权值建立邻接矩阵,并将图存储在文件中。 然后利用已经建好的图,分别对其进行深度、广度优先遍历,一次输出遍历的顶点 最后建立此图的最小生成树,并将对应的边及权值写入文件中。 六、详细设计 实验内容(原理、操作步骤、程序代码) #include<> #include<> #include<> #define INFINITY INT_MAX owcost!=0&&mini>cld[i].lowcost) { mini=cld[i].lowcost; s1=i; } } return s1; } void CreateUDN(MGraph &G) { int IncInfo; printf("请分别输入顶点数/弧数/以及弧所含信息:"); scanf("%d %d %d",&,&,&IncInfo);

getchar(); for(int i=0;i<;i++){ dj=INFINITY; [i][j].info=NULL; } for(int k=0;k<;k++) { char v1,v2; int w,i,j; printf("输入一条边依附的顶点及权值:"); dj=w; if(IncInfo) *[i][j].info=IncInfo; [j][i]=[i][j]; getchar(); } } dj!=INFINITY) DFS(G,j); } void BFSTraverse(MGraph G,void(*Visit)(MGraph G,int v)) { LinkQueue Q; for(int v=0;v<;v++) visited[v]=0; InitQueue(Q); for(int v=0;v<;v++) if(!visited[v]) { visited[v]=1; Visit(G,v); EnQueue(Q,[v]); while(!QueueEmpty(Q)) { DeQueue(Q); for(int j=0;j<;j++) if(!visited[j]&&[v][j].adj!=INFINITY) { visited[j]=1; Visit(G,j); EnQueue(Q,[j]); } } } } void MiniSpanTree_PRIM(MGraph G,char u)

【开题报告】最小生成树算法及其应用

开题报告 信息与计算科学 最小生成树算法及其应用 一、综述本课题国内外研究动态, 说明选题的依据和意义 最小生成树(minimum spanning tree,MST)是计算机学科中一重要内容, 其算法也是重要的计算方法, 是现代科学中比较热门的研究方向. 一个有个结点的连通图的生成树是原图的极小连通子图, 且包含原图中的所有个n n 结点, 并且有保持图联通的最少的边. 许多应用问题都是一个求五项连通图的最小生成树问题. 例如: 要在个城市之间铺设n 光缆, 主要目标是要使这个城市的任意两个之间都可以通信, 但铺设光缆的费用很高, n 且各个城市之间铺设光缆的费用不同; 另一个目标是要使铺设光缆的总费用最低. 这就需要找到带权的最小生成树. MST 性质: 最小生成树性质: 设是一个连通网络, 是顶点集的一个真(,)G V E =U V 子集. 若是中一条“一个端点在中(例如: ), 另一个端点不在中”的边(,)n u v G U u U ∈U (例如:), 且具有最小权值, 则一定存在的一棵最小生成树包括此边v V U ∈-(,)u v G . (,)u v 求MST 的一般算法可描述为: 针对图, 从空树开始, 往集合中逐条选择并G T T 加入条安全边, 最终生成一棵含条边的MST. 1n -(,)u v 1n -当一条边加入时, 必须保证仍是MST 的子集, 我们将这样的边称(,)u v T {}(,)T u v 为的安全边. 其中主要有两种算法: Prim 算法和Kruskal 算法. T Prim 算法: 该算法由Prim 提出, 但事实上Jarnik 于1930年更早提出. 用于求无向图的最小生成树. 设图 . (),G V E =步骤1: 取一个顶点, 则, . 1v {}1V v ={}E =

数据结构课程设计报告最小生成树Kruskal算法[1]4545

课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:最小生成树Kruskal算法 院(系): 专业: 班级: 学号: 姓名: 指导教师:

目录 1 课程设计介绍 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 2 课程设计原理 (2) 2.1课设题目粗略分析 (2) 2.2原理图介绍 (4) 2.2.1 功能模块图 (4) 2.2.2 流程图分析 (5) 3 数据结构分析 (11) 3.1存储结构 (11) 3.2算法描述 (11) 4 调试与分析 (13) 4.1调试过程 (13) 4.2程序执行过程 (13) 参考文献 (16) 附录(关键部分程序清单) (17)

1 课程设计介绍 1.1 课程设计内容 编写算法能够建立带权图,并能够用Kruskal算法求该图的最小生成树。最小生成树能够选择图上的任意一点做根结点。最小生成树输出采用顶点集合和边的集合的形式。 1.2 课程设计要求 1.顶点信息用字符串,数据可自行设定。 2.参考相应的资料,独立完成课程设计任务。 3.交规范课程设计报告和软件代码。

2 课程设计原理 2.1 课设题目粗略分析 根据课设题目要求,拟将整体程序分为三大模块。以下是三个模块的大体分析: 1.要确定图的存储形式,通过对题目要求的具体分析。发现该题的主要操作是路径的输出,因此采用边集数组(每个元素是一个结构体,包括起点、终点和权值)和邻接矩阵比较方便以后的编程。 2.Kruskal算法。该算法设置了集合A,该集合一直是某最小生成树的子集。在每步决定是否把边(u,v)添加到集合A中,其添加条件是A∪{(u,v)}仍然是最小生成树的子集。我们称这样的边为A的安全边,因为可以安全地把它添加到A中而不会破坏上述条件。 3.Dijkstra算法。算法的基本思路是:假设每个点都有一对标号(d j,p j),其中d是从起源点到点j的最短路径的长度(从顶点到其本身的最短路径是零路(没有弧的路),其长度等于零);p j则是从s到j 的最短路径中j点的前一点。求解从起源点s到点j的最短路径算法的基本过程如下: 1)初始化。起源点设置为:①d s=0,p s为空;②所有其它点:d i=∞,p i=?; ③标记起源点s,记k=s,其他所有点设为未标记的。 2)k到其直接连接的未标记的点j的距离,并设置: d j=min[d j, d k+l kj]

最小生成树问题,图形输出最小生成树

数据结构课程设计 系别电子信息系 专业计算机科学与技术 班级学号 姓名 指导教师 成绩 2012年7 月12日

目录 1 需求分析 (2) 2 概要设计 (2) 2. 1抽象数据类型定义 (2) 2 . 2模块划分 (3) 3 详细设计 (4) 3. 1数据类型的定义 (4) 3. 2主要模块的算法描述 (6) 4 调试分析 (10) 5 用户手册 (10) 6 测试结果 (11) 7 附录(源程序清单) (13) 参考文献 (20)

一、需求分析 1.要在n个城市之间建设通信网络,只需要架设n-1条线路即可,而要以最低的经济代价建设这个通信网,就需要在这个网中求最小生成树。 (1)利用克鲁斯卡尔算法求网的最小生成树。 (2)实现教科书 6.5 节中定义的抽象数据类型 MFSet 。以此表示构造生成树过程中的连通分量。 (3)输入顶点个数,输入顶点序号(用整型数据[0,1,2,……,100]表示),输入定点之间的边的权值(整型数据)。系统构造无向图,并求解最小生成树。 (4)以图形和文本两种形式输出最小生成树。 2.程序执行的命令包括: (1)随机生成一个图; (2)输入图坐标信息; (3)以文本形式输出最小生成树; (4)以图形形式输出最小生成树; (5)以图形形式输出构造的图; (6)结束。 3.测试数据 (1)用户输入需要构造的图形顶点个数,假设顶点个数为4; (2)C语言函数随机生成的图形,顶点分别为a,b,c,d,权值分别为: ab=75,ac=99,ad=80,bc=33,bd=93,cd=19; (3)最小生成树边的权值分别为:ab=75,bc=33,cd=19; (4)结束。 二、概要设计 1. 图的抽象数据类型定义 ADT Gragh{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。 数据关系R: R={VR} VR={| v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息 } 基本操作P: CreateGraph(&G,V,VR); 初始条件:V是图的顶点集,VR是图中弧的集合。 操作结果:按V和VR的定义构造图G。 DestroyGragh(&G); 初始条件:图G存在。 操作结果:销毁图G。 GetVex(G,v); 初始条件:图G存在,v是G中某个顶点。 操作结果:返回v的值。 FirstAdjvex(G,v); 初始条件:图G存在,v是G中某个顶点。

克鲁斯卡尔算法求最小生成树

目录 1.需求分析 (2) 1.1 设计题目 (2) 1.2 设计任务及要求 (2) 1.3课程设计思想 (2) 1.4 程序运行流程 (2) 1.5软硬件运行环境及开发工具 (2) 2.概要设计 (2) 2.1流程图 (2) 2.2抽象数据类型MFSet的定义 (3) 2.3主程序 (4) 2.4抽象数据类型图的定义 (4) 2.5抽象数据类型树的定义 (5) 3.详细设计 (7) 3.1程序 (7) 4.调试与操作说明 (10) 4.1测试结果 (10) 4.2调试分析 (11) 5.课程设计总结与体会 (11) 5.1总结 (11) 5.2体会 (11) 6. 致谢 (12) 7. 参考文献 (12)

1.需求分析 1.1 设计题目:最小生成树 1.2 设计任务及要求:任意创建一个图,利用克鲁斯卡尔算法,求出该图的最小生成树。 1.3 课程设计思想:Kruskal算法采用了最短边策略(设G=(V,E)是一个无向连通网,令T=(U,TE)是G的最小生成树。最短边策略从TE={}开始,每一次贪心选择都是在边集E中选择最短边(u,v),如果边(u,v)加入集合TE中不产生回路,则将边(u,v)加入边集TE中,并将它在集合E中删去。),它使生成树以一种任意的方式生长,先让森林中的树木随意生长,每生长一次就将两棵树合并,最后合并成一棵树。 1.4程序运行流程: 1)提示输入顶点数目; 2)接受输入,按照项目要求产生边权值的随机矩阵;然后求解最小生成树; 3)输出最小生成树并且退出; 1.5 软硬件运行环境及开发工具:VC 2.概要设计 2.1流程图

图1流程图 2.2抽象数据类型MFSet的定义: ADT MFSet { 数据对象:若设S是MFSet型的集合,则它由n(n>0)个子集Si(i = 1,2...,n)构成,每个子集的成员代表在这个子集中的城市。 数据关系: S1 U S2 U S3 U... U Sn = S, Si包含于S(i = 1,2,...n) Init (n): 初始化集合,构造n个集合,每个集合都是单成员,根是其本身。rank 数组初始化0 Find(x):查找x所在集合的代表元素。即查找根,确定x所在的集合,并路径压缩。 Merge(x, y):检查x与y是否在同一个集合,如果在同一个集合则返回假,否则按秩合并这两个集合并返回真。 }

最小生成树的算法

最小生成树的算法 王洁 引言: 求连通图的最小生成树是数据结构中讨论的一个重要问题.在现实生活中,经常遇到如何得到连通图的最小生成树,求最小生成树不仅是图论的基本问题之一 ,在实际工作中也有很重要的意义,,人们总想寻找最经济的方法将一个终端集合通过某种方式将其连接起来 ,比如将多个城市连为公路网络 ,要设计最短的公路路线;为了解决若干居民点供水问题 ,要设计最短的自来水管路线等.而避开这些问题的实际意义 ,抓住它们的数学本质 ,就表现为最小生成树的构造。下面将介绍几种最小生成树的算法。 一,用“破圈法”求全部最小生成树的算法 1 理论根据 1.1 约化原则 给定一无向连通图 G =(V ,E )( V 表示顶点,E 表示边),其中 V={ 1v , 2v ,3v …… n v },E= { 1e , 2e , 3e …… n e }对于 G 中的每条边 e ∈ E 都赋予权ω(i e )>0,求生成树 T = (V ,H ),H ? E ,使生成树所有边权最小,此生成树称为最小生成树. (1) 基本回路 将属于生成树 T 中的边称为树枝,树枝数为n -1,不属于生成树的边称为连枝.将任一连枝加到生成树上后都会形成一条回路.把这种回路称为基本回路,记为()cf e 。 基本回路是由 T 中的树枝和一条连枝构成的回路. (2) 基本割集 设无向图 G 的割集 S (割集是把连通图分成两个分离部分的最少支路集合) ,若 S 中仅包含有T 中的一条树枝,则称此割集为基本割集,记为()S e 。 基本割集是集合中的元素只有一条是树枝,其他的为连枝. (3) 等长变换 设T=(V,H),为一棵生成树,e ∈ H, 'e ∈ E, 'e ? H,当且仅当'e ∈()cf e ,也就是说 e ∈()S e ,则'T =T ⊕{e, ' e }也是一棵生成树。当()e ω='()e ω时,这棵生成树叫做等长变换。 等长变换就是从基本回路中选取与树枝等权边,并与此树枝对换后形成的生成树. 根据以上定理得出2个结论:①若在某个回路C 中有一条唯一的最长边,则任何一棵最小生成树都不含这条边;②若在某个边 e 的割集中有一条唯一最短边,则每棵生成树中都必须含这条边.由上面结论可以得到唯一性:若图 G 中的生成树T = (V ,H )是唯一的一棵最小生成树,当且仅当任意一连枝e ∈ H, ' e ∈ E 都是其基本回路中唯一最长边,任意一条树边 e 都是其基本割集()S e 中的唯一最短边.

相关主题