搜档网
当前位置:搜档网 › 全等三角形全章热门考点与重点题型解题技巧整理(解析版)

全等三角形全章热门考点与重点题型解题技巧整理(解析版)

全等三角形全章热门考点与重点题型解题技巧整理(解析版)
全等三角形全章热门考点与重点题型解题技巧整理(解析版)

全等三角形全章热门考点与重点题型解题技巧整理(解析版) 考点1:全等三角形判定的三种类型

考点分析:一般三角形全等的判定方法有四种:SSS ,SAS ,ASA ,AAS ;直角三角形是一种特殊的三角形,它的判定方法除了上述四种之外,还有一种特殊的方法,即“HL ”.具体到某一道题目时,要根据题目所给出的条件进行观察、分析,选择合适的、简单易行的方法来解题. 题型1 已知一边一角型

应用1 一次全等型

1.在△ABC 中,BD =DC ,∠1=∠2,求证:AD 平分∠BAC .

1.证明:∵BD =DC ,

∴∠DBC =∠DCB .

又∵∠1=∠2,

∴∠1+∠DBC =∠2+∠DCB ,

即∠ABC =∠ACB .

∴AB =AC .

在△ABD 和△ACD 中,

?????AB =AC ,∠1=∠2,BD =CD ,

∴△ABD ≌△ACD (SAS ).

∴∠BAD =∠CAD

∴AD 平分∠BAC .

2.如图,在△ABC 中,D 是BC 边上一点,连接AD ,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 交AD 的延长线于点F ,且BE =CF .

求证:AD 是△ABC 的中线.

证明:∵BE ⊥AD ,CF ⊥AD ,

∴∠BED =∠CFD =90°.

又∵∠BDE =∠CDF ,BE =CF ,

∴△DBE ≌△DCF .

∴BD =CD .∴D 是BC 的中点,即AD 是△ABC 的中线.

应用2 二次全等型

1.如图,∠C =∠D ,AC =AD ,求证:BC =BD .

证明:过点A 作AM ⊥BC ,AN ⊥BD ,分别交BC ,BD 的延长线于点M ,N .

∴∠M =∠N =90°.

∵∠ACB =∠ADB ,

∴∠ACM =∠ADN .

在△ACM 和△ADN 中,

?????∠M =∠N ,∠ACM =∠ADN ,AC =AD ,

∴△ACM ≌△ADN (AAS ).

∴AM =AN ,CM =DN .

在Rt △ABM 和Rt △ABN 中,

?

????AB =AB ,AM =AN , ∴Rt △ABM ≌Rt △ABN (HL ).

∴BM =BN .∴BM -CM =BN -DN ,即BC =BD .

2.如图所示,D 是△ABC 中BC 边上一点,E 是AD 上一点,EB =EC ,∠BAE =∠CAE .求证∠ABE =∠ACE .

证明:过E 作EF ⊥AB 于F ,EG ⊥AC 于G ,

则∠AFE =∠AGE =90°.

在△AFE 和△AGE 中,

?????∠AFE =∠AGE ,∠FAE =∠GAE ,AE =AE ,

∴△AFE ≌△AGE (AAS ),

∴EF =EG .

在Rt △BFE 和Rt △CGE 中,

?

????EB =EC ,EF =EG , ∴Rt △BFE ≌Rt △CGE (HL ),

∴∠ABE =∠ACE . 题型2 已知两边型

应用1 一次全等型

1.如图,在Rt △ABC 中,∠ACB =90°,CA =CB ,D 是AC 上一点,E 在BC 的延长线上,且AE =BD ,BD 的延长线与AE 交于点F ,试通过观察、测量、猜想等方法来探索BF 与AE 有何特殊的位置关系,并说明你的猜想的正确性.

1.解:BF ⊥AE .理由如下:

∵∠ACB =90°,

∴∠ACE =∠BCD =90°.

又∵BC =AC ,BD =AE ,

∴Rt △BDC ≌Rt △AEC (HL ).

∴∠CBD =∠CAE .

又∵∠CAE +∠E =90°,

∴∠EBF +∠E =90°.

∴∠BFE =90°,即BF ⊥AE .

应用2 两次全等型

1.如图,AB =CB ,AD =CD ,E 是BD 上任意一点.求证:AE =CE .

证明:在△ABD 和△CBD 中

?????AB =CB ,AD =CD ,BD =BD ,

∴△ABD ≌△CBD (SSS ).

∴∠ABE =∠CBE

在△ABE 和△CBE 中,

?????AB =CB ,∠ABE =∠CBE ,BE =BE ,

∴△ABE ≌△CBE (SAS ).

∴AE =CE .

2.如图,∠BAC 是钝角,AB =AC ,点D ,E 分别在AB ,AC 上,且CD =BE .求证:∠ADC =∠AEB .

证明:过点B ,C 两点分别作CA ,BA 延长线的垂线,垂足分别为F ,G .

在△ABF 和△ACG 中,

?????∠F =∠G =90°,∠FAB =∠GAC ,AB =AC ,

∴△ABF ≌△ACG (AAS ).

∴BF =CG .

在Rt △BEF 和Rt △CDG 中,

{BF =CG ,BE =CD ,

∴Rt △BEF ≌Rt △CDG (HL ).

∴∠ADC =∠AEB .

点拨:判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.

题型3 已知两角型

应用1 一次全等型

1.如图,已知∠BDC =∠CEB =90°,BE ,CD 交于点O ,且AO 平分∠BAC .求证:OB =OC .

证明:∵∠BDC =∠CEB =90°,

∴OD ⊥AB ,OE ⊥AC .

∵AO 平分∠BAC ,∴OD =OE .

在△OBD 和△OCE 中,

?????∠DOB =∠OEC ,OD =OE ,∠OBD =∠COE ,

∴△BOD ≌△OCE (ASA ).

∴OB =OC .

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

全等三角形解题方法、思路和技巧汇总

全等三角形解题方法、思路和技巧汇总 一、全等三角形的性质与判定。 五种判定方法:SSS,SAS,AAS,ASA,HL,其中HL是边边角(SSA的特例)。全等三角形的对应边相等,对应角相等,一句话,凡是对应的,都相等。 二、寻找全等三角形常用方法 1、直接从结论入手 一般会有以下几种要求证的方向: ●线段相等 ●角相等 ●度数 ●线段或者线段的和、差、倍、分关系 根据题目要求证的方向,找到要证明的相关量分别在哪两个三角形中,然后再围绕这两个三角形进行研究。 2、从已知条件入手 把所有能标注在图上的已经条件标注出来,注意用不同的标示进行区分,比如第一组相等的线段用一条短竖,第二组相等的线段用两条短竖,再比如第一组相等的角用一个小圆弧,第二组相等的角就用两个小圆弧等。 然后通过已知条件找到相关的两个三角形,再进行分析。 记住一句话:“充分利用已知条件” 3、把已经条件和结论综合起来考虑 找到所有的已知条件和隐藏条件,结合结论,找出可能全等的两个三角形,再进行分析。 4、如果上述方法都确定行不通,就考虑添加辅助线来构造全等三角形。 三、构造全等三角形的一般方法 1、题目中出现角平分线 (1)通过角平分线上的某个已知点,向两边作垂线,这是利用角平分线的性质定理或者逆定理来构造的全等三角形 (2)在角平分线的某个已知点,作角平分线的垂线和两边相交,构造全等三角形。 (3)在该角的两边,距离角的顶点相等长度的位置上截取两点,分别连接这两点与角平分线上的某已知点,构造全等三角形 2、题目中出现中点或者中线(中位线) (1)倍长中线法,把中线延长至二倍位置 (2)过中点作某一条边的平行线 3、题目中出现等腰或者等边三角形 (1)找中点,倍长中线 (2)过顶点作底边的垂线 (3)过某已知点作一条边的平行线 (4)三线合一 4、题目中出现三条线段之间的关系 通常用截长补短法,在某条线段上截取一段线段,使之与特定的线段相等,或者将某条线段延长,使之与特定线段相等。这种方法,在证明多条线段的和、差、

全等三角形知识点讲解经典例题含答案

全等三角形 一、目标认知 学习目标: 1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素; 2.探索三角形全等的条件,能利用三角形全等进行证明,掌握综合法证明的格式。 重点: 1. 使学生理解证明的基本过程,掌握用综合法证明的格式; 2 .三角形全等的性质和条件。 难点: 1.掌握用综合法证明的格式; 2 .选用合适的条件证明两个三角形全等 经典例题透析 类型一:全等三角形性质的应用 1、如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角. 思路点拨:AB=AC,AB和AC是对应边,∠A是公共角,∠A和∠A是对应角,按对应边所对的角是对应角,对应角所对的边是对应边可求解. 解析:AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠AEC和∠ADB是对应角. 总结升华:已知两对对应顶点,那么以这两对对应顶点为顶点的角是对应角,第三对角是对应角;再由对应角所对的边是对应边,可找到对应边. 已知两对对应边,第三对边是对应边,对应边所对的角是对应角.

举一反三: 【变式1】如图,△ABC≌△DBE.问线段AE和CD相等吗?为什么? 【答案】证明:由△ABC≌△DBE,得AB=DB,BC=BE, 则AB-BE=DB-BC,即AE=CD。 【变式2】如右图,,。 求证:AE∥CF 【答案】 ∴AE∥CF 2、如图,已知ΔABC≌ΔDEF,∠A=30°,∠B=50°,BF=2,求∠DFE 的度数与EC的长。 思路点拨:由全等三角形性质可知:∠DFE=∠ACB,EC+CF=BF+FC,所以只需求∠ACB的度数与BF的长即可。 解析:在ΔABC中, ∠ACB=180°-∠A-∠B, 又∠A=30°,∠B=50°, 所以∠ACB=100°. 又因为ΔABC≌ΔDEF, 所以∠ACB=∠DFE, BC=EF(全等三角形对应角相等,对应 边相等)。 所以∠DFE=100° EC=EF-FC=BC-FC=FB=2。 总结升华:全等三角形的对应角相等,对应边相等。 举一反三: 【变式1】如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,

八年级上数学_全等三角形典型例题(一)

全等三角形典型例题: 例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求 证:AF ⊥BE . 练习1:如图,在△ABC 中,∠BAC=90°,AB=AC , AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。 例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。 例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系. ⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分). ⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分) 图1 图2 图3 C B A l B C A B C D E l A B C l E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF B A F E 练习2: 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。 若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

初中数学—全等三角形解题方法、思路及技巧汇总

初中数学—全等三角形解题方法、思路及技巧汇总 全等三角形是初中数学中非常重要的内容,今天我们就把初二数学中,与全等三角形相关的方法、思路及技巧都来整理一下。 一、全等三角形的性质与判定。 五种判定方法:SSS,SAS,AAS,ASA,HL,其中HL是边边角(SSA的特例)。全等三角形的对应边相等,对应角相等,一句话,凡是对应的,都相等。 二、寻找全等三角形常用方法 1、直接从结论入手 一般会有以下几种要求证的方向: ?线段相等 ?角相等 ?度数 ?线段或者线段的和、差、倍、分关系 然后根据题目要求证的方向,找到要证明的相关量分别在哪两个三角形中,再围绕这两个三角形进行研究。 2、从已知条件入手 把所有能标注在图上的已经条件标注出来,注意用不同的标示进行区分,比如第一组相等的线段用一条短竖,第二组相等的线段用两条短竖,再比如第一组相等的角用一个小圆弧,第二组相等的角就用两个小圆弧等。

然后通过已知条件找到相关的两个三角形,再进行分析。记住一句话:“充分利用已知条件”。 3、把已经条件和结论综合起来考虑 找到所有的已知条件和隐藏条件,结合结论,找出可能全等的两个三角形,再进行分析。 4、如果上述方法都确定行不通,就考虑添加辅助线来构造全等三角形。 三、构造全等三角形的一般方法 1、题目中出现角平分线 (1)通过角平分线上的某个已知点,向两边作垂线,这是利用角平分线的性质定理或者逆定理来构造的全等三角形 (2)在角平分线的某个已知点,作角平分线的垂线和两边相交,构造全等三角形。 (3)在该角的两边,距离角的顶点相等长度的位置上截取两点,分别连接这两点与角平分线上的某已知点,构造全等三角形 2、题目中出现中点或者中线(中位线) (1)倍长中线法,把中线延长至二倍位置 (2)过中点作某一条边的平行线 3、题目中出现等腰或者等边三角形

全等三角形练习题(很经典)

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后 仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是 ( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE , 使A,C,E 在一条直线上(如图所示),可以说明 △EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不 正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC ≌△CE D D .∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定 这两个三角形全等,还需要条件( ) 第3题图 第5题图 第7题图 第2题图 第6题图 A B C D

全等三角形解答题--答案

2016暑假作业(七) 全等三角形解答题答案 参考答案与试题解析 一.解答题(共28小题) 1.(2012?邵阳)如图所示,AC、BD相交于点O,且OA=OC,OB=OD.求证:AD∥BC. 【解答】证明:∵AC、BD交于点O, ∴∠AOD=∠COB, 在△AOD和△COB中, ∵ ∴△AOD≌△COB(SAS) ∴∠A=∠C, ∴AD∥BC.2.(2016?重庆校级模拟)如图,A、C、F、B在同一直线上,AC=BF,AE=BD,且AE∥BD.求证:EF∥CD. 【解答】证明:∵AE∥BD, ∴∠A=∠B, ∵AC=BF, ∴AC+CF=BF+CF, ∴BC=AF, 在△EAF和△DBC中 ∵, ∴△EAF≌△DBC(SAS), ∴∠EFA=∠BCD, ∴EF∥CD.

3.(2015?于洪区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. (1)如果AB=AC,∠BAC=90°, ①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为垂直,线段CF、BD的数量关系为相等; ②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由; (2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由. 【解答】证明:(1)①正方形ADEF中,AD=AF, ∵∠BAC=∠DAF=90°, ∴∠BAD=∠CAF,又∵AB=AC, ∴△DAB≌△FAC, ∴CF=BD,∠B=∠ACF, ∴∠ACB+∠ACF=90°,即CF⊥BD. ②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度. ∵∠BAC=90°, ∴∠DAF=∠BAC, ∴∠DAB=∠FAC, 又∵AB=AC, ∴△DAB≌△FAC, ∴CF=BD,∠ACF=∠ABD. ∵∠BAC=90°,AB=AC, ∴∠ABC=45°, ∴∠ACF=45°, ∴∠BCF=∠ACB+∠ACF=90度. 即CF⊥BD. (2)当∠ACB=45°时,CF⊥BD(如图).

全等三角形题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型 角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分 线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC , 连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。 2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M , ?PN ⊥CD 于N ,判断PM 与PN 的关系. 3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 (1) 求证:∠ABE=∠C ; (2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。 . A B C D E P D A C B M N

5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B ) 2 1P F M D B A C E 6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E . (1) 若BD 平分∠ABC ,求证CE=1 2 BD ; (2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围; 若不变,求出它的度数,并说明理由。 8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB , 求证:AC=AE+CD . 二、中点型 由中点应产生以下联想: E D C B A

全等三角形解题方法与技巧

“三步曲”证全等 牢记判定定理:SSS SAS ASA AAS HL 一看图形:全等三角形的基本图形大致有以下几种①平移型;②对称型;③旋转型(复杂图形可分离 出基本图形) 二看条件: (一)应先看有无隐含条件(如对顶角、公共边、公共角、某些角的和差,某些线段的和差。) 1、利用公共边(或公共角)相等 例1:如图1,AB DC =,AC DB =,△ABC ≌△DCB 全等吗?为什么? 练习1:已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B

2、利用对顶角相等 例2:如图2,已知AC 与BD 交于点O ,∠A=∠C ,且AD =CB ,你能说明BO=DO 吗? 练习2:已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 3、利用等边(等角)加(或减)等边(等角),其和(或差)仍相等 例3:如图,AB=DC ,BF=CE ,AE=DF ,你能找到一对全等的三角形吗?说明你的理由. 练习3:已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 A E D C B A B C D E F O

4、利用平行线的性质得出同位角、内错角相等 例4:如图4,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DFC 的度数. 练习4:如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。 (二)再分析显性条件,如果条件不够,应确定还需什么条件,然后证明该条件。基本思路:1.已知两角――任一边;2.已知两边――找夹角或第三边;3.已知一角与邻边――找另一角或另一邻边;4.已知一角与对边――找另一角。 例1:如图,已知点E C ,在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F . 求证:ABC DEF △≌△. 例2:如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则∠BDC 的度数为 . 例3:两个大小不同的等腰直角三角形三角板如图所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连接DC . (1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE . 图1 图2 C E B F D A E

人教版八年级上全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判 断△DEF 的形状. 3、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明△AGF 是等边三角形. Ex 、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试说明BE 、CF 、EF 为边长的三角形是直角三角形。 A B A A

m 二.证明全等常用方法(截长法或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC . Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用 补短法说明AE +CF =EF . Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?) B B C F C A B

《全等三角形》典型例题课件.doc

全等三角形知识梳理一、知识网络 性质对应角相等对应边相等 边边边SSS 全等形全等三角形边角边SAS 应用 判定角边角ASA 角角边AAS 斜边、直角边HL 角平分线 作图 性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。 (2)两角和它们的夹边对应相等的两个三角形全等。 (3)两角和其中一角的对边对应相等的两个三角形全等。 (4)两边和它们的夹角对应相等的两个三角形全等。 (5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因 此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 1

3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS) 全等三角形的判定训练 1.已知AD 是⊿ABC 的中线,BE⊥AD,CF⊥AD,问BE= C F 吗?说明理由。 A F B C D E 2.已知AC= B D,AE =CF,BE=DF ,问AE∥CF 吗? E F A C B D 3.已知AB= C D,BE =DF,AE =CF ,问AB∥CD 吗? A B E F C D 4.已知AC=AB,AE= A D,∠1=∠2,问∠3=∠4 吗? A 1 2 E D 3 4 B C 5. 如图, 已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC请, 说明∠A=∠C. 2

全等三角形解题技巧

造全等三角形解题的技巧 全等三角形是初中几何《三角形》中的一个重要内容,是初中生必须掌握的三角形两大知识点之一(全等和相似),在解决几何问题时,若能根据图形特征添加恰当的辅助线,构造出全等三角形,并利用全等图形的性质,可以使问题化难为易,出奇制胜,现举几例供大家参考。 友情提示:证明三角形全等的方法有SAS、SSS、AAS、ASA、HL(Rt△)。 一、见角平分线试折叠,构造全等三角形 例1 如图1,在△ABC中,AD平分∠BAC,AB+BD=AC。 求证:∠B:∠C=2:1。 证法一:在线段AC上截取AE=AB,连接DE。 在△ABD和△AED中 ∵AE=AB,∠1=∠2,AD=AD,∴△ABD△AED。∴DE=DB,∠B=∠AED。 ∵AB+BD=AC,∴AE+DE=AC。 又∵AE+CE=AC,∴DE=CE。∴∠C=∠EDC。 ∵∠AED=∠C+∠EDC,∴∠AED=2∠C,即∠B=2∠C。∴∠B:∠C=2:1。 证法二:延长AB到F,使BF=BD,连接DF。∴∠F=∠BDF。 ∵∠ABC=∠F+∠BDF,∴∠ABC=2∠F。 ∵AB+BD=AC,∴AB+BF=AC,即AF=AC。 在△ADF和△ADC中, ∵AF=AC,∠1=∠2,AD=AD,∴△ADF△ADC。∴∠F=∠C。 又∵∠ABC=2∠F,∴∠ABC=2∠C,即∠ABC:∠C=2:1。 点评:见到角平分线时,既可把△ABD沿AD折叠变成△AED,也可把△ACD沿AD折叠变成△AFD,利用全等三角形的性质,可使问题得以解决。

练习:如图3,△ABC中,AN平分∠BAC,CN⊥AN于点N,M为BC中点,若AC=6,AB=10,求MN的长。 图3 提示:延长CN交于AB于点D。则△ACN△ADN,∴AD=AC=6。 又AB=10,则BD=4。可证为△BCD的中位线。 ∴。 点评:本题相当于把△ACN沿AN折叠成△AND。 二、见中点“倍长”线段,构造全等三角形 例2 如图4,AD为△ABC中BC上的中线,BF分别交AC、AD于点F、E,且AF=EF,求证:BE=AC。 图4 证明:延长AD到G,使DG=AD,连接BG。 ∵AD为BC上的中线,∴BD=CD, 在△ACD和△GBD中, ∵AD=DG,∠ADC=∠BDG,BD=CD,∴△ACD△GBD。∴AC=BG,∠CAD=∠G。 ∵AF=EF,∴∠CAD=∠AEF。∴∠G=∠AEF=∠BEG,∴BE=BG, ∵AC=BG,∴BE=AC。 点评:见中线AD,将其延长一倍,构造△GBD,则△ACD△GBD。 例3 如图5,两个全等的含有、角的三角极ADE和ABC如图放置,E、A、C三点在同一直线上,连接BD,取BD中点M,连接ME、MC 图5 试判断△EMC的形状,并说明理由。 解析:△EMC为等腰直角三角形。

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

全等三角形中题型归纳讲解

全等三角形中题型归纳 一、含有公共边(线段) 例1已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。求证:AF=CE 。 二、含有公共角(夹角) 例2已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 三、直角三角形 例3已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与 CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。(1) BF =AC (2) CE = BF (3)CE 与BC 的大小关系如何。 四、角平分线 例4.已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线. 五、中线(点) 例5如图,在△ABC 中,AD 是中线,BE 交AD 于F,且AE=EF,说明AC=BF 的理由 1 2 F E A C D B A E D C B

六、二次全等 例6已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B 七、线段和差倍分 例7如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求 证:AD +BC =AB . 八、常见辅助线归纳总结 例8如图:四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE 。 例9在△ABC 中,,AB=AC , 在AB 边上取点D ,在AC 延长线上了取点E ,使CE=BD , 连接DE 交BC 于点F ,求证DF=EF . 九、全等与等腰三角形 例10已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE 求证:OA =OD . P E D C B A A D B E F C B A E D

全等三角形经典例题(含答案)

全等三角形证明题精选 一.解答题(共30小题) 1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO. 2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长.

3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 4.如图,点O是线段AB和线段CD的中点. (1)求证:△AOD≌△BOC; (2)求证:AD∥BC.

5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.

7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.

11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N.

八年级数学全等三角形经典例题练习及解析

全等三角形单元 预习测试题 小题3分,共30分) 一、选择题(每 1.下列说法错误的是() A .全等三角形的对应边相等B.全等三角形的对应角相等 C.全等三角形的周长相等D.全等三角形的高相等 2.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是() A .∠1=∠2 B.AC= C A C.AB=AD D.∠B=∠D 第2 题第3 题第5 题第7 题 3.如图,AB∥DE,AC∥DF ,AC= D F ,下列条件中不能判断△ABC≌△DEF 的是() A .A B =DE B.∠B=∠E C.EF =B C D.EF∥BC 4.长为3cm,4 c m,6 c m,8cm 的木条各两根,小明与小刚分别取了3cm 和4cm 的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为() A .一个人取6cm 的木条,一个人取8cm 的木条B.两人都取6cm 的木条 C.两人都取8cm 的木条D.B、C 两种取法都可以 5.△ABC 中,AB= A C,三条高AD,BE,CF 相交于O,那么图中全等的三角形有() A . 5 对B.6 对C.7 对D.8 对 6.下列说法中,正确的有() ①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角、一 边相等的两个三角形全等;④两边、一角对应相等的两个三角形全等. A . 1 个B.2 个C.3 个D.4 个 7.如图,已知△ABC 中,∠ABC=45°,AC =4,H 是高AD 和BE 的交点,则线段B H 的长度为() A .B.4 C.D.5 8.如图,ABC 中,AD 是它的角平分线,AB=4,AC=3,那么△ABD 与△ADC 的面积比是() A .1:1 B.3:4 C.4:3 D.不能确定

专题研究:全等三角形证明方法归纳及典型例题

全等三角形的证明 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3)边边边定理(SSS):三边对应相等的两个三角形全等. (4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 专题1、常见辅助线的做法 典型例题 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种:

全等三角形经典题型50题(有答案)

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

相关主题