搜档网
当前位置:搜档网 › 高等数学讲义--一元函数微分学

高等数学讲义--一元函数微分学

高等数学讲义--一元函数微分学
高等数学讲义--一元函数微分学

第二章 一元函数微分学

§2.1 导数与微分

(甲)内容要点 一、导数与微分概念 1、导数的定义

设函数)(x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量)()(00x f x x f y -?+=?。如果极限

x x f x x f x y

x x ?-?+=??→?→?)()(lim lim

0000

存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0

x x y ='

x x dx

dy

=,

)(x x dx

x df =等,并称函数)(x f y =在点0x 处可导。如果上面的极限不存在,则

称函数)(x f y =在点0x 处不可导。

导数定义的另一等价形式,令x x x ?+=0,0x x x -=?,则

000

()()

()lim

x x f x f x f x x x →-'=-

我们也引进单侧导数概念。 右导数:0

000000()()()()

()lim lim x x x f x f x f x x f x f x x x x +

++→?→-+?-'==-? 左导数:0

000000()()()()()lim lim x x x f x f x f x x f x f x x x x

-

--→?→-+?-'==-? 则有

)(x f 在点0x 处可导)(x f ?在点0x 处左、右导数皆存在且相等。

2.导数的几何意义与物理意义

如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。 切线方程:000()()()y f x f x x x '-=-

法线方程:00001

()()(()0)()

y f x x x f x f x '-=-

-≠' 设物体作直线运动时路程S 与时间t 的函数关系为)(t f S =,如果0()f t '存在,则0()f t '表示物体在时刻0t 时的瞬时速度。

3.函数的可导性与连续性之间的关系

如果函数)(x f y =在点0x 处可导,则)(x f 在点0x 处一定连续,反之不然,即函数

)(x f y =在点0x 处连续,却不一定在点0x 处可导。例如,||)(x x f y ==,在00=x 处连

续,却不可导。

4.微分的定义

设函数)(x f y =在点0x 处有增量x ?时,如果函数的增量)()(00x f x x f y -?+=?有下面的表达式

0()()y A x x o x ?=?+? (0→?x )

其中)(0x A 为x ?为无关,()o x ?是0→?x 时比x ?高阶的无穷小,则称)(x f 在0x 处可微,

并把y ?中的主要线性部分x x A ?)(0称为)(x f 在0x 处的微分,记以0

x x dy =或0

)

(x x x df =。

我们定义自变量的微分dx 就是x ?。

5.微分的几何意义

)()(00x f x x f y -?+=?是曲线)(x f y =在点0x 处相应

于自变量增量x ?的纵坐标)(0x f 的增量,微分0

x x dy

=是曲线

)(x f y =在点))(,(000x f x M 处切线的纵坐标相应的增量(见

图)。

6.可微与可导的关系

)(x f 在0x 处可微?)(x f 在0x 处可导。

且0

00()()x x dy

A x x f x dx ='=?=

一般地,)(x f y =则()dy f x dx '=

所以导数()dy

f x dx

'=

也称为微商,就是微分之商的含义。

7.高阶导数的概念

如果函数)(x f y =的导数()y f x ''=在点0x 处仍是可导的,则把()y f x ''=在点0x 处的导数称为)(x f y =在点0x 处的二阶导数,记以0

x x y ='',或0()f x '',或

2

2x x dx y

d =等,也

称)(x f 在点0x 处二阶可导。

如果)(x f y =的1-n 阶导数的导数存在,称为)(x f y =的n 阶导数,记以)

(n y

)()

(x y

n ,n n dx

y

d 等,这时也称)(x f y =是n 阶可导。

二、导数与微分计算 1.导数与微分表(略) 2.导数与微分的运算法则

(1)四则运算求导和微分公式 (2)反函数求导公式

(3)复合函数求导和微分公式 (4)隐函数求导法则 (5)对数求导法

(6)用参数表示函数的求导公式

(乙)典型例题

一、用导数定义求导数

例 设)()()(x g a x x f -=,其中)(x g 在a x =处连续,求()f a ' 解:()()()()0

()lim

lim ()x a

x a f x f a x a g x f a g a x a x a

→→---'===--

二、分段函数在分段点处的可导性 例1 设函数

???>+≤=1

,1,)(2x b ax x x x f

试确定a 、b 的值,使)(x f 在点1=x 处可导。

解:∵可导一定连续,∴)(x f 在1=x 处也是连续的。 由 1lim )(lim )01(2

1

1

===---→→x x f f x x

b a b ax x f f x x +=+==+++→→)(lim )(lim )01(1

1

要使)(x f 在点1=x 处连续,必须有1=+b a 或a b -=1

又 2111()(1)1

(1)lim lim lim(1)211

x x x f x f x f x x x ---

------'===+=-- 1

11()(1)1(1)

(1)lim lim lim 111

x x x f x f ax b a x f a x x x +

+++----+--'====--- 要使)(x f 在点1=x 处可导,必须(1)(1)f f -+''=,即a =2.

故当1211,2-=-=-==a b a 时,)(x f 在点1=x 处可导.

例2 设1

lim )()1()1(2+++=--∞→x n x n n e b

ax e x x f ,问a 和b 为何值时,)(x f 可导,且求()f x '

解:∵1>x 时,+∞=-∞

→)

1(lim x n n e

1

→x n n e

∴ ??

????

?<+=++>=,x b ax ,x b a ,x x x f 1,

1,21

1,)(2 由1=x 处连续性,1lim )(lim 2

1

1

==++→→x x f x x ,12

1

)1(=++=

b a f ,可知1=+b a 再由1=x 处可导性,

21(1)

(1)lim 1

x x f f x ++→-'=-存在

1

()(1)

(1)lim 1

x ax b f f x -

-→+-'=-存在

且(1)(1)f f +-''=

根据洛必达法则1

2(1)lim 21

x x

f +

+→'== 1(1)lim 1

x a

f a -

-→'==,∴ 2=a 于是11-=-=a b

??

???<-=>=,1,12,1,1,1,)(2x x x x x x f

2,1,

()2,1,x x f x x ≥?'=?

三、运用各种运算法则求导数或微分 例1 设)(x f 可微,)

()(ln x f e x f y ?=,求dy

解:)(ln )(ln )()

(x df e de x f dy x f x f +=

()()1

()(ln )(ln )f x f x f x e f x dx f x e dx x

''=+ ()1

[()(ln )(ln )]f x e f x f x f x dx x

''=+

例2 设x

x x y =)0(>x ,求

dx

dy 解:x x y x

ln ln = 对x 求导,得

11()ln x x y x x x y x

''=+ 再令x

x y =1,x x y ln ln 1=,对x 求导,

11

1

ln 1y x y '=+,∴ ()(ln 1)x x x x x '=+ 于是[]

x x x x x x x x x dx

dy

1ln )1(ln -++= (0>x )

例3 设)(x y y =由方程x

y

y x =所确定,求

dx

dy 解:两边取对数,得y x x y ln ln =,

对x 求导,ln ln y x y x y y x y

''+

=+ (ln )ln x y y x y y x '-=-,22n ln y xy y

y x xy x

-'=-

例4 设

??

?

??+==??t

u t t u du u e y udu

e x 20)1ln(sin 2

2 求dy dx 解:)

21ln(2sin sin 2222

4t e t e t te dt

dy dt dx dy dx t t t +-== 四、求切线方程和法线方程 例1 已知两曲线)(x f y =与2

arctan 0

x t y e dt -=

?

在点(0,0)处的切线相同,写出此切线方

程,并求2lim ()n nf n

→∞

解:由已知条件可知0)0(=f ,2

(arctan )

2

(0)11x x e f x -='=

=+

故所求切线方程为x y =

2

()(0)

2

lim ()lim 22(0)22n n f f n nf f n

n

→∞→∞-'=?== 例2 已知曲线的极坐标方程θcos 1-=r ,求曲线上对应于6

π

θ=

处的切线与法线的直角

坐标方程。

解:曲线的参数方程为?

??-=-=-=-=θθθθθθ

θθθcos sin sin sin )cos 1(cos cos cos )cos 1(2y x

1sin cos 2sin sin cos cos 6

226

6

=+-+-=

==

=

=

π

θπ

θπ

θθ

θθθθθθ

θd dx d dy dx

dy

故切线方程)4

323(14321+-?=+-

x y 即 04

5

343=+-

-y x 法线方程

13()2424

y x -

+=--+ 即 04

1

341=+-+y x

3 设)(x f 为周期是

5

的连续函数,在0=x 邻域内,恒有

(1sin )3(1sin )8()f x f x x x α+--=+。

其中0)

(lim 0

=→x

x x α,)(x f 在1=x 处可导,

求曲线)(x f y =在点()6(,6f )处的切线方程。 解:由题设可知)1()6(f f =,(6)(1)f f ''=,故切线方程为

(1)(1)(6)y f f x '-=-

所以关键是求出)1(f 和(1)f '

由)(x f 连续性)1(2)]sin 1(3)sin 1([lim 0

f x f x f x -=--+→

由所给条件可知0)1(2=-f ,∴ 0)1(=f

再由条件可知8)sin )(sin 8(lim sin )sin 1(3)sin 1(lim 00=+=--+→→x x x x x x f x f x x α

令8)

1(3)1(lim ,sin 0=--+=→t

t f t f t x t ,又∵0)1(=f

∴ 上式左边=)

()

1()1(lim 3)]1()1([lim

00t f t f t f t f t t ---+-+→→

=(1)3(1)4(1)f f f '''+= 则4(1)8f '= (1)2f '=

所求切线方程为)6(20-=-x y 即 0122=--y x 五、高阶导数

1.求二阶导数 例1 设)ln(22a x x y ++=,求''y

解:

'y x '=

2

2

2

2

2

2

1)1(1a

x a

x x a

x x +=

++

++=

32223

22)

(2)(21''a x x

x a x y +-=?+-=-

一元函数微分学典型例题

一元函数微分学典型例题 1. 有关左右极限题 求极限??? ?????+++→x x sin e e lim x x x 41 012 ● 根据左右极限求极限, ● 极限x x e lim 1 →, x x sin lim x 0 →,x tan lim x 2 π→,x cot lim x 0→,x cot arc lim x 0→,x arctan lim x 1 0→都不存在, ● A )x (f lim A )x (f lim )x (f lim x x x =?==∞ →-∞ →+∞ → ● 【 1 】 2. 利用两个重要极限公式求1∞ 型极限 x sin x ) x (lim 20 31+→ ● 0→)x (?,e )) x (lim() x (=+??1 1 ● A )x (f lim =0→)x (?,A )x (f ) x (e ])) x (lim[(=+??11 ● 【 6e 】 3. 等价无穷小量及利用等价代换求极限 当0x + → (A) 1- (B) ln (C) 1. (D) 1-. ● 等价无穷小定义:如果1=α β lim ,则称β与α失等价无穷小,记为α∽β, ● 0→x 时,(1)n x x a x a x x x x x x x x x e x x x x x n x x ≈ -+≈-≈-+≈-≈---+≈-≈+≈≈≈≈111112 1 16111112 3 ln )(cos sin )ln(arctan tan sin αα

● 当0→)x (?时,)x (sin ?∽)x (?,11-+n )x (?∽ n ) x (?∽∽ ● 【 B 】 4. 利用单调有界准则求极限 设数列{}n x 满足n n x sin x ,x =<<+110π。证明:极限n n x lim ∞→存在,计算1 1n x n n n x x lim ??? ? ??+∞→ ● 利用单调有界准则球数列或者函数极限的步骤:1。证明数列或函数单调;2。证明 数列或函数是有界;3。等式取极限求出极限。 ● 定理单调有界数列必有极限还可以叙述为单调递减有下界数列必有极限,或单调递 增有上界数列必有极限。 ● 61 1 2 -→=?? ? ??e x x sin lim x x ● 【 0;6 1- e 】 5. 判断函数连续与否以及利用函数的连续性解题 设函数f (x )在x =0处连续,下列命题错误的是: (A) 若0()lim x f x x →存在,则f (0)=0. (B) 若0()() lim x f x f x x →+-存在,则f (0)=0. (C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()() lim x f x f x x →-- 存在,则(0)f '存 在 【 】 ● 若()()00 x f x f lim x x =→,则称函数()x f 在点0x 处连续。 ● 左连续右连续则连续。 ● 分段函数的分段点不一定是函数的间断点。 ● 判断函数在某点是否连续的步骤:求函数在该点的极限;求函数在该点的函数值;判断 二者是否相等,相等则连续,否则间断。 6.导数的定义式相关题目 设函数 ()x f 在 x=0某领域内有一阶连续导数,且 ()()0 000≠'≠f ,f 。若 ()()()02f h bf h af -+在0→h 时是比h 高阶的无穷小,试确定a, b. ● 函数在某一点导数的定义: ()()()x x f x x f lim x y lim x f x x ??????000 00-+=='→→ ()()()()()0 0000 00 x x x f x f lim h x f h x f lim x f x x h --=-+='→→

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

第二章 一元函数微分学

第二章 一元函数微分学 §2.1 导数与微分 (甲)内容要点 一、导数与微分概念 1、导数的定义 设函数)(x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量)()(00x f x x f y -?+=?。如果极限 x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000 存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0 x x y =' , x x dx dy =, )(x x dx x df =等,并称函数)(x f y =在点0x 处可导。如果上面的极限不存在,则 称函数)(x f y =在点0x 处不可导。 导数定义的另一等价形式,令x x x ?+=0,0x x x -=?,则 000 ()() ()lim x x f x f x f x x x →-'=- 我们也引进单侧导数概念。 右导数:0 000000()()()() ()lim lim x x x f x f x f x x f x f x x x x + ++→?→-+?-'==-? 左导数:0 000000()()()()()lim lim x x x f x f x f x x f x f x x x x - --→?→-+?-'==-? 则有 )(x f 在点0x 处可导)(x f ?在点0x 处左、右导数皆存在且相等。 2.导数的几何意义与物理意义 如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。 切线方程:000()()()y f x f x x x '-=-

高等数学教案--一元函数微分学的应用

高等数学教案—一元函数微分学的应用 课 时 授 课 计 划 第一课时 教学过程及授课内容 教学过程 一、柯西中值定理 定理1(柯西中值定理)如果函数)(x f 与 )(x F 满足下列条件:(1)闭区间 ],[b a 上连续; (2)在开区间),(b a 内可导; (3))('x F 在),(b a 内的每一点均不为零,那么,在),(b a 内至少有一点ξ,使得 二、洛必达法则 把两个无穷小量之比或两个无穷大量之比的极限称为00型或 ∞ ∞ 型不定式(也称为 0型或∞∞ 型未定型)的极限,洛必达法则就是以导数为工具求不定式的 极限方法. 定理2 (洛必达法则)若(1)0)(lim 0 =→x f x x ,0)(lim 0 =→x g x x ; (2))(x f 与)(x g 在0x 的某邻域内(点0x 可除外)可导,且0)('≠x g ; (3)A x g x f x x =''→) () (lim 0(A 为有限数,也可为∞+或∞-),则 A x g x f x g x f x x x x =''=→→) () (lim )()(lim 00 证 由于我们要讨论的是函数在点0x 的极限,而极限与函数在点0x 的值无关,所以我们可补充)(x f 与)(x g 在0x 的定义,而对问题的讨论不会发生任何影响。令0)()(00==x g x f ,则)(x f 与)(x g 在点0x 就连续了.在0x 附近任取一点x ,并应用柯西中值定理,得 .f(b)f(a)f ( )F(b)F(a)F () ξξ'-='-

) () ()()()()()()(00ξξg f x g x g x f x f x g x f ''=--= (ξ在x 与0x 之间) . 由于0x x →时,0x ξ→,所以,对上式取极限便得要证的结果,证毕. 注:上述定理对∞→x 时的0 未定型同样适用,对于0x x →或∞→x 时的未定型 ∞ ∞ ,也有相应的法则. 例1 求1 2 3lim 2331+--+-→x x x x x x . 解 123lim 2331+--+-→x x x x x x =12333lim 221---→x x x x =266lim 1-→x x x =46=2 3. 例2求x x x tan cos 1lim π+→. 解 x x x tan cos 1lim π+→=x x x 2πcos 1sin lim -→=0. 例3 求 x x x 1arctan 2 lim -+∞ →π 解 x x x 1arctan 2 lim -+∞ →π =221 11 lim x x x -+- +∞ →=22 1lim x x x ++∞→=1. 除未定型 00与∞ ∞ 之外,还有00,1,0,,0∞∞-∞∞?∞等未定型,这里不一一介绍,有兴趣的同学可参阅相应的书籍,下面就∞-∞未定型再举一例. 例5 求??? ? ?--→x x x x ln 11lim 1. 解 这是∞-∞未定型,通过“通分”将其化为 未定型. x x x x x x x x x x ln )1()1(ln lim ln 11lim 11---=??? ??--→→x x x x x x x 1ln 1 ln 1 lim 1-+ -+=→

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

高等数学(复旦大学版)第十章_多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

数学考研:一元函数微分学的知识点和常考题型

数学考研:一元函数微分学的知识点和常考题型 【大纲内容】 导数和微分的概念 导数的几何意义和物理意义(数三经济意义) 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数(数三不要求)的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分、曲率的概念、曲率圆与曲率半径(数三不要求) 【大纲要求】 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义(数三经济意义),会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3.了解高阶导数的概念,会求简单函数的高阶导数。 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数(数三不要求)以及反函数的导数。

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理(数三了解),了解并会用柯西(Cauchy)中值定理。 6.掌握用洛必达法则求未定式极限的方法。 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。(数三不要求) 【常考题型】 1.导数概念; 2.求给定函数的导数或微分(包括高阶导数)隐函数和由参数方程确定的函数求导; 3.函数的单调性和极值; 4.曲线的凹凸性与拐点; 5.利用微分中值定理证明有关命题和不等式或讨论方程在给定区间内的根的个数; 6.利用洛必达法则求极限; 7.几何、物理、经济等方面的最大值、最小值应用题。解这类问题,主要是确定目标函数和约束条件,判定所讨论区间。

一元函数积分学的应用

一元函数积分学的应用 一元函数积分学研究的是研究函数的整体性态,一元函数积分的本质是计算函数中分划的参数趋于零时的极限。 一元积分主要分为不定积分 ?dx x f )(和定积分? b a dx x f )(。化为函数 图像具体来说,不定积分是已知导数求原函数,也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C 的导数也是f(x)(C 是任意常数)。所以f(x)积分的结果有无数个,是不确定的。而定积分就是求函数f(X)在区间[a,b]中图线下包围的面积,可以说是不定积分在给定区间的具体数值化。因为积分在其它方面应用时一般都有明确的区间,所以本文主要研究定积分的各种应用。 积分的应用十分巧妙便捷,能解决许多不直观、不规则的或是变化类型的问题。故其主要应用在数学上的几何问题和物理上的各种变量问题和公式的证明以及解决一些实际生活问题。 微元法建立积分表达式 在应用微积分于实际问题时,首先要建立积分表达式,一般情况下,只要具备都是给定区间上的非均匀连续分布的量和都具有对区间的可加性这两个条件就都可以用定积分来描述(以下的讨论都是建立在这两个条件下,因此不再提示此条件)。 而建立积分表达式的方法我们一般用微元法。其分为两个步骤:(1)任意分割区间[]b a ,为若干子区间,任取一个子区间[]dx x x +,,求Q

在该区间上局部量的Q ?的近似值dx x f dQ )(=;(2)以dx x f )(为被积式,在],[b a 上作积分即得总量Q 的精确值 ??==b a b a dx x f dQ Q )(。(分割,近似,求和,取极限) 在实际应用中,通过在子区间],[dx x x +上以“匀”代“非匀”或者把子区间],[dx x x +近似看成一点,用乘法所求得的近似值就可以作为Q ?所需要的近似值,即为所寻求的积分微元dx x f dQ )(= 。 定积分在几何中的应用 在几何中,定积分主要应用于平面图形的面积、平面曲线的弧长、已知平行截面面积函数的立体体积、旋转体的侧面积。下面我们来分类讨论: 一、 平面图形的面积 求图形面积是定积分最基本的应用,因为定积分的几何意义就是在给定区间内函数曲线与x 轴所围成图形的面积。而求面积时会出现两种情况:直角坐标情形和极坐标情形。 1、直角坐标情形 在求简单曲边图形(能让函数图像与之重合)的面时只要建立合适的直角坐标系,再使用微元法建立积分表达式,运用微积分基本公式计算定积分,便可求出平面图形的面积。如设曲 y O

第九章多元函数微分法及其应用教案

第九章多元函数微分法及其应用 【教学目标与要求】 1、理解多元函数的概念和二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。 【教学重点】 1、二元函数的极限与连续性; 2、函数的偏导数和全微分; 3、方向导数与梯度的概念及其计算; 4、多元复合函数偏导数; 5、隐函数的偏导数;多元函数极值和条件极值的求法; 6、曲线的切线和法平面及曲面的切平面和法线; 【教学难点】 1、二元函数的极限与连续性的概念; 2、全微分形式的不变性; 3、复合函数偏导数的求法; 4、二元函数的二阶泰勒公式; 5、隐函数(包括由方程组确定的隐函数)的偏导数; 6、拉格郎日乘数法,多元函数的最大值和最小值。 【教学课时分配】 (18学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课§5 第6次课§6 第7次课§7 第8次课§8 第9次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

一元函数微分学综合练习题

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

自考高等数学(一)第五章 一元函数积分学.

第五章一元函数积分学 5.1 原函数和不定积分的概念 一、原函数与不定积分的概念 定义:如果在区间I内,存在可导函数F(x)使都有F'(x)=f(x)或dF(x)=f(x)dx,那么函数F(x)就称为f(x)在区间I内原函数。 例:,sinx是cosx的原函数。 Lnx是在区间(0,+∞)内的原函数。 原函数存在定理:

如果函数f(x)在区间I内连续,那么在区间I内存在可导函数F(x),使,都有F'(x)=f(x)。 简言之:连续函数一定有原函数。 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 例:(sinx)'=cosx (sinx+C)'=cosx (C为任意常数) 关于原函数的说明: (1)若F'(x)=f(x),则对于任意常数C,F(x)+C都是f(x)的原函数。 (2)若F(x)和G(x)都是f(x)的原函数,则F(x)-G(x)=C(C为任意常数) 证∵[F(x)-G(x)] '=F'(x)-G'(x) =f(x)=f(x)=0 ∴F(x)-G(x)=C(C为任意常数) 不定积分的定义: 函数f(x)的全体原函数的集合称f(x)的不定积分,记为∫f(x)dx。 ,其中∫为“积分号”,f(x)为被积函数,f(x)dx为被积表达式,C为任意常数。

例:求。 【答疑编号11050101】 解: 例:求。 【答疑编号11050102】 解: 积分曲线 例设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程。

【答疑编号11050103】 解:设曲线方程为y=f(x), 根据题意知 即f(x)是2x的一个原函数。 由曲线通过点(1,2) 所求曲线方程为y =x2+1。 函数f(x)的原函数的图形称为f(x)的积分曲线。显然,求不定积分得到一积分曲线族。 不定积分的性质

第三章-一元函数积分学

第三章 一元函数积分学 §3-1 不定积分 不定积分是计算定积分、重积分、线面积分和解微分方程的基础,要求在掌握基本积分法的基础上,更要注重和提高计算的技巧。 一、基本概念与公式 1. 原函数与不定积分的概念 2. 不定积分与微分的关系(互为逆运算) 3. 不定积分的性质 4.基本积分表 2222 22 312 22 3 2max{1}d .,1 max{1,}1,11, , 111max{1,}d d 3 11max{1,}d 1d 11 max{1,}d d . 3x x x x x x x x x x x x x x C x x x x x C x x x x x x C ?<-? =-≤≤??>?<-==+-≤≤==+>==+???????1求,因 当时 ;当时 ; 当时 例解 ()()3111321 11232 31lim lim 3,1lim lim 323 ,232 133 max{1,}d 1 1.2 1 33 x x x x x C x C x C x C C C C C x C x x x x C x x C x -+ - +→-→-→→??? +=+ ????? ? ???+=+ ?????? =-+??? ?=+?? ?-+<-???=+-≤≤???++>?? ? 由原函数的连续性,有 得 故 ,,,

二、不定积分的基本方法 1. 第一类换元法(凑微分法) ()d ()[()]d []d [].f u u F u C f x x x f x x F x C ?????=+'()=()()=()+???若,则 2. 第二类换元法 ()10[]()()d []d ()[]. x t t x x t t f t t G t f x x f t t t G t C G x C ?????????-1=() =-''=()()≠()()'()()=+()+? ? 令代回 若是单调可导函数,且,又具有原函数,则有换元公式 3. 分部积分法 ()()d ()()()()d d d . u x v x x u x v x u x v x x u v uv v u ''=-=-????或 4. 有理函数的积分法 化有理真分式为部分分式. 5. 三角函数有理式的积分 (sin cos )d ()tan 2 R x x x R u v u v x t =?对于,(其中,表示关于,的有理函数),可用“万能代换”化为有理函数的积分. 三、题解示例

高数多元函数微分学教案 第一讲 多元函数的基本概念

第八章 多元函数微分法及其应用 第一讲 多元函数的基本概念 授课题目: §8.1多元函数的基本概念 教学目的与要求: 1、理解多元函数的概念. 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质. 教学重点与难点: 重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容: 一、平面点集 n 维空间 1、平面点集 平面上一切点的集合称为二维空间, 记为R 2 即 R 2=R ?R={(x , y ):x , y ∈R } 坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作 E ={(x , y ):(x , y )具有性质P }. 例如,平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y ):x 2+y 2

如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .. 点与点集之间的关系: 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点. (2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点. (3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点. E 的边界点的全体, 称为E 的边界, 记作?E . E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . (4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E . 例如, 设平面点集E ={(x , y )|1

一元函数积分知识点完整版

一元函数积分知识点完整版

牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知?+=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 一.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在 ]1,0[上连续,A dx x f =?20)cos (π,则 ==?π 20)cos (dx x f I _______。 二.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑?=∞→--+=n i n b a n a b n a b i a f dx x f 1))((lim )( ∑?=∞→---+=n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5:

求∑=∞→+=n i n i n n i n w 12tan lim 三.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 四.考察分项积分方法 讲解:利用不定积分(定积分)线性性质把复杂函数分解成几个简单函数的和,再求积分。 问题6: 求下列不定积分: dx x x ?++2cos 1cos 12 五.考察定积分的分段积分方法 讲解:利用定积分的区间可加性把复杂的区间分解成几个简单区间的和,再求积分。 问题7: 计算以下定积分: {}?-+22cos ,5.0min )1(ππdx x x 六.考察不定积分的分段积分方法 讲解:有时被积函数是用分段函数的形式表示的,这时应该采用分段积分法。 问题8:

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞∞或00型,) ()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

高数一元函数积分学习题及答案

第四章 不定积分 一、是非题: 1.已知()211 arcsin x x -='π+,则?π+=-x dx x arcsin 112. 错 2. 连续函数的原函数一定存在. 对 3. ()()?? =dx x f d dx x f dx d . 错 4. ax y ln =和x y ln =是同一函数的原函数. 对 ()2x x e e y -+=和()2x x e e y --=是同一函数的原函数. 对 5. ()()??=dx x f k dx x kf (k 是常数) 错 二、填空题: 1.()()? ='dx x f x f (C x f +)(ln ). 2.()?=''dx x f x (()C x f x f x x f xd +-'='? )()( ). 3.知()()?+=C x F dx x f ,则()?=+dx b ax f (C b ax F a ++)(1),b a ,为常数. 4.已知 ()?+=C e dx x f x ,则()=??dx x x f sin cos ( C e x +-cos ). 5.已知()[]x dx x f sin ='?,则()=x f (x sin ). 6. 设()x f 、()x f '连续,则() ()[]=+'?dx x f x f 21([]C x f +)(arctan ). 7. 设()x f 的一个原函数为x e -,则()ln f x dx x =?( 1C x + ). 8. 函数(21ln(1)2x C ++)是2 1x x +的原函数. 9. 设()x f x e =,则()ln f x dx x '=?(x C +). 三、选择填空: 1.已知()x F 是()x f 的一个原函数,C 为任意常数,下列等式能成立的是( a ) a .()()?+=C x F x dF b .()()? ='x F dx x F

第二章-一元函数微分学.docx

第二章一元函数微分学 导数的概念 定义设函数y=f(x)在点x 0的某一邻域内有定义,若自变量x 在点X 。处的改变 量为△ x(x 0+Ax 仍在该邻域内).函数y 二f(x)相应地有改变量△『= f(xo+Z\x)?f(xo),若果极限 点Xo 处的导数,记作 ____ 或 _________ f '(Xo),即f(x 0)= ___________________ . 此时称函数y 二f(x)在点Xo 处可导.如果上述极限不存在,则称函数y 二f(x)在点 X 。处不可导. 下面是两种等价形式: f'(Xo)= __________________ = ___________________ ? 当 Xo =0,W: r (0)= _____________ , 如果y 二f(x)在开区间(a,b)内每一点都可导,则称函数f(x)在开区间(a,b)内可导, 由于对于(a,b)内每一点x,都对应一个导数值F(x),因此又称此F(x)为函数f(x) 在(a,b)内的 __简称为 _____ ,记作 __ 或一—. f(x)在点x 0的导数f'(xo)可以看做是导数f'(x)在点x=x 0处的函数值,即 f(x 0)= ? 注意:f'(xo)工[f(x°)y ■.? /(兀0 +山)一/(旺) 如果y=f(x)在点X 。及其左侧邻域内有定义,当hm —T — 存在时,则称该极值为f(x)在点X 。处的 ______ 记为—.同理,定义右导数 性质 函数y=f(x)在点x 0处可导 ________ 左导数与右导数常用于判定分段函数在其分段点处的导数. 导数的几何意义 如果函数y 二f(x)在点X 。处的导数F(x°)存在,则在几何上表明曲线尸f(x)在点 (xo, f(x 0))处存在切线,且切线斜率为_? 可导函数与连续性的关系 函数y 二f(x)在点xo 处可导,是函数y 二f(x)在点xo 处连续的 _______ 条件. 如u 二u(x),v=v(x)都在x 处可导,由导数的定义可以推得u±v 在x 处也可导,且 (u±vf= ________ (导数的和差运算公式). 导数的运算 3.1基本初等函数的导数公式 c'=_(c 为常数)(兀")‘二 ________ ( n G R) (a x y= ________________ (e x y = _________ (logx) = ------------------------------ (In xY = ____________ (sin x)f = _________ (cos xY = ______________ (tan x)z = _____________ (cot x)f = _________ (arcsin x)f - ____________ (arccos x)z = ____________ 存在,则称此极限值为函数沪f(x)在 2.

相关主题