搜档网
当前位置:搜档网 › 多孔陶瓷的制备工艺及应用文献综述

多孔陶瓷的制备工艺及应用文献综述

多孔陶瓷的制备工艺及应用文献综述
多孔陶瓷的制备工艺及应用文献综述

文献综述

多孔陶瓷的制备工艺及应用

肖燕

(湖南大学外国语学院 201213010322)

摘要:多孔陶瓷因其独特结构和优异性能近年来成为陶瓷材料领域的一个研究热点,本文综述了多孔陶瓷制备技术的发展以及其应用。

关键词:多孔陶瓷应用制备工艺

1.前言

多孔陶瓷又称微孔陶瓷、泡沫陶瓷,是一种新型陶瓷材料,是以刚玉砂、碳化硅、堇青石等优质原料为主料、配以添加剂经过成型和特殊高温烧结工艺制备的一种具有开孔孔径、高开口气孔率的一种多孔性陶瓷材料。多孔陶瓷一般可按孔径大小分为3类:微孔陶瓷(孔径小于2nm)、介孔陶瓷(孔径为2~50nm)及宏孔陶瓷(孔径大于50nm)。若按孔形结构及制备方法,其又可分为蜂窝陶瓷和泡沫陶瓷两类,后者有闭孔型、开孔型及半开孔型3种基本类型。

多孔陶瓷的发展始于19世纪70年代,初期仅作为细菌过滤材料使用,随着控制材料的细孔结构水平的不断提高,其与玻璃纤维、金属等相比具有可控的孔结构、高的开口空隙率、均匀的透过性、机械强度高、易于再生、较低的热传导性、耐高温、抗腐蚀、使用寿命长等优良性能,给其应用开拓了广阔的前景,被广泛应用于环保、节能、化工、石油、冶炼、食品及生物医学等多个科学领域,引起全球材料科学界的密切关注。虽然目前已有较多关于多孔陶瓷的综述文献,但近些年来在技术发展推动下,新工艺新应用不断涌现,因此有必要结合一些最新文献对多孔陶瓷的制备工艺与应用进行综述。

2.多孔陶瓷的制备工艺

多孔陶瓷的性能除与组成因素相关以外,还与气孔形态、大小及分布等因素有密切关联。从制备工艺、结构和性能角度考虑,形成气孔是多孔陶瓷制备工艺

的关键步骤,也是多孔陶瓷研究的重点。本文将从介绍目前主流制备工艺着手,重点综述新型制备工艺方面取得的进展。

2.1传统制备工艺

一些研发历史较长、技术相对成熟的多孔陶瓷制备工艺已经获得了规模化的生产应用,这些工艺称为传统制备工艺,常见的有添加造孔剂法、有机泡沫浸渍法、发泡法、挤压成型技术、颗粒堆积法等。它们具有工艺流程简单、制备周期短、易于实现规模生产等优点。表1比较了这几种工艺方法的特点。

表1

2.2新型制备工艺

多孔陶瓷的新型制备工艺采取更为精细复杂的工艺过程和控制参数,理论上可以从成分、气孔形态及分布等各方面,实现对多孔陶瓷材料结构的调控,最终达到改善性能的目的。通过诸如梯度构造、溶胶-凝胶技术等新工艺,可以有效改善和拓宽传统多孔材料的性能及应用。虽然这些工艺过程具有精细可控的优点,但同时也存在成本高昂、工艺复杂等问题,限制了新技术的应用范围和推广程度。总体来说,多数工艺还停留在实验室研究阶段。本文将选取孔梯度构造、凝胶注模、放电等离子火花烧结等几种新型制备工艺进行重点介绍

2. 2. 1 利用陶瓷纤维制备多孔陶瓷

用纤维来成型多孔陶瓷主要是利用纤维的纺织特征或纤细形态,而相互架构成三维的孔洞的一种成型方法。利用其纺织特征可以进行三维编织,用三维编织的多孔材料的气孔率,孔径等高度可控。但其受到两个方面的限制: ( 1) 陶瓷纤维的长度和编织性能不足以作为编织材料使用;

( 2) 三维编织技术要求高,成本昂贵。目前使用的纤维多孔陶瓷主要利用短纤维和高温无机粘结剂烧结而成。

利用纤维无序堆积的空隙作为气孔,细小的纤维作为孔壁,高温无机粘结剂连接纤维的交接处,制备出高气孔率 ( >90%) ,高的比表面积,具有三维贯通气孔的纤维多孔陶瓷。高孔隙率的纤维多孔陶瓷陶瓷材料具有优良的保温隔热性能、抗热震性能、过滤性能。日前被广泛用做高温隔热材料及高温过滤材料。2.2.2 凝胶注模工艺

凝胶注模工艺源于20世纪90年代,美国橡树岭国家实验室最早将传统陶瓷成型技术与高分子化学反应结合在一起,研制出这种新型陶瓷制备工艺。凝胶注模工艺过程是一个原位成型过程,主要利用有机单体或少量添加剂的化学反应原位凝固成型,获得具有良好微观均匀性和一定强度的坯体,而后烧结制得成品。传统的添加造孔剂的方法工艺简单,孔径可控,成本低,但干燥和烧结过程中气孔容易坍塌。利用凝胶固化所产生的支撑体可以避免上述问题。而且凝胶注模工艺制品具有成型精度高,坯体强度大等优点。利用凝胶注模工艺有机体本身

的高温燃尽或凝胶注模工艺与造孔剂法相结合将会是制备多孔材料的一种很好的方法。

2.2.3孔梯度制备方法

孔梯度陶瓷是指孔径随厚度作有规律地缩小或增大的陶瓷材料,按孔的分布状况可分为连续孔梯度陶瓷和阶梯状孔梯度陶瓷。孔梯度多孔陶瓷的制备方法主要有致孔剂梯度排列法、有机前驱体浸渍法以及沉淀生成法等。致孔剂梯度排列法是将混有不同粒径致孔剂的骨料按致孔剂粒径从大到小的顺序一层一层的平铺在模具内,经过压制成型、干燥和烧成而制得孔梯度多孔陶瓷。有机前驱体浸渍法是将不同孔径的有机前驱体分别浸入陶瓷浆料中,然后按孔径从大到小的顺序叠放在一起,经干燥烧成即可得到孔梯度多孔陶瓷。沉淀生成法是将改性的不同粒度的致孔剂粉末置入同一陶瓷浆料中,会出现共同沉淀,由于不同粒度致孔剂的沉淀速率不同,可以获得不同粒度的致孔剂组分连续变化的沉积层,经干燥、成型、烧结即可获得具有孔梯度的多孔陶瓷。

2.2.4 放电等离子烧结工艺

放电等离子烧结工艺(SPS)又被称为等离子辅助烧结、等离子活化烧结、脉冲电流热压烧结等,即通过在粉末颗粒之间直接通入脉冲电流,快速产生高温而实现加热烧结。它具有升温速度快、组织可控性高、节能环保等优点,可极大地缩短烧结时间,所制备材料的组织均匀、性能优异,因此近年来得到了广泛研究和快速发展。但这种工艺也存在制备样品形状结构简单、工艺可重复性差、模具损耗严重、生产成本偏高等缺点,有待于进一步研究。

2.2.5模板合成工艺

模板合成工艺是指将陶瓷前驱体注入多孔结构模板中,通过烧结或者其他处理方

法将模板去掉,最终获得了复制模板形貌结构的多孔陶瓷,需要注意的是,得到多孔陶瓷的真正结构是所准备模板的反结构。模板可以是天然的,也可以是人工合成的。天然模板就是以天然的多孔材料作为模板,比如常见的木材、沸石、硅

藻土和蛋白石等。其中木材等生物材料为模板的仿生材料研究是目前模板法

制备多孔陶瓷的研究热点之一。木材的资源丰富,种类繁多,价格低且可再生,木材碳化后就是多孔碳材料,其孔表面比较容易改性,因此利用生物模板来制备多孔陶瓷是非常有意义的。

2.2.6 冷冻干燥法

该方法将陶瓷浆料进行冷冻,使溶剂从液相变成固相,在干燥过程中,通过降压使冰直接升华成气相得以排除,同时产生开口多孔结构,经烧结后可制得多孔陶瓷。在冷冻过程中,冰在溶剂的形成方向可实现单向控制,因此可获得气孔呈定向排列的多孔结构。

3.多孔陶瓷的应用

多孔陶瓷作为以气相为主相的功能陶瓷材料,因其优异的性能被广泛应用于冶金、化工、环保、能源、食品、制药、生物等各个领域作为过滤、分离、布气、吸音、隔热、化工填料、生物陶瓷和催化剂载体等材料。随着多孔陶瓷研究的加深,其应用领域变得极其广泛,由于时间有限,本文仅提取出最有代表性的应用进行描述。

3.1过滤与分离

各种废气、城市生活污水和工业废水都需要进行相应的过滤和分离才能排放到自然环境中,多孔陶瓷则扮演着环境净化使者的角色。多孔陶瓷的板状和管状制品组成的过滤装置具有过滤面积大,过滤效率高的特点,以及多孔陶瓷本身具有的耐高温、耐磨损、耐腐蚀、机械强度高、不污染过滤液体以及易于再生等优点,可用于熔融金属过滤、城市地下水和工业污水的处理、混合性气体的分离、非混合性流体的分离、流体中微细粒子的分离及液体离子、有机高分子的吸附分离等。

为了防止非金属杂质进入液态金属熔体,人们用多孔陶瓷制成过滤器,用其过滤金属可显著去除金属中的非金属杂质和气体等,提高金属的内在质量。在气体、液体的过滤中,多孔陶瓷过滤器的效果也非常好。多孔陶瓷的微孔孔径如果小到可以和气体的平均自由程相比的程度,在气体混合的情况下,隔一多孔陶瓷分离器,在其低侧便可得到与高压侧的气体组成不同的气体。不相溶的两种液体

通过多孔陶瓷时,流体和多孔体的浸润性及表面张力都会影响其透过性能。

陶瓷分离膜固耐高温、耐酸碱、抗生物侵蚀、不老化、寿命长等优点,被开发应用于食品工业、生物化工、能源工程、环境工程、电子技术等领域。随着材料科学技术的发展,纳米级多孔无机膜的制备和应用成为人们目前研究的热点。微孔无机膜还应用于光学、电子学、磁学等领域。

3.2催化剂载体

在多孔陶瓷基体气孔壁上涂覆催化剂之后,可以用作高效催化材料。由于泡沫陶瓷具有表面积高、热稳定性好、耐磨、不易中毒、密度低等特点,故广泛用作汽车尾气催化净化器载体。将这种净化器安装在汽车排气管中,可以使排出的CO、

NO2和碳氢化合物等有害气体转化成无毒的CO2、H2O、N2。转化率高达90%以上。将其用于柴油车中,可使炭粒精净化率超过50%。当泡沫陶瓷芯积满炭粒时,可采用催化氧化法或电控燃烧法来消除这些沉积的炭粒,以达到再生和长期使用的目

的。同时,泡沫陶瓷常用于化工厂、印刷厂、食品厂及有毒、恶臭等有害气体处理。

3.3 陶瓷传感器

将多孔陶瓷置于气体或液体介质中时,介质中的某些成分被多孔陶瓷吸附或与之反应,导致多孔陶瓷电阻特性发生变化,利用此原理可制成气敏及湿敏陶瓷传感器。陶瓷传感器具有耐高温、耐腐蚀、抗磨损、测试灵敏、准确且制造工艺简单等特点,目前已广泛用于多种气体及液体的成分检测。

在汽车领域,陶瓷传感器作为汽车电子控制系统的信息源已经得到普遍使用,汽车电子化和自动化程度越高,对传感器的依赖性就越大。利用气敏多孔陶瓷材料制备的汽车尾气监测氧传感器,可通过测定尾气排放中的氧浓度来检测发动机空燃比,达到节省燃油,减少CO、NO2等有害气体排放量的目的,既经济又环保。

3.4 生物工程材料

随着材料科学迅猛发展,几乎所有人体器官(神经系统除外)都可用人造材料所代替。骨移植替代材料的研究和应用更是发展迅速,研究者发现羟基磷灰石(HA)

和磷酸三钙(TCP)为代表的具有多孔结构的活性生物陶瓷不仅具有良好的生物相容性和生物降解性,而且其孔结构为新骨的生成提供了坚固的支架和有效的空间。多孔磷酸三钙陶瓷人工骨材料(MPTCP),经生物相容性和成骨实验表明,生物相容性好,无毒且能刺激新骨的生成。

3.5隔热吸能

由于多孔陶瓷孔隙率高,使得其密度较小、热传导系数较低,从而造成了巨大的热阻及较小的体积热容,使其成为新型保温隔热材料。而且若将其内部抽成真空,那么多孔陶瓷将成为目前世界上最好的隔热材料)))超能隔热材料。因而能很好

的防止热量的损失而引发的热污染。无论是建筑的外墙、门窗还是屋顶等,彻底淘汰旧式粘土砖瓦、密实钢窗,代之以多孔陶瓷材料,不仅可以节省大量人力物力,更重要的是可以防止热量散失、阻挡室内外的热量交换,从而达到节约能源,进而保护环境的目的。

4.结语

多孔陶瓷由于自身的优点一直受到人们的关注,随着科技的发展,多孔陶瓷的制备工艺也不断的发展完善,多孔陶瓷的应用范围也不断的拓宽,尤其在环境保护等方面有非常重要的价值;在多孔陶瓷制备及应用的发展中,其孔结构检测方法也随着发展,也涌现出更新、更便捷、更快的检测方法与检测仪器。于此同时,我们还要看到多孔陶瓷的研究与应用中还存在着许多问题,如多孔陶瓷的脆性、多孔陶瓷的孔径大小与形状分布难于精确控制、新制备工艺生产成本高并且难以大规模批量化生产等问题。针对以上问题,需加强对多孔陶瓷孔径尺寸与分布的研究,在定量表征多孔陶瓷孔径尺寸与分布的基础上,做到定量的控制多孔陶瓷的孔径尺寸与分布,这是不论传统制备工艺和新工艺都需要解决的问题。在此基础上,进一步的降低生产成本,推进先进多孔陶瓷的产业化与规模化。

参考文献

1 刘铁艳,牛胜伟. 浅谈多孔陶瓷材料制备工艺技术[J].现代技术陶瓷,2012,4:46-49.

2 曾令可,胡动力,税安泽,等.多孔陶瓷制备新工艺及其进展[J].中国陶瓷.2008.

3 刘军伟,张彤,范锦鹏,孙陈诚,洪樟连.多孔陶瓷制备工艺及应用进展[J].材料导报,2010,10.

4 赵明臻,梁锦.多孔陶瓷的性能及其制备方法的综合评述[J].中山大学研究生学刊,2013,34(4):62-68.

5郑学富,蒋兵,王勇军,王伟.多孔陶瓷制备工艺及其孔结构检测方法研究进展[J].现代陶瓷技术,2012,3:48-53.

6朱俊.浅谈多孔陶瓷材料及其过滤技术[J].佛山陶瓷,2011,11:23-27.

7杨坤,齐荣,杨涛.绿色多功能材料--多孔陶瓷[J].广州化工,2004,12(4):13-17.

8刘树元,杨焱明,刘庆,郑显鹏,杜斌.多孔陶瓷材料在环境工程中的应用[J].济南大学学报,2008,12(1):66-71.

陶瓷基复合材料综述

浅论陶瓷复合材料的研究现状及应用前景 董超2009107219金属材料工程 摘要 本文主要对陶瓷复合材料的研究现状及应用前景进行了研究,并对当今陶瓷复合材料发展面临的问题进行了概括,希望对陶瓷复合材料的进一步发展起到一定的作用。 本文首先对Al2O3陶瓷复合材料和玻璃陶瓷复合材料的研究进展及发展前景进行了详细的研究。然后对整个陶瓷复合材料的发展趋势及存在的问题进行了分析,得出了在新的时期陶瓷复合材料主要向功能、多功能、机敏、智能复合材料、纳米复合材料、仿生复合材料方向发展;目前复合材料面临的主要问题是基础理论研究问题和新的设计和制备方法问题。 关键词:Al2O3陶瓷复合材料玻璃陶瓷复合材料研究现状应用前景 1. 前言 以粉体为原料,通过成型和烧结等所制得的无机非金属材料制品统称为陶瓷。陶瓷的种类繁多,根据陶瓷的化学组成、性能特点、用途等不同,可将陶瓷分为普通陶瓷和特殊陶瓷两大类。而在许多重要的应用及研究领域,特殊陶瓷是主要研究对象。 陶瓷复合材料是特殊陶瓷的一种。在高技术领域内,对结构材料要求具有轻质高强、耐高温、抗氧化、耐腐蚀和高韧性的特点。陶瓷具有优良的综合机械性能,耐磨性好、硬度高、以及耐热性和耐腐蚀性好等特点。但是它的最大缺点是脆性大。近年来,通过往陶瓷中加入或生成颗粒、晶须、纤维等增强材料,使陶瓷的韧性大大地改善,而且强度及模量也有一定提高。因此引起各国科学家的重视。本文主要介绍了各种陶瓷复合材料的研究现状及其应用前景,并对陶瓷复合材料近年来的发展进行综述。 2.研究现状 随着现代科学技术快速发展,新型陶瓷材料的开发与生产发展异常迅速,新理论、新工艺、新技术和新装备不断出现,形成了新兴的先进无机材料领域和新兴产业。科学技术的发展对材料的要求日益苛刻,先进复合材料已成为现代科学技术发展的关键,它的发展水平是衡量一个国家科学技术水平的一个重要指标,因此世界各国都高度重视其研究和发展。 复合材料的可设计性大,能满足某些对材料的特殊要求,特别是在航空航天技术领域的应用得到迅速发展。陶瓷复合材料的研究,根本目的在于提高陶瓷材料的韧性,提高其可靠性,发挥陶瓷材料的优势,扩大应用领域。本文就几类典型的陶瓷复合材料介绍其研究现状。 2.1Al2O3陶瓷复合材料的研究进展及发展前景 Al2O3陶瓷作为常见陶瓷材料,既具有普通陶瓷耐高温、耐磨损、耐腐蚀、

工业设计 开题报告

毕业设计(论文)开题报告 学生姓名:火旺学号: 1702060127 所在学院:艺术设计学院 专业:工业设计 设计(论文)题目:家庭影院电脑(HTPC)造型设计 指导教师:吴海红 20010 年 3 月 5日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 随着社会的发展,科学的进步,人们对生活品质的要求也越来越高,电脑成为我们生活中不可缺少的一部分。当年“486”的问世,第一次将多媒体的概念赋予电脑,如今这一概念又得到了进一步的扩展,借助电脑搭建的数字家庭影院引起了人们的高度关注,这便是我们时常听到的HTPC。HTPC是“Home Theater Personal Computer”的缩写,中文直译为“家庭影院个人电脑”。它从2005年开始出现在人们视野中,代表了在数字家庭理念推动下,PC产品形态家电化的趋势,在发达国家已较为普及,成为传统家庭影院的有效扩展及补充。但就目前HTPC的设计来说,无论在外观、功能还是操作界面上都不尽如人意,因此,如何使HTPC更好地融入家庭、融入生活就是现代工业设计师需要解决的问题。 一、课题来源与现状研究 本次毕业设计课题来自于导师的建议,加上自己对电子数码方面的产品比较感兴趣,所以选择了家庭影院电脑设计。进入21世纪,科学技术不断发展,电脑技术的发展更是给我们带来了一次又一次的冲击和震撼,当今,多媒体电脑已经步入平常百姓的家庭,充当起生活好助手的角色。 在如今科技飞速发展的时代中,各种新产品、新概念可谓是层出不穷,其中“数字家庭”是一个重要的,也是最近几年中上镜率极高的概念。许多的IT专业媒体乃至普通的大众媒体都频频的提到这“四个字”,可以说在大多数人的眼中,“数字家庭”将是未来家庭的发展方向。 从功能的定义上来看,数字家庭这一概念目前是指:可以在客厅、卧室使用电视来欣赏存储在电脑中的电影、图片、音乐;可以在家中的每一个房间,甚至包括卫生间和厨房聆听电脑或者是其它播放设备中的音乐;还可以在办公室中监控家中的情况,用一个遥控器控制家中所有的电器设备;甚至在回家的路上,通过手机或者其它遥控设备,设定好空调的温度、让电饭煲开始煮饭…… 用比较概括性的文字来表达就是将各种数字化产品按照家庭生活的需要,通过有线

胶体的应用综述

胶体的应用综述 班级:13材料化学1班姓名:金文倩学号:201310230138 摘要:胶体与表面化学是研究胶体分散体系物理化学性质及界面现象的科 学。虽然原属物理化学的一个分支,但其与生产和生活实际联系之紧密和应用之广 泛是化学学科中任一分支不能比拟的。 关键词:胶体界面化学分散体系应用 前言:研究分散体系(除小分子分散体系以外的胶体分散体系和一般粗分散体系)和界面现象的物理化学分支学科。胶体和表面化学的研究和应用,实际上可追溯到远古时代。如中国史前时期陶器的制造;4000年以前巴比伦楔形文字碑文中有关油膜(不溶单分子膜)的记载;肥皂以及皂角一类天然表面活性剂(洗涤剂)的应用;毛细现象的研究等等。但作为一种科学,直到20世纪才得到具有本身特色的迅速发展。 一、胶体 1.胶体的由来及其认识的发展 胶体一词,来自1861年T.格雷姆研究物质在水中扩散的论文《应用于分析的液体扩散》。当时发现有些物质(如某些无机盐、糖和甘油等)在水中扩散很快,容易透过一些膜;而另一些物质,如蛋白质、明胶和硅胶类水合氧化物等,则扩散很慢或不扩散。前者容易形成晶态,称为晶质;后者不易形成晶态,多呈胶态,则称为胶体。此种分类并未说明胶体的本质,因为胶状的胶体在适当条件下可以形成晶态,而晶质也可以形成胶态。直到20世纪初超显微镜的发明以及后来电子显微镜的应用,对胶体才逐渐有较清楚的了解。 经典的胶体体系由无数大小在10-7~10-4 厘米之间的质点所组成,这种质点远大于一般经典化学所研究的分子,可以是胶状,也可以是晶质。由这一概念出发,胶体体系的不稳定、不易扩散、渗透压很低等不同于经典分子分散体系的性质,即可得到明确解释。 在胶体体系中,胶体质点成为一个相,周围的介质为另一相。此种质点分布于介质中的体系称为分散体系:胶体质点分散于介质中的体系即为胶体分散体系;固体质点分散于液体介质中的胶体分散体系称为溶胶,例如,三价铁盐稀溶液水解而得的氢氧化铁溶胶,还有硫化砷溶胶、硫溶胶、金溶胶等等(介质不一定必须是水)。气体为分散介质的胶体分散体系称为气溶胶,例如烟(固体质点)和雾(液体质点)。乳状液(液体质点分散在液体介质中)、泡沫(气体分散在液体介质中)、泥浆等也属于分散体系,但质点较大,稳定性差,容易破坏,称为粗分散体系。 从胶体分散体系的热力学特点考虑,溶胶是热力学不稳定的体系,体系中的界面(质点与介质之间的相界面)总是要减少、胶体质点趋向于聚集在一起,有发生聚沉而使分散体系破坏的倾向(粗分散体系更易如此)。破坏之后,分散体系不能自动形成,故溶胶这种胶体称为不可逆胶体,也叫做疏液胶体,取其质点与分散介质(液体)不亲合(不溶)之意。 2.胶体体系的特点 自质点大小这一特点考虑,高分子与胶体质点的大小差不多。例如,分子量为 36000的胰

生物科学文献综述

纳米光催化颗粒对病原菌的杀灭效果研究

【文献综述】 纳米光催化颗粒对病原菌的杀灭效果研究 摘要:纳米光催化颗粒在可见光下对病原菌微生物的繁殖具有很好的杀灭效果,本文对光催化抗菌材料的现状和前景,优点和不足,损伤机理分析进行综述。 关键词:纳米光催化颗粒;病原菌;杀灭效果;损伤机理 引言 纳米光催化颗粒是具有杀灭或抑制病原微生物繁殖能力的一类光催化剂,当用可见光照射纳米颗粒时,通过一系列的作用,可产生具有强氧化能力的氧负离子(.O2-)和氢氧根负离子(.OH)。由于.O2-,.OH具有强氧化能力,可以氧化分解构成细菌微生物的主要成分的各种有机物质,干扰细菌蛋白质的合成[1],从而有效的的抑制细菌的繁殖生长,可以引发绝大多数有机物分子发生氧化还原反应,因此具有很好的消毒杀菌功能[2]。 1光催化抗菌材料的现状和前景 光催化抗菌材料是近些年来专家研究的热门领域之一,近年来,以二氧化钛为代表的光催化抗菌材料因其稳定性好、成本低、催化效率高等突出优点而备受人们的关注[3,4]。但是 ,二氧化钛光催化抗菌剂对太阳能的利用率低相对比较低 ,且对紫外线的要求比较严格,,从而无法有效的利用廉价的太阳能源,以致于对太阳能的应用受到了很大的限制 ,因此是否能够开发出能在可见光照射下而具有高效抗菌性能的新型光催化抗菌剂越来越受到人们的关心和重视。 纳米( nm )为长度单位, 1 nm相当于十亿分之一米。而光催化抗菌材料的纳米微粒的直径在1 nm ~ 100 nm之间。微小的颗粒能使纳米材料拥有量子尺寸的表面效应和量子隧道效应, 从而展现出多种其独特的性质,,所以光催化抗菌材料在滤光、催化、光吸收以及抗菌消毒等方面都有很高的科技价值以及广泛的应用前景[5]。 2光催化抗菌材料的优点和不足 因为半导体光催化剂具有良好的禁带宽度、催活性、氧化能力、无毒以及稳定性高等诸

加湿器设计文献综述

本科生毕业设计(论文)文献综述评价表 毕业设计(论文)题目加湿器时尚造型设计综述名称加湿器时尚造型设计评阅教师姓名职称 评价项目优良合 格 不合 格 综述结构01 文献综述结构完整、符合格式规范 综述内容02 能准确如实地阐述参考文献作者的论点和实验 结果 03 文字通顺、精练、可读性和实用性强 04 反映题目所在知识领域内的新动态、新趋势、 新水平、新原理、新技术等 参考文献05 中、英文参考文献的类型和数量符合规定要求,格式符合规范 06 围绕所选毕业设计(论文)题目搜集文献 成绩 综合评语: 评阅教师(签字): 年月日

文献综述: 加湿器时尚造型设计 摘要:近些年来,入冬以后天气突变,北方的空气变得异常的干燥,加湿器越发凸显其巨大作用。加湿器在加湿、抑菌、美容等方面起到了很好的作用,加湿器近年来,成了人们在生活、工作、学习重点需求的消费产品。随着社会的发展和人们生活质量的提高,对于加湿器的消费要求就更高了,人们已经从原来单一的加湿、抑菌、美容功能转向更具精神追求,因此在设计开发时,除了满足这些必须的基本功能外害的满足消费者更高的个性化需求,包括时尚、可爱、现代等元素。工业设计不仅仅是一门技术,更是一门艺术。真正的产品应该是集科学、技术、艺术与一体的体现。随着社会的发展,人机工程学等设计学科更多的服务于设计,人机工程学研究指出,在产品设计全过程的各个阶段,都必须进行人机工程学设计,以保证产品使用功能得以充分发挥,[1]以提供更加完善全面与先进的服务给消费者。为了满足我们消费者个性化的消费需求,为此给我们设计人员提供了更加充足的动力与支持。 关键词:加湿器、个性化需求、人机工程学 1 加湿器的概念定义及选题初衷 加湿器(humidifier)是一种增加房间湿度的家用电器。加湿器从原理上可分为超声波加湿器、净型加湿器、加热式加湿器、浸入式电极加湿器、冷雾加湿器。[2]加湿器作为一种新兴的工艺产品,在加湿、抑菌、美容功能等方面,给人们带来了一个舒适、享受、健康的环境。但是,加湿器的时间发展较短,在造型、材质、色彩、功能技术等方面上都还有很多不足,没有统一的行业标准,从而使得加湿器行业面临许多新的挑战,同时,在我国,加湿器并未广泛大量应用到人们生活中,在分析加湿器有关的文章之后,我认为加湿器在未来的发展中将对人们的生活起到很大促进作用。这样一个非常有价值的课题成为我选题的重要原因。 2 加湿器的国内外研究现状、水平与发展趋势 目前,市场上加湿器主要可分为热加湿加湿型、超声波加湿型、纯净加湿型

多孔陶瓷材料的制备技术

第14卷第3期Vol.14No.3 材 料 科 学 与 工 程 Materials Science&Engineering 总第55期 Sept.1996多孔陶瓷材料的制备技术 朱时珍 赵振波 北京理工大学 北京 100081 刘庆国 北京科技大学 北京 100083 【摘 要】 本文评述了近年来多孔陶瓷材料制备技术的研究现状,对目前研究比较活跃,应用比较成功的几种制备技术进行了分析,并讨论了今后的发展趋势。 【关键词】 多孔陶瓷 制备 造孔剂 泡沫浸渍 Techniques For Preparation of Porous Ceramic Materials Zhu Shizhen Zhao Zhenbo Beij ing Institute of Technology Beijing 100081 Liu Qingguo Beij ing University of Science and Technology Beij ing 100083【Abstr act】 T he r ecent status of techniques for prepar ation of por ous ceramic mater ials was re-viewed.Var ious t echniques for pr epar ation of por ous cer amic mater ials resear ched mor e actively and ap-plied more successfully wer e analyzed,and the future development tr ends were discussed. 【Key wor ds】 Porous cer amics,F abr ication,P or e-form ing mat er ials,F oam impregna tion 一、前 言 近年来表面与界面起突出作用的新型材料日益受到重视,既发现一些新的物理现象和效应,在应用上又很有潜力,具有广泛的发展前景[1]。多孔陶瓷材料正是一种利用物理表面的新型材料。例如,利用多孔陶瓷的均匀透过性,可以制造各种过滤器、分离装置、流体分布元件、混合元件、渗出元件和节流元件等;利用多孔陶瓷发达的比表面积,可以制成各种多孔电极、催化剂载体、热交换器、气体传感器等;利用多孔陶瓷吸收能量的性能,可以用作各种吸音材料、减震材料等;利用多孔陶瓷低的密度、低的热传导性能,还可以制成各种保温材料、轻质结构材料等[2],加之其耐高温、耐气候性、抗腐蚀,多孔陶瓷材料的应用已遍及冶金、化工、环保、能源、生物等各个部门,引起了全球材料学界的高度重视,并得到了较快发展,每年这方面的专利都有近百篇,而且有逐年增长的趋势。但由于绝大多数制备工艺参数及关键问题处于技术保密状态,目前尚无系统论述各种制备技术的文章,本文结合作者研制用于高温固体氧化物燃料电池的多孔A l2O3陶瓷支持管(体)的研究工作,分析了多孔陶瓷材料制备技术的现状及今后的发展趋势。 ? 33 ?

浅谈多孔陶瓷

浅谈多孔陶瓷 08 化本黄振蕾080900029 摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学 关键词:多孔陶瓷制备应用发展 0. 引言 多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的 比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料 和传感器材料等方面得到广泛的应用[ 2]。因此, 多孔陶瓷材料及其制备技术受到广泛关注。 1 多孔陶瓷材料的制备方法 1. 1 挤压成型法 挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400孔/ 2. 54 cm X 2. 54 cm 的规格。 美国与日本已研制出了600孔/ 2. 54 cm X 2. 54 cm、900孔/ 2.54 cm X 2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。我国亦开始了600 孔/ 2. 54 cm X2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型 的多孔陶瓷。其工艺流程为:原料合成+水+有机添加剂T混合练混T挤出成型T干燥T 烧成T制品。这种工艺的优点在于,可根据实际需要对孔形状和大小进行精确设计;缺点 是不能成型复杂孔道结构和孔尺寸较小的材料, 同时对挤出物料的塑性有较高要求[ 4]。 1. 2 颗粒堆积成孔工艺法颗粒堆积工艺是在骨料中加入相同组分的微细颗粒,利用微细颗粒易于烧结的特点,在高温下液化,从而使骨料连接起来。骨料粒径越大,形成的多孔陶瓷平均孔径就越大,并呈线性关系。骨料颗粒尺寸越均匀,产生的气孔分布也越均匀,孔径分布也越小。另外,添加剂的含量和种类,以及烧成温度对微孔体的分布和孔径大小也有直接关系。如 Yang 等[ 5] 用Yb2O3作为助剂制备了多孔氮化硅陶瓷,通过加入Yb2O3后,使氮化硅微孔陶瓷孔的分布更加均匀,经烧结后使孔隙率达到很好的要求。另外,孔隙率可通过调整颗粒级配对孔结构进行控制,制品的孔隙率一般为20%~ 30% 。若在原料中加入碳粉、木屑、淀粉、塑料等成孔剂,高温下使其挥发可将整体孔隙率提高至75% 左右[ 6]。主要优点在于工艺简单,制备强度高;不足之处在于气孔率低。

生物陶瓷材料的研究及应用

生物陶瓷材料的研究及应用 张波化工07-3班 120073304069 摘要介绍了生物陶瓷的定义,对羟基磷灰石生物陶瓷材料、磷酸钙生物陶瓷材料、复合生物陶瓷材料、涂层生物陶瓷材料和氧化铝生物陶瓷的特性和制备方法进行了较为深入的分析,在现代医学中的应用及发展前景。 关键词生物陶瓷,磷酸钙,复合生物陶瓷材料,涂层生物陶瓷材料,氧化铝陶瓷,生物陶瓷应用。 Bioceramic Materials Research and Application Zhangbo Chemical Engineering and Technology 073 class 120073304069 Abstract This paper introduces the definition of bio-ceramics, bio-ceramic material of hydroxyapatite, calcium phosphate bio-ceramic materials, composite bio-ceramic materials, coating materials, bio-ceramics and alumina ceramics of biological characteristics and preparation methods for a more in-depth analysis In modern medicine the application and development prospects. Key words bio-ceramics, calcium phosphate, composite bio-ceramic materials, coating materials, bio-ceramic, alumina ceramic, bio-ceramic applications. 1 引言 生物陶瓷是指用作特定的生物或生理功能的一类陶瓷材料,即直接用于人体或与人体相关的生物、医用、生物化学等的陶瓷材料。做为生物陶瓷材料,需具备如下条件:生物相容性;力学相容性;与生物组织有优异的亲和性;抗血栓;灭菌性并具有很好的 物理、化学稳定性。生物陶瓷材料可分为生物惰性陶瓷(如Al 2O 3 、ZrO 2 等)、生物活性 陶瓷(如致密羟基磷灰石、生物活性微晶玻璃等)和生物复合材料三类。生物陶瓷材料因其与人的生活密切相关,故一直倍受材料科学工作者的重视。 2 生物陶瓷材料的发展 目前世界各国相继发展了生物陶瓷材料,它不仅具有不锈钢塑料所具有的特性,而且具有亲水性、能与细胞等生物组织表现出良好的亲和性。因此生物陶瓷具有广阔的发展前景。生物陶瓷的应用范围也正在逐步扩大,现可应用于人工骨、人

实验一多孔陶瓷的制备

实验一多孔陶瓷的制备 一、实验目的 1. 了解多孔陶瓷的用途 2. 掌握多孔陶瓷的制备方法 3. 了解多孔陶瓷的制备工艺 二、实验原理 多孔陶瓷是一种新型陶瓷材料,也可称为气孔功能陶瓷,它是一种利用物理表面的新型材料。多孔陶瓷具有如下特点:巨大的气孔率、巨大的气孔表面积;可调节的气孔形状、气孔孔径及其分布;气孔在三维空间的分布、连通可调;具有其它陶瓷基体的性能,并具有一般陶瓷所没有的主要利用与其巨大的比表面积相匹配的优良热、电、磁、光、化学等功能。实际上,很早以前人们就使用多孔陶瓷材料,例如,人们使用活性碳吸附水份、吸附有毒气体,用硅胶来做干燥剂,利用泡沫陶瓷来做隔热耐火材料等。现在,多孔陶瓷,尤其是新型多孔陶瓷的应用范围广多了。 1. 多孔陶瓷的种类 多孔陶瓷的种类很多,按所用的骨料可以分为以下六种: 按孔径分为以下三种情况: 2. 多孔陶瓷的制备: 陶瓷产品中的孔包括:(1)封闭气孔:与外部不相连通的气孔 (2)开口气孔:与外部相连通的气孔 下面介绍多孔陶瓷中孔的制备方法和制备技术 2.1孔的形成方法:

(1)添加造成孔剂工艺:陶瓷粗粒粘结、堆积可形成多孔结构,颗粒靠粘结剂或自身粘合成型。这种多孔材料的气孔率一般较低,20~30%左右,为了提高气孔率,可在原料中加入成孔剂(porous former),即能在坯体内占有一定体积,烧成、加工后又能够除去,使其占据的体积成为气孔的物质。如碳粒、碳粉、纤维、木屑等烧成时可以烧去的物质。也有用难熔化易溶解的无机盐类作为成孔剂,它们能在烧结后的溶剂侵蚀作用下除去。此外,可以通过粉体粒度配比和成孔剂等控制孔径及其它性能。这样制得的多孔陶瓷气孔率可达75%左右,孔径可在μm—mm之间。虽然在普通的陶瓷工艺中,采用调整烧结温度和时间的方法,可以控制烧结制品的气孔率和强度,但对于多孔陶瓷,烧结温度太高会使部分气孔封闭或消失,烧结温度太低,则制品的强度低,无法兼顾气孔率和强度,而采用添加成孔剂的方法则可以避免这种缺点,使烧结制品既具有高的气孔率,又具有很好的强度。 (2)有机泡沫浸渍工艺:有机泡沫浸渍法是用有机泡沫浸渍陶瓷浆料,干燥后烧掉有机泡沫,获得多孔陶瓷的一种方法。该法适于制备高气孔率、开口气孔的多孔陶瓷。这种方法制备的泡沫陶瓷是目前最主要的多孔陶瓷之一。 (3)发泡工艺:可以在制备好的料浆中加入发泡剂,如碳酸盐和酸等,发泡剂通过化学反应等能够产生大量细小气泡,烧结时通过在熔融体内产生放气反应能得到多孔结构,这种发泡气体率可达95%以上。与泡沫浸渍工艺相比,更容易控制制品的形状、成分和密度,并且可制备各种孔径大小和形状的多孔陶瓷,特别适于生产闭气孔的陶瓷制品,多年来一直引起研究者的浓厚兴趣。 (4)溶胶-凝胶工艺:主要利用凝胶化过程中胶体粒子的堆积以及凝胶(热等)处理过程中留下小气孔,形成可控多孔结构。这种方法大多数产生纳米级气孔,属于中孔或微孔范围内,这是前述方法难以做到的,实际上这是现在最受科学家重视的一个领域。溶胶-凝胶法主要用来制备微孔陶瓷材料,特别是微孔陶瓷薄膜。 (5)利用纤维制得多孔结构:主要利用纤维的纺织特性与纤细形态等形成气孔,形成的气孔包括:a 有序编织、排列形成的;b 无序堆积或填充形成的。 通常将纤维随意堆放,由于纤维的弹性和细长结构,会互相架桥形成气孔率很高的三维网络结构,将纤维填充在一定形状的模具内,可形成相对均匀,具有一定形状的气孔结构,施以粘结剂,高温烧结固化就得到了气孔率很高的多孔陶瓷,这种孔较大的多孔陶瓷的气孔率可达80%以上;在有序纺织制备方法中,有一种是将纤维织布(或成纸),,再将布(或纸)折叠成多孔结构,常用来制备“哈尔克尔”,这种多孔陶瓷通常孔径较大,结构类似于前面提到的以挤压成型的蜂窝陶瓷;另外是三维编织,这种三维编织为制备气孔率、孔径、气孔排列、形状高度可控的多孔陶瓷提供了可能。 (6)腐蚀法产生微孔、中孔:例如对石纤维的活化处理,许多无机非金属半透膜也曾以这种方法制备。 (7)利用分子键构成气孔:如分子筛,这是微孔材料也是中孔材料。象沸石、柱状磷酸锌等是这类材料。

PEEK应用综述

1.亲电路线合成的PEEK比亲核合成的具有更多的2型晶型。 2.亲电:DPE(二苯醚)单体 + TPC(对苯二甲酰氯) 低分子量PEEK,原因是制备 过程中的低聚物会在溶剂中结晶影响进一步的聚合。 3.亲核:4,4, 二氟二苯甲酮 + 苯酚 +DMAc(二甲基乙酰胺)/K2CO3 分子量更大 的均聚物/共聚物。 翁习生 北京协和医院骨科 一概述 聚醚醚酮树脂(Polyetheretherketone,PEEK)是一种新型特种热塑性工程塑料。最 早由英国ICI公司(后改为Victrex公司)于1978年开发,后来由Victrex公司的子公司Invibio公司于90年代末期率先开发出医用级PEEK材料(商品名为PEEK-OPTIMA)并通过FDA和CE的广泛认证。它具有以下特性:机械强度高;弹性模量与皮质骨相近;摩擦性能 优异;可透X线;蠕变量低,惰性高;生物相容性出色;耐化学腐蚀和辐射;加工方式灵 活多样等。PEEK于上世纪80年代末首先应用于骨科创伤内固定器械及股骨柄假体的研究,上世纪90年代中后期各厂商开始将其应用于脊柱椎间融合器。目前,Invibio公司已经将 单一的PEEK-OPTIMA材料扩展为涵括50多个不同级别的PEEK材料家族(图1),并广泛 应用于创伤、脊柱及关节外科内植入物。本文就其在骨科植入物方面的应用进展及其与其 它材料的比较进行综述。 二脊柱外科植入物 1. PEEK用于椎间融合器 脊椎融合领域较早应用PEEK材料。上世纪90年代美国AcroMed公司首先将PEEK应用于椎间融合器(Cage)。PEEK椎间融合器能够兼容X光拍照和磁共振成像,并且弹性模量

灯具设计文献综述

毕业设计文献综述 工业设计 灯具设计 一、前言 作为人类文明载体之一的灯,经历了从火、油到电(由白炽灯泡进展到荧光灯、钠灯、热阴级管节能灯、金卤灯,再到最新的LED 白光系列灯)的发展历程,可以说一部照明的历史正是人类发展历史的见证[1]。而灯的产生最通俗地讲是人类生活所需,它必然受到社会文化的整体支配,受到社会环境和时代氛围的影响。 而灯具不仅仅是生产生活中都离不开的电器产品, 同时它也是一种美化环境、装饰建筑、点缀房间和提高工业品附加值的工艺品。利用灯具造型及其光色的协调,能使居室环境具有某种氛围和意境,体现一定的风格和个性,增加建筑艺术的美感,使室内空间更加符合人们心理、生理的需求和审美情趣。 二、主题 (一)中国传统灯具的概述自从原始先民在远古时燃起的第一堆篝火以及后来的火炬的出现.人类逐步拉开了造型各异的传统灯具的创造的序幕[2]。再到火进入室内,由烧食而至照明,有着一个漫长的发展时期,灯的发明和演变也有一个相当时期。灯是照明的器具,它给人类带来了光明,使人类走向了文明。因此,从古至今不断发展的灯具也就成了人类文明的载体[3]。中国传统灯具的造型不但能够体现我们民族的文化氛围、观念形态,也能反映出生产力水平的高低和人文素质[4]。 在商周时期的文献中,没有关于灯的文字资料,却有不少。“烛”的记载。“烛”,并非蜡烛,实际上是一种火炬。这些火炬,用松、苇、竹、麻等材料做芯,外面用软植物纤维加以缠束,再浸以松脂或油脂做成。火炬燃烧起来既明亮又持久,移动也较方便。从照明意义上来说,比起火堆又进了一步。但严格来说,火炬不能称为灯具,只能说是灯具的原始形态。

继陶灯之后,是青铜灯具的时代。春秋战国时期,青铜灯具盛行。而到了汉代,灯具的材质逐渐丰富起来。汉代,是一个灯具蓬勃发展的时期,可谓洋洋大观。不仅有陶灯、铜灯,还有铁灯。汉代的陶灯,分灰陶和红陶。没有釉的基本上是冥器。挂釉的陶灯有冥器,也有实用器。铜灯的数量很多,除造型美观,工艺精湛以外,设计上还增加了许多功能。 三国、两晋,南北朝时期灯具发展的基本情况是:陶灯具仍在继续大量生产,瓷灯具取代了青铜灯具,成为灯具的主流。自商代中期出现原始瓷器以来,经过1 000 多年的探索和实践,到东汉,更完美的瓷器已逐渐形成。由于瓷器原料易取,烧制方便,比铜、漆器造价低廉,加上瓷土原料来源广泛,于是,瓷器得到了迅速推广。青铜灯具尽管豪华富丽,终因材料贵重,生产量受限制,只能为宫廷和贵族之家享用。因此,青铜灯具逐渐让位于瓷灯具是历史的必然。 唐代的瓷灯,有青瓷和白瓷,并有少量黑瓷。陶灯则有灰陶和釉陶以及新品种三彩陶。唐代瓷灯的釉彩显示了高超的技艺。陕西铜川耀州窑遗址出土的五代白瓷灯,在白釉下还有绿彩、釉彩等装饰。这些装饰可谓是美轮美奂。元代出现了书灯,即在室内阅书时所用灯。 明清开始流行书灯,同时,还流行烛台。明清盛行烛台,与蜡烛工艺的改进提高分不开的。此外,明清两代在玻璃灯的生产上也取得了新的成就。乾隆期间,是玻璃厂生产的高峰时期,而促成这个高潮到来的契机,是因为扩建圆明园的西洋楼需要大量玻璃灯[5]。 此后,随着西方的诸多灯具的引进,我国民间的日常灯具逐渐被煤油灯等所取代,而中国本土的灯具却逐渐式微。但是,无论如何,灯具的材质更替显示了我国本土灯具创造的活跃性。同时,也显示了中国造物科学技术的不断革新的活跃性。

碳化硅陶瓷

太原工业学院 2015/2016学年第一学期 《特种陶瓷》课程论文 题目:碳化硅陶瓷的工艺与发展方向 班级: 122073219 姓名:刘鑫泽 学号: 19

1 前言 随着科技的发展,人们迫切需要开发各种新型高性能结构材料。碳化硅陶瓷由于具有多种良好的的性能,已经在许多领域大显身手,并且已经收到人们的高度重视。 2 晶体结构 SiC是共价键很强的化合物,SiC中 Si-C键的离子性仅12%左右。 SiC具有α和β两种晶型。β- SiC的晶体结构为闪锌矿晶体结构立方晶系,Si和 C 分别组成面心立方晶格;α-SiC纤锌矿型结构,六方晶系。存在着4H、15R和6H等100余种多型体,其中, 6H多型体为工业应用上最为普遍的一种。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β- SiC缓慢转変成α-SiC的各种多型体。4H- SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H- SiC,即使温度.超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。[1] 3 性能与应用 3.1 性能 (1)SiC陶瓷化学稳定性好、抗氧化性强。 (2)硬度高,耐磨性能好。 (3)SiC具有宽的能带间隙。 (4)优良的导电性。 (5)热稳定性好,高温强度大。 (6)热膨胀系数小、热导率大以及抗热振和耐化学腐蚀等。[4] 3.2 应用 碳化硅的最大特点是高温强度高,有很好的耐磨损、耐腐蚀、抗蠕变性能,其热传导能力很强,仅次子氧化铍陶瓷。碳化硅陶瓷用于制造火箭喷嘴、浇注金属的喉管、热电偶套管、炉管、燃气轮机叶片及轴承、泵的密封圈、拉丝成型模

陶瓷概述

陶瓷概述 学号:姓名: [摘要]:陶瓷是陶器和瓷器的总称。人们早在约8000年前的新石器时代就发明了陶器。除了使用于食器、装饰上外,陶瓷在科学、技术的发展中亦扮演着重要角色。陶瓷原料是地球原有的大量资源黏土经过淬取而成。在今日文化科技中有各种创意的应用。陶瓷材料大多是氧化物、氮化物、硼化物和碳化物等。如今,陶瓷工艺真正飞速发展。 [关键词]:陶瓷历史;陶瓷材料;新品种陶瓷;新品种陶瓷特点 1.陶瓷的概念及发展历史 1.1什么是陶瓷 陶瓷是以粘土为主要原料以及各种天然矿物经过粉碎混炼、成型和煅烧制得的材料以及各种制品。陶器和瓷器的总称。陶瓷的传统概念是指所有以粘土等无机非金属矿物为原料的人工工业产品。它包括由粘土或含有粘土的混合物经混炼,成形,煅烧而制成的各种制品。由最粗糙的土器到最精细的精陶和瓷器都属于它的范围。对于它的主要原料是取之于自然界的硅酸盐矿物(如粘土、石英等),因此与玻璃、水泥、搪瓷、耐火材料等工业,同属于“硅酸盐工业”的范畴。 1.2陶瓷的发展历史 陶瓷的发展史是中华文明史的一个重要的组成部分,中国作为四大文明古国之一,为人类社会的进步和发展做出了卓越的贡献,其中陶瓷的发明和发展更具有独特的意义,中国历史上各朝各代有着不同艺术风格和不同技术特点。中国是世界上最早应用陶器的国家之一,而中国瓷器因其极高的实用性和艺术性而备受世人的推崇. 在中国,制陶技艺的产生可追溯到纪元前4500年至前2500年的时代,汉族劳动人民在科学技术上的成果以及对美的追求与塑造,在许多方面都是通过陶瓷制作来体现的,并形成各时代非常典型的技术与艺术特征。 夏朝以前发展的标志是彩陶。其中有较为典型的仰韶文化、以及在甘肃发现的稍晚的马家窑与齐家文化等等,解放后在西安半坡史前遗址出土了大量制作精美的彩陶器,令人叹为观止. 汉朝,陶器受到了更为确切的重视,在这一时期,烧造技艺有所发展,较为坚致的釉陶普遍出现,汉字中开始出现“瓷”字。同时,通过新疆、波斯至叙利亚的通商路线,中国与罗马帝国开始交往,促使东西方文化往来交流,从此一时期的陶瓷器物中也可以看出外来影响的端倪。 唐代,陶瓷的工艺技术改进巨大,许多精细瓷器品种大量出现,即使用当今的技术鉴测标准来衡量,它们也算得上是真正的优质瓷器。尤其以唐三彩最为出名。唐末五代十国出现了一个陶瓷新品种——柴窑瓷(萧窑),质地之优被广为传颂,但传世者极为罕见。

生物科技文献综述

生物科技文献综述江西师范大学生命科学学院

生物化学文献综述 引言: 生物化学是研究生命过程中化学基础的科学。疾病的发生发展是致病因子对生命过程的干扰和破坏;药物的防治是对病理过程的干预。生物化学通过用化学的理论和方法研究生命现象、生命过程的化学基础,通过探索干预和调整疾病发生发展的途径和机理,为新药发现中提供必不可少的理论依据。 生物化学是自90年代中期以来的新兴研究领域。哈佛大学的Schreiber博士和Scripps研究所的Schultz博士分别在东西海岸引领这个领域,他们的所在地所形成的重心地位甚至在加强。从源头来讲,化学是研究分子的科学,生物化学,分子生物学,还有生物学化学都是一样的。但是由于科学家们长期以来的习惯称谓,我们通常使用生物化学指蛋白质结构和活性的研究,用分子生物学指基因表达和控制的研究,用生物学化学指分子水平上的生物现象的研究。 三、关键词 化学生物学与分子生物学;临床医学;多学科融合;科研创新;虚拟实验;多方向研究;综合性实验四、主题综述: 化学生物学使用小分子作为工具解决生物学的问题或通过干扰、调节正常过程了解蛋白质的功能。在某种意义上,使用小分子调节目标蛋白质与制药公司发展新药类似。但是,当所有公司的目标蛋白质到目前为止仅是约450种的时候,人类基因组计划为我们带来了至少几万个目标蛋白质。最终的目标是寻找特异性调节素或寻找解开所有蛋白质之谜的钥匙,但这需要更系统和整体的方法而并非传统方法。化学生物学看起来是有希望的答案。系统的化学生物学仅仅诞生于90年代中期,部份是由于基础条件到那时才刚刚完备。代表性的技术进步包括机器人工程,高通量及高灵敏度的生物筛选,信息生物学,数据采集工具,组合化学和芯片技术例如DNA芯片。化学生物学更普遍的被叫做化学遗传学,而且它正在扩展到化学基因组学。和经典遗传学相比较,小分子并不是取代或超越基因表达,而是被用于抑制或活化翻译过程。 化学生物学、计算生物学与合成生物学,在生物芯片技术、计算模型方法与基因网络设计等方面构成了现代系统生物学与系统遗传学的重要技术基础。 五、研究法方向及方法 在进行研究的过程中,分为了正向研究和逆向研究。在正向法中,目标生物学现象第一次被定义,然后引起被寻找现象的分子选择自许多被应用的分子。被选择的分8子能被附到某些蛋白质上而且抑制/活化它们,引发重要的修饰,然后与分子相连的蛋白质被检查并研究。下面是使用正向法发现和发展肌基质蛋白的例子Nat。 首先,为了获得足量得化合物以引发要得到的现象,通过组合化学的合成方法制得嘌呤文库。多种化合物可与放射性研究引起的不同变异相比较。已经分化的神经原细胞和肌肉细胞很少被增殖。因此,一旦受伤,细胞长不好,恢复很难。这项研究的最初目的是为了找到一种化合物来引起改变肌肉细胞分化,达到再生目的。 分化的肌肉组织构成交织的管状结构。几百个嘌呤类化合物被在96孔圆片上植入潜伏肌肉组织中,找到了能够分离相连接的组织的化合物。这种化合物自肌管隔断嘌呤命名为肌基质

空调的设计与研发【文献综述】

毕业论文文献综述 工业设计 空调的设计与研发 1 绪论 摘要: 本文通过对空调的概念、空调的发展史、空调的分类、空调的地域性、现有空调的弊端分析及改进的方法对未来空调的设计展望等诸多方面论述,更加详实的展示了空调设计的问题、意识、规划、方向、方案等等。论文通过美学及色彩学原理阐述了如何营造科学合理的视觉效果;通过人机学原理论证了空调人性化问题;通过分析论述各大品牌的优劣势;通过艺术性、文化性、地域性论证了如何使空调设计的更完美,让人类使用的更安全、更舒适。 关键词:发展史地域性市场趋势目标用户 引言:空调的发展历史及分类 在超过一千年前,波斯已发明一种古式的空气调节系统,利用装置于屋顶的风杆,以外面的自然风穿过凉水并吹入室内,令室内的人感到凉快。[1] 19世纪,英国科学家及发明家麦可·法拉第(Michael Faraday),发现压缩及液化某种气体可以将空气冷冻,此现象出现在液化氨气蒸发时,当时其意念仍流于理论化。 1842年,佛罗里达州医生约翰·哥里(John Gorrie)以压所落成的新大楼设有中央空调。一名新泽西州Hoboken的工程师Alfred Wolff协助设计此崭新的空气调节系统,并把技术由纺织厂迁移至商业大厦,他被认为是令工作环境变得凉快的先驱之一。 1902年后期,首个现代化,电力推动的空气调节系统由韦利士·夏维兰·加利亚(1876年-1950年)发明。其设计与Wolff的设计分别在于并非只控制气温,亦控制空气的湿度以提高纽约布克林一间印刷厂的制作过程质素。此技术提供了低热度及湿度的环境,令纸张面积及油墨的排列更准确。其后,加利亚的技术开始用于在工作间以提升生产效率,开利工程公司亦在1915年成立以应付激增的需求。在逐渐发展下,空气调节开始用于提升在家居及汽车的舒适度。住宅空调系统的销量到1950年代才真正起飞。建于1906年,位于北爱尔兰贝尔法斯特的皇家维多利亚医院,在建筑工程学上具有特别意义,被称为世界首座设有空气调节的大厦。 1906年,美国北卡罗莱纳州夏洛特的Stuart W. Cramer正找寻方法增加其南方纺

多孔陶瓷的制备及性能分析

第一章综述 1.1 多孔陶瓷的概述 多孔陶瓷是一种经高温烧成、体内具有大量彼此相通或闭合气孔结构的陶瓷材料,是具有低密度、高渗透率、抗腐蚀、耐高温及良好隔热性能等优点的新型功能材料。 多孔陶瓷的种类繁多,几乎目前研制生产的所有陶瓷材料均可通过适当的工艺制成陶瓷多孔体。根据成孔方法和孔隙结构的不同,多孔陶瓷可分为三类:粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷。根据所选材质不同,可分为刚玉质、石英质、堇青石质、莫来石质、碳化硅质、硅藻土质、氧化锆质及氧化硅质等。 多孔陶瓷材料一般具有以下特性:化学稳定性好,可制成使用于各种腐蚀环境的多孔陶瓷;具有良好的机械强度和刚度,在气压、液压或其他应力载荷下,多孔陶瓷的孔道形状和尺寸不会发生变化;耐热性好,用耐高温陶瓷制成的多孔陶瓷可过滤熔融钢水和高温气体;具有高度开口、内连的气孔;几何表面积与体积比高;孔道分布较均匀,气孔尺寸可控,在0.05~600μm范围内可以制出所选定孔道尺寸的多孔陶瓷制品。 多孔陶瓷的优良性能,使其已被广泛应用于冶金、化工、环保、能源、生物等领域。如利用多孔陶瓷比表面积高的特性,可制成各种多孔电极、催化剂载体、热交换器、气体传感器等;利用多孔陶瓷吸收能量的性能,可制成各种吸音材料、减震材料等;利用多孔陶瓷的低密度、低热传导性,可制成各种保温材料、轻质结构材料等;利用多孔陶瓷

的均匀透过性,可制成各种过滤器、分离装置、流体分布元件、混合元件、渗出元件、节流元件等。因此,多孔材料引起了材料科学工作者的极大兴趣并在世界范围内掀起了研究热潮。 1.2 多孔陶瓷的制备方法 多孔陶瓷是由美国于1978年首先研制成功的。他们利用氧化铝、高岭土等陶瓷材料制成多孔陶瓷用于铝合金铸造中的过滤,可以显著提高铸件质量,降低废品率,并在1980年4月美国铸造年会上发表了他们的研究成果。此后,英、俄、德、日等国竞相开展了对多孔陶瓷的研究,已研制出多种材质、适合不同用途的多孔陶瓷,技术装备和生产工艺日益先进,产品已系列化和标准化,形成为一个新兴产业。我国从20世纪80年代初开始研制多孔陶瓷。 多孔陶瓷首要特征是其多孔特性,制备的关键和难点是形成多孔结构。根据使用目的和对材料性能的要求不同,近年逐渐开发出许多不同的制备技术。其中应用比较成功,研究比较活跃的有:添加造孔剂工艺,颗粒堆积成型工艺,发泡工艺,有机泡沫浸渍工艺,溶胶凝胶工艺等传统制备工艺及孔梯度制备方法、离子交换法等新制备工艺。 1.2.1挤压成型工艺 本工艺的特点是靠设计好的多孔金属模具来成孔。将制备好的泥浆通过一种具有蜂窝网格结构的模具基础成型,经过烧结就可以得到最典型的多孔陶瓷即现用于汽车尾气净化的蜂窝状陶瓷。此外,也可以 在多孔金属模具中利用泥浆浇注工艺获得多孔陶瓷。该类工艺的特点在于可以根据需要对孔形状和孔大小进行精确设计,对于蜂窝陶瓷最

相关主题