搜档网
当前位置:搜档网 › 建筑物理声学部分总结归纳

建筑物理声学部分总结归纳

建筑物理声学部分总结归纳
建筑物理声学部分总结归纳

建筑物理声学部分总结

归纳

文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

声音:是由物体振动产生,以声波的形式传播。声音只是声波通过固体或液体、气体传播形成的运动。

声音的要素:声音的强弱、音调的高低、音色的好坏

声源:声音来源于震动的物体,辐射声音的振动物体称之为声源。

弹性介质:气体、固体、液体

介质:一种物质存在于另一种物质内部时,后者就是前者的介质;某些波状运动(如声波、光波等)借以传播的物质叫做这些波状运动的介质。也叫媒质

波阵面:声波从声源发出,在同一介质中按一定方向传播,在某一时刻,波动所达到的各点包络面称为“波阵面”。为平面的成“平面波”,为球面的成为“球面波”

波长:声波在传播途径上,两相邻同相位质点之间的距离称为波长,记作λ,单位米。

声速是指声波在弹性介质中传播速度记作c,单位是米每秒,声速不是质点振动的速度是振动状态的速度。它取决于传播介质本身的弹性和惯性声音的传播原理:绕射规律:

当声波在传播途径中遇到障板时,不再是直线传播,而是能绕道展板的背后改变原来的传播方向,在他背后继续传播的现象称之为绕射

反射规律:

1、入射线、反射线和反射面的法线在同一平面内;

2、入射线和反射线分别在法线的两侧;

3、反射角等于入射角。

干涉概念:当具有相同频率、相同相位的两个波源所发出的波相遇叠加时,在波重叠的区域内某些点处,振动始终彼此加强,,而在另一些位置,振动始终互相削弱或抵消,这种现象叫做波的干涉。

驻波概念:当两列频率的波在同一直线上相向传播时将形成“驻波”。驻波是注定的声压起伏,它是由两列在相反方向上传播的同频率、同振幅的声波相互叠加而形成。

驻波形成条件:当单频率平面波在两平行界面之间垂直传播,两个反射面上都满足声压为极大值(位移为零)。

吸收:在声音的传播过程中,由于振动质点的摩擦,将一部分声能转化成热能,称为声吸收吸收是把透射包括在内,也就是声波入射到围蔽结构上不再返回该空间的声能损失

透射:声音入射到建筑材料或构件时还有一部分能量穿过材料或建筑部件传播到另一侧空间去。材料或构件的透射能力是用透射系数来衡量的。是指被透过的声能与入射声能之比

透射构件的声能Eτ单位时间能入射到构件的总声能Eo反射的声能Er吸声系数α透射系数τ反射系数r]

声功率:指声源在单位时间内向外辐射的能量。记作W,单位是瓦(W)、毫瓦(mW)和微瓦(μW)。声功率是声本身的一种特性。

声强:声场中某一点的声强,是指在单位时间内,该点处垂直于声波传播方向的单位面积上所通过的声能,记为I,单位是W/m2。它是衡量声波在传播过程中声音强弱的物理量

声压:是指介质中有声波传播时,介质中的压强相对于无声波时介质压强的改变量,单位N/m2,或Pa 。

声压级: 一个声音的声压与基准声压之比的常用对数乘以20

声强级:一个声音的声强与基准声强之比的常用对数乘以10

声功率级[Lw 声强级(dB);W0—基准声功率其值为10-12W; W —所研究声音的强度,W] 一个声音的声功率与基准声功率之比的常用对数乘以10

响度级:如果某一声音与已选定的1000HZ 的纯音听起来同样响,这个1000HZ 纯音的声压级值就定义为待测声音的“响度级”,单位是方。

总声级:C 网络具有接近线形的较平坦的特性,在整个可听范围内几乎不衰减,以模拟人耳对85方以上纯音的响应,因此它可代表总声压级。

频谱:自然界中听到的声音为复合声,将组成它的声音频率及其强度同时表现出来,叫做频谱。频谱是各个频率的声压级的综合量是表征声音的物理量之一

音调:主要由声音的频率决定,同时也与声音的强度有关。频率的高、低的听觉属性是音调,频率越高音调就越高。

音色:是反映复合声的一种特性,它主要是由复合声成分里各种纯音的频率及其强度(振幅)决定的,即由频谱决定。

时差效应(哈斯)

直达声到达后50ms 以内到达的反射声会加强直达声。直达声到达后50ms 后到达的“强”反射声会产生“回声”。

双耳听闻效应(听觉定位):

0lg 10I I

L I =0

lg 10W W

L w =

听觉定位特性是由双耳听闻而得到的,由声源发出的声波到达两耳,可以产生时间差和强度差。人耳对生源方位的辨别在水平方向比竖直方向要好。人耳辨别方向相当准确,辨别远近的效果较差。

掩蔽效应

人耳对一个声音的听觉灵敏度因另外一个声音的存在而降低的现象。不但取决于噪声的总声压级的大小,而且还与频率的成份和频谱分布有关

增长、稳态、衰减规律:

声源以一定的声功率发生,随着时间t 的增加,室内的声能密度逐渐增长。当t=∞时,室内声能密度达到最大值,此时的声场称为“稳态声场”。当声场达到稳态后,声源停止发声,声能密度随时间的增加而减小,直到趋近于0。室内总吸声量越大,衰减越快;室容积越大,衰减越缓慢。公式

混响时间定义:室内声源稳态发声后,声源停止发声,声音衰减60dB 所持续的时间。

赛宾公式应用于室内吸声量较小混响时间较长时[T —为混响时间(s)

V —为房间容积(m3)A —房间的总吸声量(m2)K —与声速有关的常数。常取] 伊林公式在室内表面的平均吸声系数较大(α))时,只能用伊林

公式较为准确的计算室内混响时间。应用于室内吸声量较大混响时间较小时[T —为混响时间(s) V —为房间容积(m3)K —与声速有关的常数。常取α室内表面平均吸声系数]

房间共振: 声音在传播过程中遇到反射物形成反射声波,入射声波与反射声波发生叠加,特别是当声波在两片平行的墙壁体传播时,这种叠加可能使声压达到最大时,这种现象称为共振。

A V

K T *=)α-1ln(-60S KV

T =

222,,2++=z z y y x x

nz ny nx L n L n L n c f 共振频率定义及规律:共振的频率取决于L 和n ,此处L 为两墙的距离,n 为一系列正整数,每一个数为一个“振动方式”。轴向共振频率为f=c/λ

=nc/2L,HZ 。L 越大,最低共振频率亦越低。

fnx,ny,nz —简正频率(Hz )Lx ,Ly ,;Lz —分别为房间的3 个边长;C —

为空气中的声速;nx ,ny, nz ——分别为任意正整数

共振防止措施:1选择适当的房间长宽高比例2房间做成不规则形3室内表面吸声处理

4房间容积不宜太小

吸声材料分类:多孔吸声

多孔吸声材料吸声机理:

声波进入空隙,引发空气振动,空气阻力及空气与孔壁的摩擦,产生热能,通过热传导作用,使相当一部分声能被转化为热能而被吸收。

影响吸声材料的因素:

1空气流阻2孔隙率3厚度4材料的密度5背后空气层6饰面处理7声波的频率和入射条件8吸湿、吸水的影响

空腔共振吸声机理:颈口空气柱与空腔相当于一弹簧振动系统,有固有的振动频率。当入射声波与固有振动频率相同时,空气柱共振并与孔径剧烈摩擦使声能转变为热能。

空间吸声体优点:1吸声性能好:中高频好2节约经费

3容易与照明、空调系统结合4美观5安装方便

如何选择吸声材料结构:

1吸声性能:频率2防火:不燃或阻燃材料3防潮:游泳池4护面层:防止材料外逸5结构与材料结合:穿孔板吸声结构空腔内填吸声材料,穿孔率15%~20% 6还应考虑:材料耐久性、力学强度、化学性质和尺寸稳定性等。

室内音质主观评价标准:1、合适的响度:语言声响度级为60-70方;音乐声响度级在50-85方,或更大些;2、较高的清晰度和明晰度:语言声要求有一定的清晰度,清晰度大于80%;语言可懂度:有字义联系;音乐声:听清急速连贯演奏的旋律,同时分清不同声部和乐器组演奏的声音,即声音的透明度和层次感;

3、丰满度:对低频反射声丰富的音质成为具有温暖度,中高频反射声丰富的音质成为具有活跃度;

4、良好的空间感平衡感:立体感、环绕感、拓展感等

5、没有声缺陷和噪声干扰。

室内音质评价客观标准:

1声压级2混响时间3早期衰变时间EDT4声能比

厅堂容积确定的影响因素

1保证厅内有足够的响度2保证厅内有适当的混响时间

体型设计原则:1保证直达声能够到达每个听众2保证前次反射声的分布3防止产生回声及其它声学缺陷4采用适当的扩散处理5舞台反射板

厅堂体型设计方法:1充分利用直达声2争取和合理分布早期反射声3使声场均匀,频响特性好4声学缺陷的防止

室内混响设计步骤:1根据设计完成的体型,求出厅的容积V和内表面积S。2根据厅的使用要求,确定混响时间及其频率特性的设计值。3根据混响时间计算公式求出大厅的平均吸声系数。4计算大厅内总吸声量及部分吸声量。5查阅资料

及构造的吸声系数数据,从中选择适当的材料及构造,确定各自的面积,是大厅内各界面的总吸声量符合上式。

噪声评价指数NR的确定方法:以频谱与NR曲线在任何地方相切的最高NR曲线,表示该噪声的NR数。

如何通过建筑设计的手段来达到降噪的目的:

一、建筑布局中噪声控制方法:1将要求安静的建筑物(房间)远离强噪声源。城市住宅:(1)当住宅沿城市干道布置时,卧室和起居室不应设在临街一侧,如果设计确有困难,每套住宅至少有一主卧室背向吵闹的干道。(2)电梯间、垃圾井等设施均不得与卧室、起居室相邻;锅炉房、水泵房如设在住宅楼内或与住宅毗邻时,必须采取有效的隔声减噪措施。(3)居住区内的儿童游戏场及其他高噪声房屋位置应避免对住宅产生干扰。2、利用降噪要求低的建筑(房间)隔离噪声源3、将噪声源集中布置,且远离安静要求高的区域

4、尽量避免房间之间的干扰

二、提高维护结构隔声量

三、室内细声降噪

四、隔声屏障与隔声罩

空气声:声源直接激发空气振动而传播的声音。围蔽结构隔绝的若是外部空间声场的声能,称为“空气声隔绝”。

城市噪声控制

城市噪声来源广泛,包括交通噪声、工厂噪声、施工噪声以及各种社会生活噪声等。城市环境噪声控制问题涉及的范围也非常广泛,包括:

(1)城市噪声管理与噪声控制法规通过制定噪声控制法规来保证噪声标准的实施。

(2)从城市规划、总体布局方面消除或减轻噪声的影响,如:

1)控制城市人口;

2)建立合理的城市功能分区:

城市规划时,为了噪声控制,首先将机场和重工业区布置在城市外边缘区域,然后布置铁路、高速公路等,接着依次可布置一般的中小型工业区、商业区和居住区,并在中小型丁业区和商业区之间布置城市环道,在商业区和居住区之间设置开阔地带或绿化带,以进一步降低噪声对居住区的影响。

(3)进行道路交通控制

道路交通噪声是城市环境噪声的主要来源。控制办法主要有改善道路设施,加强管理,如限制车速、限制重型车辆进入市区的时间等,以及注意道路两侧建筑的功能分区布置,必要时可设置隔声屏障。

建筑隔声设计①选定合适的隔声量对特殊的建筑物(如音乐厅、录音室、测听室)的构件,可按其内部容许的噪声级和外部噪声级的大小来确定所需构件的隔声量。对普通建筑通常可用居住建筑隔声标准所规定的隔声量。②采取合理的布局在进行隔声设计时,最好不用特殊的隔声构造,而是利用一般的构件和合理布局来满足隔声要求。如在设计住宅时,厨房、厕所的位置要远离邻户的卧室、起居室。对于剧院、音乐厅等则可用休息厅、门厅等形成声锁,来满足隔声的要求。为了减少隔声设计的复杂性和投资额,在建筑物内应该尽可能将噪声源集中起来,使之远离需要安静的房间(见城市防噪声规划)。③采用隔声结构和隔声材料某些需要特别安静的房间,如录音棚、广播室、声学实验室等,可采用双层围

护结构或其他特殊构造,保证室内的安静。在普通建筑物内,若采用轻质构件,则常用双层构造,才能满足隔声要求。对于楼板撞击声,通常采用弹性或阻尼材料来做面层或垫层,或在楼板下增设分离式吊顶等,以减少干扰。④采取隔振措施 建筑物内如有电机等设备,除了利用周围墙板隔声外,还必须在其基础和管道与建筑物的联结处,安设隔振装置。如有通风管道,还要在管道的进风和出风段内加设消声装置。

建筑隔声,是指随着现代城市的发展,噪声源的增加,建筑物的密集,高强度轻质材料的使用,对建筑物进行有效的隔声防护措施。建筑隔声除了要考虑建筑物内人们活动所引起的声音干扰外,还要考虑建筑物外交通运输、工商业活动等噪声传入所造成的干扰。

室内声压级公式、计算

[W 声源的声功率级dB;r —离开声源的距离,m ;Q —声源指向性因数;R —房间常 数 ,S —室内总表面积,m2; α室内表面平均吸声系数] 赛宾公式应用于室内吸声量较小混响时间较长时[T —为混响时间(s)

V —为房间容积(m3)A —房间的总吸声量(m2)K —与声速有关的常数。常取] 伊林公式在室内表面的平均吸声系数较大(α))时,只能用伊林公式较为准确的计算室内混响时间。应用于室内吸声量较大混响时间较小时[T —为混响时间(s) V —为房间容积(m3)K —与声速有关的常数。常取α室内表面平均吸声系数]

[m —空气吸收衰减系数 ]

)42π4lg(10w R r Q L L p ++=120)42π4lg(10lg 10+++=R

r Q W L p A V

K T *=)α-1ln(-60S KV

T =

一级注册建筑师之建筑物理与建筑设备知识汇总

采光窗种类、特性及使用范围 二、采光窗种类、特性及使用范围 (一)侧窗:侧窗构造简单,布置方便,造价低,光线的方向性好,有利于形成阴影,适于观看立体感强的物体,并可通过窗看到室外景观,扩大视野,在大量的民用建筑和工业建筑中得到广泛的应用。侧窗的主要缺点是照度分布不均匀,近窗处照度高,往里走,水平照度下降速度很快,到内墙处,照度很低,离内墙lm处照度最低。侧窗采光房间进深不要超过窗口上沿高度的2倍,否则需要人工照明补充。 侧窗分单侧窗、双侧窗和高侧窗三种,高侧窗主要用于仓库和博览建筑。 (二)天窗:随着建筑物室内面积的增大,只用侧窗不能达到采光要求,需要设计天窗。天窗分为以下几种类型: 1.矩形天窗:这种天窗的突出特点是采光比侧窗均匀,即工作面照度比较均匀,天窗位置较高,不易形成眩光,在大量的工业建筑,如需要通风的热加工车间和机加工车间应用普遍。为了避免直射阳光射入室内,天窗的玻璃最好朝向南北,这样阳光射人的时间少,也易于遮挡。天窗宽度一般为跨度的一半左右,天窗下沿至工作面的高度为跨度的0.35-0.7倍。 2.横向天窗(横向矩形天窗):这种天窗比避风天窗采光系数高,均匀性好,省去天窗架,造价低,能降低建筑高度。设计时,车间长轴应为南北向,即天窗玻璃朝向南北。 3.锯齿形天窗:这种天窗有倾斜的顶棚作反射面,增加了反射光分量,采光效率比矩形天窗高,窗口一般朝北,以防止直射阳光进入室内,而不影响室内温度和湿度的调节,光线均匀,方向性强,在纺织厂大量使用这种天窗,轻工业厂房、超级市场、体育馆也常采用这种天窗。 4.平天窗:这种天窗的特点是采光效率高,是矩形天窗的2-3倍。从照度和亮度之间的关系式召E=L.Ω.cosa看出,对计算点处于相同位置的矩形天窗和平天窗,如果面积相等,平天窗对计算点形成的立体角大,所以其照度值就高。另外乎天窗采光均匀性好,布置灵活,不需要天窗架,能降低建筑高度,在大面积车间和中庭常使用平天窗。设计时应注意采取防止污染、防直射阳光影响和防止结露措施。 5.井式天窗:采光系数较小,这种窗主要用于通风兼采光,适用于热处理车间。 设计时,可用以上某一种采光窗,也可同时使用几种窗,即混合采光方式。 天然采光基本知识 二、采光窗种类、特性及使用范围 (一)侧窗:侧窗构造简单,布置方便,造价低,光线的方向性好,有利于形成阴影,适于观看立体感强的物体,并可通过窗看到室外景观,扩大视野,在大量的民用建筑和工业建筑中得到广泛的应用。侧窗的主要缺点是照度分布不均匀,近窗处照度高,往里走,水平照度下降速度很快,到内墙处,照度很低,离内墙lm处照度最低。侧窗采光房间进深不要超过窗

固体物理_复习重点

晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性 非晶体:有序度仅限于几个原子,不具有长程有序性和对称性 点阵:格点的总体称为点阵 晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格 格点:微粒重心所处的位置称为晶格的格点(或结点) 晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。(有轴对称,面对称,体心对称即点对称) 密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数 配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数 致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度 固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性 晶胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。 布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样 复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的 声子:晶格简谐振动的能量化,以hv l来增减其能量,hv l就称为晶格振动能量的量子叫声子 非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导 点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子 布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区 固体物理复习要点 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。

快题画图步骤经典总结+北京建筑大学建筑物理光学选择题60道.

1.速度的提高,主要是多练习. 2.画图步骤: a.先草图构思 b.铅笔上板 c.修改定稿 d.画正图。 我觉得在“铅笔上板,修改定稿,画正图”之间可节省时间,如你有把握,铅笔稿不用太详细,定轴线即可,上正图时也可用硫酸纸或拷贝纸,省得再刻一遍 建筑物理光学选择题60 道 1. 在光亮环境中,辐射功率相等的单色光看起来(D )光最明亮。 A、700nm 红光 B、510nm 蓝绿光 C、580nm 黄光 D、555nm 黄绿光 2.关于光源的色表和显色性的说法,(B )是错误的? A、光源的色表和显色性都取决于光辐射的光谱组成 B、光源有相同的色表,尽管光谱组成不同,也会有完全相同显色性 C、光源有相同的色表,光谱组成不同,显色性有很大差异 D、色标有明显区别的两个光源,显色性不可能相等 3.下面关于光的阐述中,(C )是不正确的

A、光是以电磁波形式传播 B、可见光的波长范围为380~780 nm; C、红外线是人眼所能感觉到的 D、紫外线不是人眼所能感觉到的 4.下列(D )是亮度的单位 A、Ix B、Cd C 、Im D、Cd/m2 5.下列材料中(C )是漫反射材料 A、镜片 B、搪瓷 C、石膏 D、乳白玻璃 6. 关于漫反射材料特性叙述中,(D )是不正确的 A、受光照射时,它的发光强度最大值在表面的法线方向 B、受光照射时,从各个角度看,其亮度完全相同 C、受光照射时,看不见光源形象 D、受光照射时,它的发光强度在各方向上相同 7 下列材料中,(C )是漫透射材料 A、透明平板玻璃 B、茶色平板玻璃

C、乳白玻璃 D、中空透明玻璃 8.光源显色的优劣,用(C )来定量来评价 A、光源的色温 B、光源的亮度 C、光源的显色性 D、识别时间 9.将一个灯由桌面竖直向上移动,在移动过程中,不发生变化的量是(A ) A、灯的光通量 B、灯落在桌面上的光通量 C、受光照射时,看不见光源形象 D、桌子表面亮 10、下列减少反射眩光措施的叙述中,(D )是错误的? A、尽量使视觉作业的表面为无光泽表面; B、使视觉作业避开照明光源同人眼形成的镜面反射区域; C、使用发光表面面积大、亮度低的光源; D、提高引起镜面反射的光源照度在总照度中的比例。 11、在照度为10lx 的房间里,增加1lx 的照度刚能察觉出变化;在另一个照度水平为500lx 的房间里,需要增加(D )lx 的照度才能刚刚察出有照度的变化。

建筑物理声学计算题汇总题库

声环境精选例题 【例1】例:某墙隔声量Rw=50dB,面积Sw=20m2 ,墙上一门,其隔声量Rd=20dB,面积2m2 ,求其组合墙隔声量。 【解】 组合墙平均透射系数为: τ c=(τw S w+τd S d)/(S w+S d) 其中:Rw=50dB àτw=10-5,Rd=20dB àτw=10-2 故,τ c=(20×10-5 + 20×10-2 )/(20+2)=9.2×10-4 故Rc=10lg(1/ τ c)=30.4d 【例2】某墙的隔声量,面积为。在墙上有一门,其隔声量,面积为。求组合墙的平均隔声量。 【解】此时组合墙的平均透射系数为: 即组合墙的平均隔声量,比单独墙体要降低20dB。 【例3】某长方形教室,长宽高分别为10米、6米、4米,在房间天花正中有一排风口,排风口内有一风机。已知装修情况如下表: 吸声系数a 500Hz 2000Hz 墙:抹灰实心砖墙0.02 0.03 地面:实心木地板0.03 0.03 天花:矿棉吸音板0.17 0.10 (1)求房间的混响时间:T60(500Hz);T60(2kHz)。 (2)计算稳态声压级计算:风机孔处W=500uW(1uw=0.000001W),计算距声源5m处的声压级。

(3)计算房间的混响半径。 【解】 【例4】某一剧场,大厅体积为6000 m3,共1200座,500Hz的空场混响时间为1.2秒,满场为0.9秒,求观众在500Hz的人均吸声量。 【解】 人均吸声量为由赛宾公式可得: 空场时, 满场时, 解上两式有:A=805m2

=0.22 m2 【例5】一面隔墙,尺寸为3×9m,其隔声量为50dB,如果在墙上开了一个尺寸为0.8×1.2m的窗,其隔声量为20dB,而窗的四周有10mm的缝隙,该组合墙体的隔声量将为多少dB? 【解】: 计算墙、窗、缝的隔声量--------1.5分 计算墙、窗、缝的面积 有等传声量设计原则: 得组合墙的透射量-------1.5分 组合墙的隔声量------2分 【例6】一房间尺寸为4×8×15米,关窗混响时间为1.2秒。侧墙上有8个1.5×2.0m 的窗,全部打开,混响时间为多少? 【解】利用赛宾公式求证: A=S 体积V=15×8×4=480m3 关窗时的内表面积S=424m2,求房间的平均吸声系数 开窗时的室内表面积S=400m2 。窗的面积为24 m2

固体物理知识点总结

一、考试重点 晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识 二、复习内容 第一章晶体结构 基本概念 1、晶体分类及其特点: 单晶粒子在整个固体中周期性排列 非晶粒子在几个原子范围排列有序(短程有序) 多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积 准晶体粒子有序排列介于晶体和非晶体之间 2、晶体的共性: 解理性沿某些晶面方位容易劈裂的性质 各向异性晶体的性质与方向有关 旋转对称性 平移对称性 3、晶体平移对称性描述: 基元构成实际晶体的一个最小重复结构单元 格点用几何点代表基元,该几何点称为格点 晶格、 平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量 基矢 元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。每个原胞含1个格点,原胞选择不是唯一的 晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。 晶格常数

WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。WS原胞含一个格点 复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格 简单格子 点阵格点的集合称为点阵 布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。 4、常见晶体结构:简单立方、体心立方、面心立方、 金刚石 闪锌矿 铅锌矿

氯化铯 氯化钠 钙钛矿结构 5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面 密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。 六脚密堆积密排面按AB\AB\AB…堆积

建筑物理声学计算题

声环境精选例题 【例1】例:某墙隔声量50,面积20m2 ,墙上一门,其隔声量20,面积2m2 ,求其组合墙隔声量。 【解】 组合墙平均透射系数为: τ (ττ)/() 其中:50 àτ10-520 àτ10-2 故,τ (20×10-5 + 20×10-2 )/(20+2)=9.2×10-4 故10(1/ τ c)=30.4d 【例2】某墙的隔声量,面积为。在墙上有一门,其隔声量,面积为。求组合墙的平均隔声量。 【解】此时组合墙的平均透射系数为: 即组合墙的平均隔声量,比单独墙体要降低20。 【例3】某长方形教室,长宽高分别为10米、6米、4米,在房间天花正中有一排风口,排风口内有一风机。已知装修情况如下表: (1)求房间的混响时间:T60(500);T60(2)。 (2)计算稳态声压级计算:风机孔处500(10.000001W),计算距声源5m处的声压级。 (3)计算房间的混响半径。

【解】 【例4】某一剧场,大厅体积为6000 m3,共1200座,500的空场混响时间为1.2秒,满场为0.9秒,求观众在500的人均吸声量。 【解】 人均吸声量为由赛宾公式可得: 空场时, 满场时, 解上两式有:805m2 =0.22 m2

【例5】一面隔墙,尺寸为3×9m,其隔声量为50,如果在墙上开了一个尺寸为0.8×1.2m的窗,其隔声量为20,而窗的四周有10的缝隙,该组合墙体的隔声量将为多少? 【解】: 计算墙、窗、缝的隔声量 1.5分 计算墙、窗、缝的面积 有等传声量设计原则: 得组合墙的透射量 1.5分 组合墙的隔声量2分 【例6】一房间尺寸为4×8×15米,关窗混响时间为1.2秒。侧墙上有8个1.5×2.0m 的窗,全部打开,混响时间为多少? 【解】利用赛宾公式求证: 体积15×8×4=480m3 关窗时的内表面积424m2,求房间的平均吸声系数 开窗时的室内表面积400m2 。窗的面积为24 m2

固体物理知识点总结

晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。 晶面指数:晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller 指数标定方法:1)找出晶面系中任一晶面在轴矢上的截距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。 晶向指数:从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排列紧密程度的物理量。密堆积结构的堆积比最大。 布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉形成衍射束。(公式)。其中:n为整数,称为反射级数;θ为入射线或反射线与反射面的夹角,称为掠射角,由于它等于入射线与衍射线夹角的一半,故又称为半衍射角,把2θ称为衍射角。当间距为d的平行晶面,入射线在相邻平行晶面反射的射线行程差为2dsinθ,当行程差等于波长的整数倍时,来自相继平行平面的辐射就发生相长干涉,根据图示,干涉加强的条件是:,这就是所谓布拉格定律,布拉格定律成立的条件是波长λ≤2d。 布拉格定律和X射线衍射产生条件之间的等价性证明 假设:若X射线光子弹性散射,光子能量守恒,出射束频率:入射束频率: 2dSinθ= nλ Hω ω'= ck' ω= ck因此,有散射前后波矢大小相等k’=k 和k’2=k2根据X射线衍射产生条件得到(k’-k)=G 及k+G=k’两个等式;第二个式子两边平方并化简得到:2k.G+G2=0;将G用-G替换得到2k.G=G2也成立;因此得到了四个等价式子:;k+G=k’;2k.G+G2=0;以及2k.G=G2上面说明了X衍射产生条件的四个表达式等价性;下面就进一步证明布拉格定律与X射线衍射产生条件等价:证明:由 可以推出: 即可以得到即: 即:,命题得证 布里渊区定义 为维格纳-赛茨原胞(Wigner-Seitz Cell)。任选一倒格点为原点,从原点向它的第一、第二、第三……近邻倒格点画出倒格矢,并作这些倒格矢的中垂面,这些中垂面绕原点所围成的多面体称第一B.Z,它即为倒易间的Wigner-Seitz元胞,其“体积”为Ω※=b1·(b2×b3)布里渊区边界上波矢应该满足的方程形式为(公式) 因此,布里渊区实际上包括了所有能在晶体上发生布拉格反射的波的波矢k。 范德华耳斯-伦敦相互作用 答:对于组成晶体的原子,尤其是惰性气体原子,由于原子电子云是瞬间变化的,因此各个原子电子云间存在互感偶极矩,这种互感偶极矩将原子之间联系在一起形成晶体。也就是通过互感偶极矩作用即耦合作用后比没有耦合作用时要来得低,这种由于原子之间互感偶极矩所产生的相互吸引作用称之为范德华耳斯-伦敦相互作用 离子晶体中存在的相互作用: ? 异号离子间的静电吸引相互作用(主要组成部分)? 同号离子间的静电排斥相互作用(主要组成部分)? 对于具有惰性气体电子组态的离子,他们之间排斥作用有类似于惰性气体原子间的排斥相互作用? 存在很小部分的吸引性相互作用的范德华耳斯作用(大约占1%~2%)离子晶体中,吸引性相互作用的范德华耳斯部分对于晶体内聚能贡献比较小,大约1%~2%范德华耳斯相互作用是一种互感偶极相互作用,只要存在正负中心不重合的偶极子,就会存在这种相互作用,只是在离子晶体中,这种相互作用较小。

建筑物理声学考试题库

光源的基本特性 从照明应用的角度对光源的性能有以下要求: ①高光效——用少量的电获得更多的光; ②长寿命——耐用,光通衰减小; ③光色好——有适宜的色温和优良的显色性能; ④能直接在标准电源上使用; ⑤接通电源后立即燃亮; ⑥形状小巧,结构紧凑,便于控光。 热量传递有三种基本方式,即导热、对流和辐射。 导热系数(λ)的物理意义是,在稳定传热状态下当材料层厚度为1m、两表面的温差为1℃时,在1小时内通过1m2截面积的导热量。它是反映材料导热能力的主要指标。 自然对流是由于流体冷热部分的密度不同而引起的流动。 受迫对流是由于外力作用(如风吹、泵压等)而迫使流体产生对流。对流速度取决于外力的大小。外力愈大,对流愈强。 室内气候大致可分为:舒适的、可以忍受的和不能忍受的3种情况。

在进行建筑保温设计时,应注意以下几条基本原则: 一、充分利用太阳能 二、防止冷风的不利影响 三、选择合理的建筑体形与平面形式 四、使房间具有良好的热特性与合理的供热系统 露点温度 当空气中实际含湿量不变,即实际水蒸汽分压力e值不变,而空气温度降低时,相对湿度将逐渐增高;当相对湿度达到100%后,如温度继续下降,则空气中的水蒸汽将凝结析出。相对湿度达到100%,即空气达到炮和状态时所对应的温度,称为“露点温度”,通常以符号td表示。 空气湿度直接影响人体的蒸发散热,一般认为最适宜 在16~25℃时,相对湿度在30%~70%范围内变化,对人体的热感觉影响不大。但如湿度过低(低于30%)则人会感到干燥、呼吸器官不适;湿度过高则影响正

常排汗,尤其在夏季高温时,如湿度过高(高于70%)则汗液不易蒸发,最令人不舒适。 城市热岛 在建筑物及人群密集的大城市,由于地面覆盖物吸收的辐射热多、发热体也多,形成市中心的温度高于郊区,即“城市热岛”现象。 温和气候区:主要特征是一年中一段时期过冷,而另一段时期较热,月平均气温在最冷月份里可能低达~-15℃,而最热月份可高达25℃,一年中气温最大变化可从一30℃到十37℃,如意大利的米兰及中国的华北等地区。 北京(φ=40°)有一组住宅建筑,室外地坪的高度相同,设其朝向正南,后栋建筑一层窗台高1.5m(距室外地坪),前栋建筑总高15m(从室外地坪至檐口),则其计算高度H为13.5m,要求后栋建筑,在大寒日正午前后有2小时日照,查表得大寒日(1月22日)赤纬角δ为-20°,求其必须的建筑间距。 【解】①确定太阳赤纬角和时角:查表得大寒日(1月22日)赤纬角δ为-20°、由于建筑朝向正南,若要正午前后有2小时日照则最理想的日照时间是从11点到13点。在11点和13点二者的太阳高度角相同而方位角的正负号相反。因此,可以只取其中一个时角即可。如取11点,则按其时角Ω的计算公式可算得: Ω=15×(1-11)=-15° ②计算太阳高度角和方位角: 以φ=40°,δ=-20°,Ω=-15°代入公式 即:sinh = sin40°×sin(-20°)+cos40°×cos(-20°)×cos(-15°) = 0.473 h = 28.23°或28°14’ ③计算建筑日照间距D0: 由于建筑朝向正南,建筑日照间距的计算为: D0=13.5ctg28.23°×cos16.05° =24.1m 解得所需两栋建筑间的距离为至少 24.1m。 设建设地点、高度及日照要求均与上例同,但建筑朝向为南偏东15°,求最小建筑日照间距。

建筑物理天然采光重点总结

第八章天然采光 第一节光气候和采光标准 1、光气候:所谓光气候就是由太阳直射光、天空光和地面反射光形成的天然光平均状况。 2、天然光的组成和影响因素:太阳是天然光的光源。日光在通过地球大气层时被空气中的尘埃和气体分子扩散,结果,白天的天空呈现出一定的亮度,这就是天空光。天然光是直射日光与天空光的总合。 3、地面照度来源于日光和天空光,其比例随太阳高度与天气而变化。通常,按照天空中云的覆盖面积将天气分为三类:a晴天——云覆盖天空的面积占0~0.3;b多云天——云占0.3~0.7;c全阴天——云占0.8~1 4、晴天时,地面照度主要来自直射日光;随着太阳高度角的增大,直射日光照度在总照度中占的比例也加大。全阴天则几乎完全是天空扩散光照明。多云天介于二者之间,太阳时隐时现,照度很不稳定。 5、晴天天空的亮度与太阳高度和方位两个因素有关。晴天同阴天相反,除去太阳附近的天空最亮以外,通常在地平线附近的天空要比天顶亮;与太阳相距约-90°高度角的对称位置上,天空亮度最低。 6、全云天:天空全部为云所遮盖,看不见太阳。室外天然光全部为扩散光,物体后面没有阴影。这时地面照度取决于:a太阳高度角;b云状;c地面反射能力;d气透明度。 7、全云天天空在同一高度的不同方位上亮度相等,但是从地平面到

天顶的不同高度上有以下的亮度变化规律: L θ:仰角为θ的天空的亮度(cd/m 2);L z :天顶亮度(cd/m 2); θ:计算天空亮度处的高度角(仰角)。 8、天顶亮度约为地平线附近天空亮度的3倍。由于阴天的亮度低,亮度分布相对稳定,而且朝向对室内照度影响小,因而使室内照度较低,照度分布也较稳定。这时,室外地面照度(以lx 为单位)在数值上等于高度角为42o 处的天空亮度(以asb 为单位),即: E 地(lx)=L42(asb) 9、由立体角投影定律可以导出天顶亮度与地面照度在数量上的关系 为:同样方法还可导出阴天的室外垂直面照度为: E 垂=E 地×0.396 10、我国光气候概况:从日照率来看,由北、西北往东南方向逐渐减少,而以四川盆地为最低;从云量来看,大致是自北向南逐渐增多,新疆南部最少,华北、东北少,长江中下游较多,华南最多,四川盆地特多;从云状来看,南方以低云为主,向北逐渐以高、中云为主。 综上:天然光照度中,南方以天空扩散光照度较大,北方和西北以太阳直射光为主。 11、采光系数:采光系数(C )是室内给定水平面上某一点的由全阴天天空漫射光所产生的照度(En )与同一时间同一地点,在室外无遮挡水平面上由全阴天天空漫射光所产生的照度(Ew )之比。两个照度值均不包括直射日光的作用。即 12、用采光系数这一概念,就可根据室内要求的照度换算出需要的室外照度,或由室外照度值求出当时的室内照度,而不受照度变化的影) 3 sin 2 1 ( θ θ + = z L L ) )(972m cd πL (lx)E z =地%100?=w n E E C

东南大学建筑物理(声学复习)张志最强总结汇总

第10章 建筑声学基本知识 1. 声音的基本性质 ①声波的绕射 当声波在传播途径中遇到障板时,不再是直线传播,而是绕到障板的背后改变原来的传播方向,在它的背后继续传播的现象。 ②声波的反射 当声波在传播过程中遇到一块尺寸比波长大得多的障板时,声波将被反射。 ③声波的散射(衍射) 当声波传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。 ④声波的折射 像光通过棱镜会弯曲,介质条件发生某些改变时,虽不足以引起反射,但声速发生了变化,声波传播方向会改变。这种由声速引起的声传播方向改变称之为折射。 白天向下弯曲 夜晚向上弯曲 顺风向下弯曲 逆风向上弯曲 ⑤声波的透射与吸收 当声波入射到建筑构件(如顶棚,墙)时,声能的一部分被反射,一部分透过构件,还有一部分由于构件的振动或声音在其内部传播时介质的摩擦或热传导而被损耗(吸收)。 根据能量守恒定理: 0E E E E γατ=++ 0E ——单位时间入射到建筑构件上总声能; E γ——构件反射的声能; E α——构件吸收的声能; E τ——透过构件的声能。 透射系数0/E E ττ =; 反射系数0/E E γγ=; 实际构件的吸收只是E α,但从入射波和反射波所在空间考虑问题,常常定义吸声系数为: 11E E E E E γατ αγ+=-=- = ⑥波的干涉和驻波 1.波的干涉:当具有相同频率、相同相位的两个波源所发出的波相遇叠加时,在波重叠的区域内某些点处,振动始终彼此加强、而在另一些位置,振动始终互相削弱或抵消的现象。 2.驻波:两列同频率的波在同一直线上相向传播时,可形成驻波。 2.声音的计量 ①声功率 指声源在单位时间内向外辐射的声能。符号W 。

建筑物理声学复习

建筑物理(声学复习)

————————————————————————————————作者: ————————————————————————————————日期:

第10章 建筑声学基本知识 1. 声音的基本性质 ①声波的绕射 当声波在传播途径中遇到障板时,不再是直线传播,而是绕到障板的背后改变原来的传播方向,在它的背后继续传播的现象。 ②声波的反射 当声波在传播过程中遇到一块尺寸比波长大得多的障板时,声波将被反射。 ③声波的散射(衍射) 当声波传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。 ④声波的折射 像光通过棱镜会弯曲,介质条件发生某些改变时,虽不足以引起反射,但声速发生了变化,声波传播方向会改变。这种由声速引起的声传播方向改变称之为折射。 白天向下弯曲 夜晚向上弯曲 顺风向下弯曲 逆风向上弯曲 ⑤声波的透射与吸收 当声波入射到建筑构件(如顶棚,墙)时,声能的一部分被反射,一部分透过构件,还有一部分由于构件的振动或声音在其内部传播时介质的摩擦或热传导而被损耗(吸收)。 根据能量守恒定理: 0E E E E γατ=++ 0E ——单位时间入射到建筑构件上总声能; E γ——构件反射的声能; E α——构件吸收的声能; E τ——透过构件的声能。 透射系数0/E E ττ=; 反射系数0/E E γγ=; 实际构件的吸收只是E α,但从入射波和反射波所在空间考虑问题,常常定义吸声系数为: 11E E E E E γατ αγ+=-=- = ⑥波的干涉和驻波 1.波的干涉:当具有相同频率、相同相位的两个波源所发出的波相遇叠加时,在波重叠的区域内某些点处,振动始终彼此加强、而在另一些位置,振动始终互相削弱或抵消的现象。 2.驻波:两列同频率的波在同一直线上相向传播时,可形成驻波。

建筑物理声学小结

·液体和气体内只能传播横波 ·声音是人耳所感受到的“弹性”介质中振动或压力的迅速而微小的起伏变化。声音在在空气中传播的是振动能量。·声源的振动使密集和稀疏的气压状态依次扰动空气质点,就是所谓“行波”。 ·波阵面:随着压力波的扩展,声波的形态将变成球面,声波在同一时刻到达的球面,即波阵面。 ·点声源(球面波)·线声源(柱面波)火车,干道车辆·面声源(平面波)大海,强烈振动的墙壁,运动场的呐喊·波速与介质状态,温度,ρ有关。声影区是由于障碍物或折射关系,声线不能到达的区域,即几乎没有声音的区域。声学测量范围:63~8000HZ.·元音提供语言品质,辅音提供清晰度(低于500HZ不贡献清晰度)·100~1000HZ的声音波长与建筑内构件大小差不多,对处理扩散声场和布置声学材料有意义。 ·频谱:对声源特性的表述,声能在各组成频率范围内的分布,即声音各个频率的能量大小。它是以频率为横坐标,对应的声压级(能量高低)为纵坐标所组成的图形。 ·音乐只含基频和谐频,音乐的频谱是断续的线状谱。建筑声环境是连续的曲线。 ·频谱分析的意义:帮助了解声源的特性,为声学设计提供依据(音乐厅、歌剧院、会议厅等声学设计).噪声控制,了解噪声是由哪些频率组成的,其中哪些频率的能量较多,设法降低或消除这些突出的频率成分,以便有效降低噪声。通常使用带通滤波器测量或傅里叶分析得到频谱。 ·频带:不同频率的声音,声学特性各不相同。给出每个频率的信息,不仅工作量太大,显然也没必要。将声音的频率范围划分成若干区段,称为频带。最常用的是倍频带和1/3倍频带。 ·常用倍频带中心频率8个:63~8000.250以下是低频,500~1k是中频,2k以上是高频。1/3倍频带则是在倍频带中间再插入两个值,可以满足较高精度的要求。 ·500~4000HZ(2000~3000MAX):人耳感觉最敏锐。可听范围0~120Db.建筑声学测量范围125~4000?还是63~8000?100Hz 声学工程中一般低限3.4米440Hz 音乐中标准音(A4)0.77米 500Hz 混响时间标准参考频率0.68米1000Hz 声学工程中标准参考音0.34米 4000Hz 钢琴的最高音阶0.085米 ·声源指向性:与波长相比,声源尺度越大,其指向性就越强。(极坐标图上高频比中频的指向性高) ·为什么要引入级的概念:因为人耳对声音响应范围很大,又不成线性关系,而是接近于对数关系。 ·声功率:声源在单位时间内向外辐射的声能,记作W,单位为瓦(w)声源所辐射的声功率属于声源本身的一种特性,一般不随环境条件的改变而改变。 ·声强:单位面积波阵面所通过的声功率,用I 表示,单位为w/m2 。基准声强10-12 W/m2 ·声强与声功率成正比,声功率越大,声强越大。但声强却与离声源的距离平方成反比。 ·声压:空气在声波作用下,会产生稠密和稀疏相间变化,压缩稠密层的压强P大于大气压强P0,反之,膨胀稀疏层的压强P就小于大气压强P0 ,由声波引起的压强改变量,就是声压单位(N/m2,Pa)。 ·声压与声源振动的振幅有关,与波长无关。声压的大小决定声音的强弱。 ·声功率级是声功率与基准声功率之比取以10为底的对数乘以10,用L W 表示,单位为dB ·声功率级、声强级和声压级值为零分贝时,并不是声源的声功率、声强和声压值为零,它们分别等于各自的基准值。·声功率提高一倍(2个相同声源),声压级提高3dB 声强提高一倍,声压级提高3dB 声压提高一倍,声压级提高6dB. 2个声源的声压级相差10dB ,忽略低声压级声源的影响 声波的折射:晚间和顺风,传播方向向下弯曲,穿的远,无声影区。白天和逆风反之。(利用:台阶式露天座椅升起坡度等于声波向上折射的角度。) 声波的衍射:声音绕过建筑物进入声影区的现象。(低频声波衍射作用大·使用反射板要考虑尺度,不能太小) 声音三要素:音调音色响度 声音的强弱(大小)可用响度级表示。它与声音的频率和声压级有关。 音调的高低主要取决于声音的频率(基频),频率越高,音调就越高。音乐中,频率提高一倍,即为所说的高“八度音”。基音:音乐声中往往包含有一系列的频率成分,其中的一个最低频率声音称为基音,人们据此来辨别音调,其频率称为基频。 另一些则称为谐音,它们的频率都是基频的整数倍,称为谐频。这些声音组合在一起,就决定了音乐的音色。 音乐声(即乐音)只含有基频和谐频,所以音乐的频谱是不连续的,称为线状谱。而噪音大多是连续谱。(高速公路隧道内的交通噪声)

固体物理知识点

1. 稻草、石墨烯和金刚石是一种元素组成的吗?为何存在外型和性能方面存在很 大差 异? 同为碳元素,从微观角度来说碳元素的排列不同决定了宏观上性质及外型不同 2. 固体分为 晶体、非晶体和准晶体,它们在微观上分别觉有什么特点? 晶体的 宏观特性有哪些?晶体有哪些分类? 晶体长程有序, 非晶体短程有序, 准晶体具有长程取向性, 没有长程的平移对 称性;晶体宏观特性:自限性,解理性,晶面角守恒,晶体各向异性,均匀性, 对称性,以及固定的熔点;晶体主要可以按晶胞、对称性、功能以及结合方式进 行分类。 原胞是一个晶格中最小的重复单元, 体积最小,格点只在顶角上, 面上和内部 不含格点。晶胞体积不一定最小,格点不仅在顶角上,还可以在内部或面心上。 3. 简单晶格与复式晶格的区别? 简单晶格的晶体由完全相同的一种原子组成,且每个原子周围的情况完全相 同; 复式晶格的晶体由两种或两种以上原子组成,同种原子各构成和格点相同 的网格,这些网格的相对位移形成复式晶格 2 4 3a 3 = V 1 3 4 3 a 5. 晶面的密勒指数为什么可用晶面的截距的倒数值的比值来表征 (把基矢看做单 位矢 量),提示:晶面一般用面的法线来表示,法线又可以用法线与轴的夹角的 余弦来表示。 晶面的法线方向与三个坐标轴的夹角的余弦之比, 等于晶面在三个轴上的截距 的倒数之比。 晶面的法线与三个基矢的夹角余弦之比等于三个整数之比。 6. 简立方 [110]等效晶向有几个 ,表示成什么? 110随机排列,任意取负,共 12种,表示为 <110>。 7. 倒格子矢量 Kh=h1b1+h2b2+h3b3 的大小,方向和意义 (矢量 Kh 这里 h 为下标, h1, b1, h2, b2, h3, b3里的数字均为下标, b1, b2, b3 为倒格子原胞基矢 ),提 示: 从倒格子性质中找答案。 大小为 2π/晶面间距 方向为晶面法线方向 意义是与真实空间相联系的傅立 叶空间的周期性排列 8. 倒格子和正格子之间的关系有哪些? 1. 正格子基矢与倒格子基矢点乘 2.正格矢与倒格矢的点乘为定值 3.倒格子 原胞体积反比于正格子原胞体积 4.倒格矢与正格中晶面族正交 5.正格子与 倒格子互为对方的倒格子 9. 证明面心立方晶体的倒格子是体心立方晶体 面心立方正格基矢 4.假设体心立方边长是 a,格点上的小球半径为 N=1 8 8 4R 3a 1=2 单胞中原子所占体积为 V 1=N 体心立方体体积为 V 2 R , 4 求体心立方致密度。 8 R 3 R 3 致密度为 V 2

建筑物理——建筑声学习题

建筑物理——建筑声学习题 一、选择题 1.5个相同的声压级迭加,总声级较单个增加分贝。 A 3 B 5 C 7 D 10 2.4个相同的声压级迭加,总声级较单个增加分贝。 A 3 B 5 C 6 D 10 3.+10dB的声音与-10dB的声音迭加结果约为分贝。 A 0B13 C 7 D 10 4.50dB的声音与30dB的声音迭加结果约为分贝。 A 80B50 C 40 D 30 5.实际测量时,背景噪声低于声级分贝时可以不计入。 A 20 B 10 C 8 D 3 6.为保证效果反射板的尺度L与波长间的关系是。 A L<λ B L≥0.5λ C L≥1.5λ D L>>λ 7.易对前排产生回声的部位是。 A 侧墙 B 银幕 C 乐池 D 后墙 8.围护结构隔声性能常用的评价指标是。 A I a B M C α D L p 9.避免厅堂简并现象的措施是。 A 缩短T60 B 强吸声 C 墙面油漆 D 调整比例 10.当构件的面密度为原值的2倍时,其隔声量增加分贝。 A 3 B 6 C 5 D 10 11.测点处的声压值增加一倍,相应的声压级增加分贝。 A 2 B 5 C 3 D 6 12.70dB的直达声后,以下的反射声将成为回声。 A 20ms65d B B 70ms64dB C 80ms45dB D 30ms75dB 13.邻室的噪声对此处干扰大,采取措施最有效。 A 吸声处理 B 装消声器 C 隔声处理 D 吊吸声体 14.对城市环境污染最严重的噪声源是。 A 生活 B 交通 C 工业 D 施工 15.吸声处理后混响时间缩短一半则降噪效果约为分贝。 A 2 B 5 C 3 D 10 16.凹面易产生的声缺陷是。 A 回声 B 颤动回声 C 声聚焦 D 声染色 17.厅堂平行墙面间易产生的声学缺陷是。 A 回声 B 颤动回声 C 声聚焦 D 声染色 18.多孔吸声材料仅增加厚度,则其吸声特性最明显的变化趋势是。 A 高频吸收增加 B 中低频吸收增加 C 共振吸收增加 D 中低频吸收减少19.某人演唱时的声功率为100微瓦,他发音的声功率级是分贝。 A 50 B 110 C 80 D 100 20.普通穿孔板吸声的基本原理是。 A 微孔吸声 B 共振吸声 C 板吸声 D 纤维吸声 21.多孔吸声材料吸声的基本原理是。 A 微孔吸声 B 共振吸声 C 板吸声 D 纤维吸声 22.薄板吸声构造的吸声特性主要吸收。 A 高频 B 中频 C 中低频 D 低频 23.降低室内外噪声,最关键、最先考虑的环节是控制。 A 传播途径 B 接受处 C 规划 D 声源 24.A声级采用的是方倒置等响曲线作为计权网络所测得的声压级。 A 40 B 50 C 80 D 100 25.为避免声影,挑台高度h与深度b的关系是。

建筑物理期末总结

建筑物理 1,城市物理环境主要指的是哪些? (1)湿热环境(2)光环境(3)声环境(4)空气环境 2,物理环境的“优化目标”是什么? “优化目标”包括两个层次的要求,一是人们长时期逗留的建筑空间,达到有助于增进身心健康,提高效率的环境舒适标准,也就是宜居标准;二是达到防止危害健康(包括累加的负面影响)的环境卫生标准。国家规范及国际的相关标准都是优化设计的依据。 3,城市发展中新建筑类型,新材料构造带来的物理环境问题有哪些?举例说明。 (1)公共建筑流行设计有数层高楼的中庭,一方面成为建筑的新特征,另一方面则需特别考虑物理环境品质(包括引入自然光,空气品质,语言私密等)和建筑节能设计。 (2)城市中心区域大型建筑为追求时尚,使用玻璃幕墙,反射的光热辐射和强光对居民生活造成很大影响; 一些体型怪异(例如凹弧形立面或有大凹凸起伏的立面)的沿街建筑玻璃幕墙,反射呈现的景观杂乱, 驾驶人员难以准确判断景物和路况,甚至引起交通事故。 (3)教室课桌与黑板有很大一部分不能达到平均照度要求;视力不良检出率逐年上升。 (4)高层住宅中,上下水管刚性连接,使用时水流引起的固体传声时常被放大到邻户难以容忍的程度。 (5)打印机制造的微尘环境,对人体健康造成很大影响。 (6)地下商场通风不佳,有害化学物质积聚;中央空调管道积尘量超标,送风中细菌超标。 4,论述人体热平衡是达到人体热舒适的必要条件? 室内热环境主要是由室内气温,湿度,气流及壁面热辐射等因素综合而成的室内微气候。 热舒适是指人们对所处室内气候环境满意程度的感受。人体对周围环境的热舒适程度主要反映在人的冷热感觉上,室内气候,人体健康状况等都是其影响因素。人们在某一环境中感到热舒适的必要条件是:人体内产生的热量与向环境散发的热量相等,即保持人体的热平衡。由公式△q= 可以看出,人体与周围环境的换热方式有对流,辐射和蒸发三种,换热的余量即为人体热辐射△q。△q的值与人体的体温变化成正比,△q 不为零时,若差值不大,时间也不长,可以通过环境与机体本身的调节而逐渐消除,不致对人体产生有危害影响;但如果变动幅度大,持续时间长,人体将出现不适感,严重时出现病态征兆,甚至死亡。因此要维持人体体温恒定不变,必须使△q=0,即人体的新陈代谢产热量正好与人体所处环境的热交换量处于平衡状态。由此可知,人体的热平衡是达到人体热舒适的必要条件。 公式△q= 5,人体热平衡的影响因素? (1)人体新陈代谢产热量q m。主要取决于人体的新陈代谢率及对外作机械工的效率。 (2)对流换热量q c,是当着衣体表面与周围环境见存在温度差时的热交换值,取决于着衣体表面和空气间的温差,气流速度以及衣着的热物理性质。 当人体平均皮肤温度高于空气温度时,q c为负值,人体向周围空气散热,且气流速度越大,散热越多; 若空气温度高于人体平均皮肤温度,人体从空气中得热,成为人体对流附加热负荷,且气流速度越大, 得热越多。因此,气流速度对人体的对流换热影响很大,至于人体是散热还是得热,取决于空气温度。 (3)辐射换热量q r 是在着衣体表面与周围环境间进行的,取决于两者的温度,辐射系数,相对位置以及人体的有效辐射面 积。当人体温度高于周围表面温度时,辐射换热的结果,人体失热,q r为负值;反之,人体得热,qr 为正值。 (4)人体的蒸发散热量q w 由无感蒸发散热量与有感的显汗蒸发散热量组成。有感的显汗蒸发散热量大小决定于排汗率,与空气流 速,从皮肤表面经衣服到周围空气的水蒸汽压力分布,衣服对蒸汽的渗阻率等因素有关。 6,影响人体热感的因素有? (1)空气温度t i(2)空气相对湿度(3)气流速度v i(4)环境平均辐射温度(5)人体新陈代谢率m(6)人体衣着状况

(整理)建筑物理、光学、声学部分复习参考题

第一部分单项选择题 一、《建筑热工》部分 1.在围护结构保温设计时,按(D )值将围护结构分成四类。 A.传热阻R B.蓄热系数S C.导热系数λ D.热惰性指标D 2.钢筋混凝土的干密度ρ为2500kg/m3,导热系数λ为1.74w/m?k,比热容C为0.26w?h/kg?k,波动周期Z为24小时,求此种材料的蓄热系数S24为(C )。 公式S=A A.15w/(m2?K) B. 16w/(m2?K) C. 17w/(m2?K) D. 18w/(m2?K) 3.指出在下列单位中,(C )是错误的? A. 导热系数 [w/m?K] B. 比热容 [KJ/(kg?K)] C. 传热阻 [ m?K/w ] D. 传热系数 [w/m2?K] 4.绝热材料的导热系数λ为(B )。 A. 小于0.4w/(M?K) B. 小于0.3w/(M?K) C. 小于0.2w/(M?K) D. 小于0.1w/(M?K) 5.把下列材料的导热系数从低到高顺序排列,哪一组是正确的( B )? I.钢筋混凝土;II.水泥膨胀珍珠岩;III.平板玻璃;IV.重砂浆砌筑粘土砖砌体;V.胶合板 A. II、V、I、IV、III B. V、II、III、IV、I C. I、IV、III、II、V D. V、II、IV、III、I 6.下列围护结构,哪一种热惰性指标最小( D )? A.外墙; B.屋面; C.地面; D.外窗 7.冬季室内外墙内表面结露的原因(D )。 A. 室内温度低 B. 室内相对湿度大

C. 外墙的热阻小 D. 墙体内表面温度低于露点温度 8.欲使房间内温度升高(或降低)得快,围护结构的内表面(或内侧),应采用( B )的材料。 A.导热系数小 B.蓄热系数小 C.热惰性大 D.蓄热系数大 9.围护结构在某一简谐波热作用下,若其热惰性指标D大,则离外表面某距离处的温度波动(),该围护结构抵抗温度变化的能力( B )。 A. 大、弱 B.小、强 C.大、强 D.小、弱 10.白色物体表面与黑色物体表面对于长波热辐射的吸收能力(A )。 A.相差极小 B.相差极大 C. 白色物体表面比黑色物体表面强 D.白色物体表面比黑色物体表面强白色物体表面比黑色物体表面弱 11.在热量的传递过程中,物体温度不同部分相邻分子发生碰撞和自由电子迁移所引起的能量传递称为(C )。 A.辐射 B.对流 C.导热 D.传热 12.试问在下列有关热工性能的叙述中,( B )是正确的? A.墙体的热阻,随着吹向墙体的风速增大而增大 B.在同样的室内外气温条件下,总热阻R0越大,通过围护结构的热量越少,而内表面温度则越高 C.空气间层的隔热效果与它的密闭性无关 D.砖比混凝土容易传热 13.为增加封闭空气间层的热阻,以下措施哪些是可取的( A )? A.在封闭空气间层壁面贴铝箔 B.将封闭空气间层置于围护结构的高温侧 C.大幅度增加空气间层的厚度 D.在封闭空气间层壁面涂贴反射系数小、辐射系数大的材料 14.为了消除或减弱围护结构内部的冷凝现象,下列措施不正确的有( D )。 A.在保温层蒸汽流入的一侧设置隔汽层

相关主题