搜档网
当前位置:搜档网 › 管理Linux 系统进程操作实验报告

管理Linux 系统进程操作实验报告

管理Linux 系统进程操作实验报告
管理Linux 系统进程操作实验报告

操作系统实验报告

题目:管理Linux 系统进程

实验目的

1) 回顾系统进程的概念,加深对Linux / UNIX 进程管理的理解。

2) 回顾ps 命令和选项。

3) 列出当前shell 中的进程。

4) 列出运行在系统中的所有进程。

5) 根据命令名搜索特定的进程。

6) 确定一个进程,终止它。

7) 使用kill 命令终止进程。

8) 根据用户查找和终止进程。

9) 根据命令名终止进程。

实验环境

一台运行Red Hat Linux 操作系统的计算机。

实验内容与步骤

注:本报告中蓝色字表示填空的内容,红色字表示仍然在纠结。

步骤1:登录进入GNOME。

在Linux 登录框中填写指导老师分配的用户名和口令,登录Linux 系统。

步骤2:访问命令行。

单击红帽子,在“GNOME 帮助”菜单中单击“系统工具”-“终端”命令,打开“终

端”窗口。

步骤3:回顾系统进程概念。

每个运行的程序都会创建一个进程,进程分配到一个唯一的进程标识符(PID) 。PID

被系统用于标识和跟踪进程,直到进程结束。操作系统内核管理所有进程的初始化和终止。

每一个进程都要求系统资源(例如CPU 时间和RAM空间)

在其中工作。当进程启动的时候,

操作系统把系统资源分配给每个进程,当进程终止的时候,系统回收这些资源。在Linux 系

统启动的时候,首先启动的两个进程是sched (调度) 和init (初始化) ,它们管理着其他进程。

Linux 系统中有几种不同类型的进程:

守护进程:由Linux 内核启动的进程,为了特定目的而存在。例如,lpsched 守护进程

存在只是为了处理打印作业。

父进程:派生其他进程的进程是父进程。一个叫做init 的守护进程是第一个调用的进程。

每一个进程,除了init 之外,都有一个父进程。

子进程:由其他进程派生出来的进程叫做子进程。

孤儿进程:在进程返回输出之前,它的父进程结束了,这样的进程叫做孤儿进程。

僵进程:子进程没有带着输出返回给父进程。这样的进程在系统中变成丢失的进程。

使用此前的信息,完成以下填空:

1) Linux 系统中,几乎每一个启动的进程,都会由内核分配一个唯一的PID

进程标识符,用于跟踪从进程启动到进程结束。

2) 当启动新进程的时候,内核也给它们分配系统资源,如CPU时间和RAM空间。

3) 永远不向父进程返回输出的进程叫做僵进程。

4) 由父进程派生出来的进程叫做子进程。

5) 父进程是一个派生另一个进程的进程。

6) 运行用于提供服务的Linux 系统进程是守护进程。

7) 如果父进程在子进程之前结束,它创建了一个孤儿进程。步骤4:回顾ps 命令和信息。

ps 命令用于列出当前系统中运行的进程。

如果一个进程耗时太长,或者看上去好像已经终止了,表现为一个终端窗口不再响应或

挂起,通常需要使用ps 查看系统中的进程。通过列出进程,可以查看初始化进程的命令或

程序的名字,以及所有它派生出来的子进程。通过多次执行ps 命令,查看进程的时间——

进程占用的CPU 时间,可以检查一个进程是否还在运行。如果时间小再增长,那么进程可

能已经终止了。如果进程占用太长的时间或者已经停止,可以使用ps 命令检查进程的进程

ID (PID) ,然后杀死进程。

ps 命令的输出将显示PID 号和与其相关的命令或程序。PID 号通常用于终止一个进程。

ps 命令( ps [-options] ) 的3 个主要选项如下表所示。

表 3-5 ps 命令选项

ps 选项意义功能

Ps 无选项显示当前shell 或终端窗口中,当前用户的进程信息

ps –e 每一个显示系统中每一个进程的信息

ps –f 完全产生一个完全列表,给出每个进程的所有可用信息

ps -u userid 用户显示特定用户的所有进程

基本的ps 命令显示在当前shell 中的进程信息,用户只能够查看在这个终端窗口中初始

化的进程。输入ps 命令,将结果填入表3-6 中。

表 3-6 实验记录

从当前终端窗口中,练习使用给出的每个选项的ps 命令。输入ps -f 命令,显示运行在系统中的某个进程的完全信息,填入表3-7 中。

步骤5:列出系统中运行的所有进程。

输入ps -ef 命令,显示运行在系统中的各个进程的完全信息。执行该命令,并与ps –f

命令的输出结果对照,一致吗?有何不同?

不一致,1)ps -ef 的进程很多____2)ps -ef 的CMD很多,但两者的bash很相似

3)最后一个CMD一个是ps -f,一个是ps -ef

注意分析当前终端窗口中的输出结果:

a. 显示了多少个进程?

____见截图

___________________________________________________ _____________

b. 进程ID 的PID 是什么?

___进程标识符

___________________________________________________ ___

c. 启动进程的命令(CMD) 是什么?

___ps_______________________________________________ __________________

d. 请观察,什么命令的PID 号是1?

___init[5]___________________________________________ _____________________

e. 再次运行ps –ef 命令,计算进程的数目:

___115_____________________________________________ ____________________

然后执行下列命令把输出结果输入到wc 命令中:

ps -ef | wc -l

第一个数字显示的是行的数目,也是进程的数目:

___117_____________________________________________ ____________________

执行man ps 命令,可以打开Linux 用户命令手册,了解ps 命令的用法,输入wq 命令

可退出用户手册的阅读。man 命令可以执行吗?结果如何?不可以,见截图

___________________________________________________ _

步骤6:根据命令名搜索特定的进程。

为了终止一个进程,必须找到该进程的PID。大多数运行的系统中,有上百个进程在运

行,ps -ef 的列表可能很长。如果知道启动进程的执行程序的名字,可以更快地找到PID。

通过把ps 命令的输出结果输入到grep 中,可以搜索想要终止的特定进程,确定正确的

PID。

grep 命令可以在其他命令的输出中搜索所有类型的特征字符串。-l (长的输出) 选项将

显示和找到的PID 相关的进程的名字;-e 选项显示PID 和

初始化命令的名字。

a. 单击红帽子,在“GNOME 帮助”菜单中单击“游戏”-“堆麻将”命令,打开“堆

麻将”游戏。(在这个步骤时没有认出哪个是堆麻将游戏,故而用游戏lagno代替)

b. 在当前的终端窗口中,执行命令:

ps –e | grep mahjongg

(“堆麻将”游戏的进程名是“mahjongg”) ,查找和“堆麻将”游戏调度守护进程相关的

所有进程。

c. 显示了多少个相关进程?

显示了2个,见截图

d. 显示进程中最小的进程ID 号是多少?

___15015___________________________________________ ______________________

c. 在当前终端窗口中执行命令:

pgrep –l mahjongg

查找所有和“堆麻将”游戏调度守护进程相关的进程。ps 和

计算机操作系统进程调度实验研究报告

计算机操作系统进程调度实验研究报告

————————————————————————————————作者:————————————————————————————————日期:

操作系统实验题:设计一若干并发进程的进程调度程序 一、实验目的 无论是批处理系统、分时系统还是实时系统,用户进程数一般都大于处理机数,这将导致用户进程互相争夺处理机。这就要求进程调度程序按一定的策略,动态地把处理及分配给处于就绪队列中的某一进程,以使之执行。进程调度是处理机管理的核心内容。本实验要求采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法编写和调试一个简单的进程调度程序。通过本实验可以加深理解有关进程控制块、进程队列的概念。并体会了优先数和先来先服务调度算法的具体实施办法。 二、实验要求 用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解. 三、实验内容 进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法(将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理)。 每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输入的时间。 进程的运行时间以时间片为单位进行计算。 每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。 就绪进程获得CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。 如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。重复以上过程,直到所要进程都完成为止。 四、实验算法流程

windows进程管理实验报告

实验报告 课程名称:操作系统 实验项目:windows进程管理 姓名: 专业:计算机科学与技术 班级: 学号:

计算机科学与技术学院 计算机系 2019 年 4 月 23 日

实验项目名称: windows进程管理 一、实验目的 1. 学习windows系统提供的线程创建、线程撤销、线程同步等系统调用; 2. 利用C++实现线程创建、线程撤销、线程同步程序; 3. 完成思考、设计与练习。 二、实验用设备仪器及材料 1. Windows 7或10, VS2010及以上版本。 三、实验内容 1 线程创建与撤销 写一个windows控制台程序(需要MFC),创建子线程,显示Hello, This is a Thread. 然后撤销该线程。 相关系统调用: 线程创建: CreateThread() 线程撤销: ExitThread() 线程终止: ExitThread(0) 线程挂起: Sleep() 关闭句柄: CloseHandle() 参考代码: ; } 运行结果如图所示。 完成以下设计题目: 1. 向线程对应的函数传递参数,如字符串“hello world!”,在线程中显示。 2. 如何创建3个线程A, B, C,并建立先后序执行关系A→B→C。

实验内容2 线程同步 完成父线程和子线程的同步。父线程创建子线程后进入阻塞状态,子线程运行完毕后再唤醒。 相关系统调用: 等待对象 WaitForSingleObject(), WaitForMultipleObjects(); 信号量对象 CreateSemaphore(), OpenSemaphore(), ReleaseSemaphore(); HANDLE WINAPI CreateSemaphore( _In_opt_ LPSECURITY_ATTRIBUTES lpSemaphoreAttributes _In_ LONG lInitialCount, _In_ LONG lMaximumCount, _In_opt_ LPCTSTR lpName ); 第一个参数:安全属性,如果为NULL则是默认安全属性 第二个参数:信号量的初始值,要>=0且<=第三个参数 第三个参数:信号量的最大值 第四个参数:信号量的名称 返回值:指向信号量的句柄,如果创建的信号量和已有的信号量重名,那么返回已经存在的信号量句柄参考代码: n"); rc=ReleaseSemaphore(hHandle1,1,NULL); err=GetLastError(); printf("Release Semaphore err=%d\n",err); if(rc==0) printf("Semaphore Release Fail.\n"); else printf("Semaphore Release Success. rc=%d\n",rc); } 编译运行,结果如图所示。

操作系统-Linux课程实验报告

实验、 Linux Ubuntu的安装、创建新的虚拟机VMWare 实验 Shell编程 1.实验目的与内容 通过本实验,了解Linux系统的shell机制,掌握简单的shell编程技巧。 编制简单的Shell程序,该程序在用户登录时自动执行,显示某些提示信息,如“Welcome to Linux”, 并在命令提示符中包含当前时间、当前目录和当前用户名等基本信息。 2.程序源代码清单 #include<> #include int main(){ printf("Hello Linux\n"); int pid; int state; int pfd[2]; pipe(pfd); if (fork()==0){ printf("In the grep progress\n"); dup2(pfd[0],0); close(pfd[0]); close(pfd[1]); execlp("grep","grep","sh",0); perror("exelp grep error"); } esle if(fork()==0){ printf("In the ps progress\n"); dup2(pfd[1],1); close(pfd[0]); close(pfd[1]); execlp("ps","ps","-ef",0); perror("execlp ps -ef"); }

close(pfd[1]); close(pfd[0]); wait(&state); wait(&state); } 实验内核模块 实验步骤: (1).编写内核模块 文件中主要包含init_clock(),exit_clock(),read_clock()三个函数。其中init_clock(),exit_clock()负责将模块从系统中加载或卸载,以及增加或删除模块在/proc中的入口。read_clock()负责产生/proc/clock被读时的动作。 (2).编译内核模块Makefile文件 # Makefile under ifneq ($(KERNELRELEASE),) #kbuild syntax. dependency relationshsip of files and target modules are listed here. obj-m := else PWD := $(shell pwd) KVER ?= $(shell uname -r) KDIR := /lib/modules/$(KVER)/build all: $(MAKE) -C $(KDIR) M=$(PWD) modules clean: rm -rf .*.cmd *.o *. *.ko .tmp_versions *.symvers *.order endif 编译完成之后生成模块文件。 (3).内核模块源代码 #include #include #include #include #include #include #define MODULE #define MODULE_VERSION "" #define MODULE_NAME "clock" struct proc_dir_entry* my_clock; int read_clock(char* page, char** start, off_t off, int count, int* eof, void* data) { int len; struct timeval xtime;

操作系统实验-进程控制

实验一、进程控制实验 1.1 实验目的 加深对于进程并发执行概念的理解。实践并发进程的创建和控制方法。观察和体验进程的动态特性。进一步理解进程生命期期间创建、变换、撤销状态变换的过程。掌握进程控制的方法,了解父子进程间的控制和协作关系。练习Linux 系统中进程创建与控制有关的系统调用的编程和调试技术。 1.2 实验说明 1)与进程创建、执行有关的系统调用说明进程可以通过系统调用fork()创建子进程并和其子进程并发执行.子进程初始的执行映像是父进程的一个复本.子进程可以通过exec()系统调用族装入一个新的执行程序。父进程可以使用wait()或waitpid()系统调用等待子进程的结束并负责收集和清理子进程的退出状态。 fork()系统调用语法: #include pid_t fork(void); fork 成功创建子进程后将返回子进程的进程号,不成功会返回-1. exec 系统调用有一组6 个函数,其中示例实验中引用了execve 系统调用语法: #include int execve(const char *path, const char *argv[], const char * envp[]); path 要装入 的新的执行文件的绝对路径名字符串. argv[] 要传递给新执行程序的完整的命令参数列表(可以为空). envp[] 要传递给新执行程序的完整的环境变量参数列表(可以为空).

Exec 执行成功后将用一个新的程序代替原进程,但进程号不变,它绝不会再返回到调用进程了。如果exec 调用失败,它会返回-1。 wait() 系统调用语法: #include #include pid_t wait(int *status); pid_t waitpid(pid_t pid,int *status,int option); status 用 于保留子进程的退出状态 pid 可以为以下可能值: -1 等待所有PGID 等于PID 的绝对值的子进程 1 等待所有子进程 0 等待所有PGID 等于调用进程的子进程 >0 等待PID 等于pid 的子进程option 规 定了调用waitpid 进程的行为: WNOHANG 没有子进程时立即返回 WUNTRACED 没有报告状态的进程时返回 wait 和waitpid 执行成功将返回终止的子进程的进程号,不成功返回-1。 getpid()系统调用语法: #include #include pid_t getpid(void); pid_t getppid(void); getpid 返回当前进程的进程号,getppid 返回当前进程父进程的进程号 2)与进程控制有关的系统调用说明可以通过信号向一个进程发送消息以控制进程的 行为。信号是由中断或异常事件引发的,如:键盘中断、定时器中断、非法内存引

进程管理实验报告

实验2过程管理实验报告学生号姓名班级电气工程系过程、过程控制块等基本原理过程的含义:过程是程序运行过程中对数据集的处理,以及由独立单元对系统资源的分配和调度。在不同的数据集上运行程序,甚至在同一数据集上运行多个程序,是一个不同的过程。(2)程序状态:一般来说,一个程序必须有三种基本状态:就绪、执行和阻塞。然而,在许多系统中,过程的状态变化可以更好地描述,并且增加了两种状态:新状态和终端状态。1)就绪状态,当一个进程被分配了除处理器(CPU)以外的所有必要资源时,只要获得了处理器,进程就可以立即执行。此时,进程状态称为就绪状态。在系统中,多个进程可以同时处于就绪状态。通常,这些就绪进程被安排在一个或多个队列中,这些队列称为就绪队列。2)一旦处于就绪状态的进程得到处理器,它就可以运行了。进程的状态称为执行状态。在单处理器系统中,只有一个进程在执行。在多处理器系统中,可能有多个进程在执行中。3)阻塞状态由于某些事件(如请求输入和输出、额外空间等),执行进程被挂起。这称为阻塞状态,也称为等待状态。通常,处于阻塞状态的进程被调度为-?这个队列称为阻塞队列。4)新状态当一个新进程刚刚建立并且还没有放入就绪队列中时,它被称为新状态。5)终止状态是

什么时候-?进程已正常或异常终止,操作系统已将其从系统队列中删除,但尚未取消。这就是所谓的终结状态。(3)过程控制块是过程实体的重要组成部分,是操作系统中最重要的记录数据。控制块PCB记录操作系统描述过程和控制过程操作所需的所有信息。通过PCB,一个不能独立运行的程序可以成为一个可以独立运行的基本单元,并且可以同时执行一个进程。换句话说,在进程的整个生命周期中,操作系统通过进程PCB管理和控制并发进程。过程控制块是系统用于过程控制的数据结构。系统根据进程的PCB来检测进程是否存在。因此,进程控制块是进程存在的唯一标志。当系统创建一个进程时,它需要为它创建一个PCB;当进程结束时,系统回收其PCB,进程结束。过程控制块的内容过程控制块主要包括以下四个方面的信息。过程标识信息过程标识用于对过程进行标识,通常有外部标识和内部标识。外部标识符由流程的创建者命名。通常是一串字母和数字。当用户访问进程时使用。外部标识符很容易记住。内部标识符是为了方便系统而设置的。操作系统为每个进程分配一个唯一的整数作为内部标识符。通常是进程的序列号。描述性信息(process scheduling message)描述性信息是与流程调度相关的一些有关流程状态的信息,包括以下几个方面。流程状态:表

计算机操作系统实验课实验报告

实验报告 实验课程: 计算机操作系统学生姓名:XXX 学号:XXXX 专业班级:软件 2014年12月25日

目录 实验一熟悉Windows XP中的进程和线程.. 3实验二进程调度 (7) 实验三死锁避免—银行家算法的实现 (18) 实验四存储管理 (24)

实验一熟悉Windows XP中的进程和线程 一、实验名称 熟悉Windows XP中的进程和线程 二、实验目的 1、熟悉Windows中任务管理器的使用。 2、通过任务管理器识别操作系统中的进程和线程的相关信息。 3、掌握利用spy++.exe来察看Windows中各个任务的更详细信息。 三、实验结果分析 1、启动操作系统自带的任务管理器: 方法:直接按组合键Ctrl+Alt+Del,或者是在点击任务条上的“开始”“运行”,并输入“taskmgr.exe”。

2、调整任务管理器的“查看”中的相关设置,显示关于进程的以下各项信息,并 完成下表: 表一:统计进程的各项主要信息 3、启动办公软件“Word”,在任务管理器中找到该软件的登记,并将其结束掉。再

从任务管理器中分别找到下列程序:winlogon.exe、lsass.exe、csrss.exe、smss.exe,试着结束它们,观察到的反应是任务管理器无法结束进程, 原因是该系统是系统进程。 4、在任务管理器中找到进程“explorer.exe”,将之结束掉,并将桌面上你打开的所 有窗口最小化,看看你的计算机系统起来什么样的变化桌面上图标菜单都消失了、得到的结论explorer.exe是管理桌面图标的文件(说出explorer.exe进程的作用)。 5、运行“spy++.exe”应用软件,点击按钮“”,切换到进程显示栏上,查看进 程“explorer.exe”的各项信息,并填写下表: 进程:explorer.exe 中的各个线程

操作系统实验报告--实验一--进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5)); jincheng.rtime = 0;

进程管理实验报告

进程的控制 1 .实验目的 通过进程的创建、撤消和运行加深对进程概念和进程并发执行的理解,明确进程与程序之间的区别。 【答:进程概念和程序概念最大的不同之处在于: (1)进程是动态的,而程序是静态的。 (2)进程有一定的生命期,而程序是指令的集合,本身无“运动”的含义。没有建立进程的程序不能作为1个独立单位得到操作系统的认可。 (3)1个程序可以对应多个进程,但1个进程只能对应1个程序。进程和程序的关系犹如演出和剧本的关系。 (4)进程和程序的组成不同。从静态角度看,进程由程序、数据和进程控制块(PCB)三部分组成。而程序是一组有序的指令集合。】2 .实验内容 (1) 了解系统调用fork()、execvp()和wait()的功能和实现过程。 (2) 编写一段程序,使用系统调用fork()来创建两个子进程,并由父进程重复显示字符串“parent:”和自己的标识数,而子进程则重复显示字符串“child:”和自己的标识数。 (3) 编写一段程序,使用系统调用fork()来创建一个子进程。子进程通过系统调用execvp()更换自己的执行代码,新的代码显示“new

program.”。而父进程则调用wait()等待子进程结束,并在子进程结束后显示子进程的标识符,然后正常结束。 3 .实验步骤 (1)gedit创建进程1.c (2)使用gcc 1.c -o 1编译并./1运行程序1.c #include #include #include #include void mian(){ int id; if(fork()==0) {printf(“child id is %d\n”,getpid()); } else if(fork()==0) {printf(“child2 id %d\n”,getpid()); } else {id=wait(); printf(“parent id is %d\n”,getpid()); }

第二章 操作系统进程(练习题标准答案)

第二章操作系统进程(练习题答案)

————————————————————————————————作者:————————————————————————————————日期: 2

第二章进程管理 1.操作系统主要是对计算机系统全部 (1) 进行管理,以方便用户、提高计算机使 用效率的一种系统软件。它的主要功能有:处理机管理、存储管理、文件管理、 (2) 管 理和设备管理等。Windows和Unix是最常用的两类操作系统。前者是一个具有图形界面的 窗口式的 (3) 系统软件,后者是一个基本上采用 (4) 语言编制而成的 的系统软件。在 (5) 操作系统控制下,计算机能及时处理由过程控制反馈的信息 并作出响应。 供选答案: (1): A. 应用软件 B. 系统软硬件 C. 资源 D. 设备 (2): A. 数据 B. 作业 C. 中断 D. I/O (3): A. 分时 B. 多任务 C. 多用户 D. 实时 (4): A. PASCAL B. 宏 C. 汇编 D. C (5): A. 网络 B. 分时 C. 批处理 D. 实时 答案:CBBDD 2.操作系统是对计算机资源进行的 (1) 系统软件,是 (2) 的接口。 在处理机管理中,进程是一个重要的概念,它由程序块、 (3) 和数据块三部 分组成,它有3种基本状态,不可能发生的状态转换是 (4) 。 虚拟存储器的作用是允许程序直接访问比内存更大的地址空间,它通常使用 (5) 作为它的一个主要组成部分。 供选答案: (1): A. 输入和输出 B. 键盘操作 C. 管理和控制 D. 汇编和执行 (2): A. 软件和硬件 B. 主机和外设 C. 高级语言和机器语言 D. 用户和计算机 (3): A. 进程控制块 B. 作业控制块 C. 文件控制块 D. 设备控制块 (4): A. 运行态转换为就绪态 B. 就绪态转换为运行态 C. 运行态转换为等待态 D. 等待态转换为运行态 (5): A. 软盘 B. 硬盘 C. CDROM D. 寄存器 答案:CDADB 3.在计算机系统中,允许多个程序同时进入内存并运行,这种方法称为 D。 A. Spodling技术 B. 虚拟存储技术 C. 缓冲技术 D. 多道程序设计技术 4.分时系统追求的目标是 C。 A. 高吞吐率 B. 充分利用内存 C. 快速响应 D. 减少系统开销 5.引入多道程序的目的是 D。

第二章-操作系统进程(练习题答案)

第二章进程管理 1.操作系统主要是对计算机系统全部 (1) 进行管理,以方便用户、提高计算机使 用效率的一种系统软件。它的主要功能有:处理机管理、存储管理、文件管理、 (2) 管 理和设备管理等。Windows和Unix是最常用的两类操作系统。前者是一个具有图形界面的 窗口式的 (3) 系统软件,后者是一个基本上采用 (4) 语言编制而成的 的系统软件。在 (5) 操作系统控制下,计算机能及时处理由过程控制反馈的信息 并作出响应。 供选答案: (1): A. 应用软件 B. 系统软硬件 C. 资源 D. 设备 (2): A. 数据 B. 作业 C. 中断 D. I/O (3): A. 分时 B. 多任务 C. 多用户 D. 实时 (4): A. PASCAL B. 宏 C. 汇编 D. C (5): A. 网络 B. 分时 C. 批处理 D. 实时 答案:CBBDD 2.操作系统是对计算机资源进行的 (1) 系统软件,是 (2) 的接口。 在处理机管理中,进程是一个重要的概念,它由程序块、 (3) 和数据块三部 分组成,它有3种基本状态,不可能发生的状态转换是 (4) 。 虚拟存储器的作用是允许程序直接访问比内存更大的地址空间,它通常使用 (5) 作为它的一个主要组成部分。 供选答案: (1): A. 输入和输出 B. 键盘操作 C. 管理和控制 D. 汇编和执行 (2): A. 软件和硬件 B. 主机和外设 C. 高级语言和机器语言 D. 用户和计算机 (3): A. 进程控制块 B. 作业控制块 C. 文件控制块 D. 设备控制块 (4): A. 运行态转换为就绪态 B. 就绪态转换为运行态 C. 运行态转换为等待态 D. 等待态转换为运行态 (5): A. 软盘 B. 硬盘 C. CDROM D. 寄存器 答案:CDADB 3.在计算机系统中,允许多个程序同时进入内存并运行,这种方法称为 D。 A. Spodling技术 B. 虚拟存储技术 C. 缓冲技术 D. 多道程序设计技术 4.分时系统追求的目标是 C。 A. 高吞吐率 B. 充分利用内存 C. 快速响应 D. 减少系统开销 5.引入多道程序的目的是 D。

操作系统-进程管理实验报告

实验一进程管理 1.实验目的: (1)加深对进程概念的理解,明确进程和程序的区别; (2)进一步认识并发执行的实质; (3)分析进程争用资源的现象,学习解决进程互斥的方法; (4)了解Linux系统中进程通信的基本原理。 2.实验预备内容 (1)阅读Linux的sched.h源码文件,加深对进程管理概念的理解; (2)阅读Linux的fork()源码文件,分析进程的创建过程。 3.实验内容 (1)进程的创建: 编写一段程序,使用系统调用fork() 创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 源代码如下: #include #include #include #include #include int main(int argc,char* argv[]) { pid_t pid1,pid2; pid1 = fork(); if(pid1<0){ fprintf(stderr,"childprocess1 failed"); exit(-1); } else if(pid1 == 0){ printf("b\n"); } 1/11

else{ pid2 = fork(); if(pid2<0){ fprintf(stderr,"childprocess1 failed"); exit(-1); } else if(pid2 == 0){ printf("c\n"); } else{ printf("a\n"); sleep(2); exit(0); } } return 0; } 结果如下: 分析原因: pid=fork(); 操作系统创建一个新的进程(子进程),并且在进程表中相应为它建立一个新的表项。新进程和原有进程的可执行程序是同一个程序;上下文和数据,绝大部分就是原进程(父进程)的拷贝,但它们是两个相互独立的进程!因此,这三个进程哪个先执行,哪个后执行,完全取决于操作系统的调度,没有固定的顺序。 (2)进程的控制 修改已经编写的程序,将每个进程输出一个字符改为每个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。 将父进程的输出改为father process completed 2/11

操作系统课程设计实验报告

河北大学工商学院 课程设计 题目:操作系统课程设计 学部信息学部 学科门类电气信息 专业计算机 学号2011482370 姓名耿雪涛 指导教师朱亮 2013 年6月19日

主要内容 一、设计目的 通过模拟操作系统的实现,加深对操作系统工作原理理解,进一步了解操作系统的实现方法,并可练习合作完成系统的团队精神和提高程序设计能力。 二、设计思想 实现一个模拟操作系统,使用VB、VC、CB等windows环境下的程序设计语言,以借助这些语言环境来模拟硬件的一些并行工作。模拟采用多道程序设计方法的单用户操作系统,该操作系统包括进程管理、存储管理、设备管理、文件管理和用户接口四部分。 设计模板如下图: 注:本人主要涉及设备管理模块

三、设计要求 设备管理主要包括设备的分配和回收。 ⑴模拟系统中有A、B、C三种独占型设备,A设备1个,B设备2个,C设备2个。 ⑵采用死锁的预防方法来处理申请独占设备可能造成的死锁。 ⑶屏幕显示 注:屏幕显示要求包括:每个设备是否被使用,哪个进程在使用该设备,哪些进程在等待使用该设备。 设备管理模块详细设计 一、设备管理的任务 I/O设备是按照用户的请求,控制设备的各种操作,用于完成I/O 设备与内存之间的数据交换(包括设备的分配与回收,设备的驱动管理等),最终完成用户的I/O请求,并且I/O设备为用户提供了使用外部设备的接口,可以满足用户的需求。 二、设备管理函数的详细描述 1、检查设备是否可用(主要代码) public bool JudgeDevice(DeviceType type) { bool str = false; switch (type) { case DeviceType.a: {

操作系统实验报告

操作系统教程 实 验 指 导 书 姓名: 学号: 班级:软124班 指导老师:郭玉华 2014年12月10日

实验一WINDOWS进程初识 1、实验目的 (1)学会使用VC编写基本的Win32 Consol Application(控制台应用程序)。 (2)掌握WINDOWS API的使用方法。 (3)编写测试程序,理解用户态运行和核心态运行。 2、实验内容和步骤 (1)编写基本的Win32 Consol Application 步骤1:登录进入Windows,启动VC++ 6.0。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32 Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”, 然后在“File”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows“命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序: E:\课程\os课\os实验\程序\os11\debug>hello.exe 运行结果 (如果运行不成功,则可能的原因是什么?) : 有可能是因为DOS下路径的问题 (2)计算进程在核心态运行和用户态运行的时间 步骤1:按照(1)中的步骤创建一个新的“Win32 Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。 步骤2:在创建一个新的“Win32 Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。 步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。 E:\课程\os课\os实验\程序\os12\debug>time TEST.exe 步骤4:运行结果 (如果运行不成功,则可能的原因是什么?) : 因为程序是个死循环程序 步骤5:分别屏蔽While循环中的两个for循环,或调整两个for循环的次数,写出运行结果。 屏蔽i循环: 屏蔽j循环: _______________________________________________________________________________调整循环变量i的循环次数:

操作系统实验二

操作系统实验实验二进程管理 学号 1215108019 姓名克帆 学院信息学院 班级 12电子2

实验目的 1、理解进程的概念,明确进程和程序的区别。 2、理解并发执行的实质。 3、掌握进程的创建、睡眠、撤销等进程控制方法。 实验容与要求 基本要求:用C语言编写程序,模拟实现创建新的进程;查看运行进程;换出某个进程;杀死进程等功能。 实验报告容 1、进程、进程控制块等的基本原理。 进程是现代操作系统中的一个最基本也是最重要的概念,掌握这个概念对于理解操作系统实质,分析、设计操作系统都有其非常重要的意义。为了强调进程的并发性和动态性,可以给进程作如下定义:进程是可并发执行的程序在一个数据集合上的运行过程,是系统进行资源分配和调度的一个独立单位。 进程又就绪、执行、阻塞三种基本状态,三者的变迁图如下: 由于多个程序并发执行,各程序需要轮流使用CPU,当某程序不在CPU上运行时,必须保留其被中断的程序的现场,包括:断点地址、程序状态字、通用寄存器的容、堆栈容、程序当前状态、程序的大小、运行时间等信息,以便程序再次获得CPU时,能够正确执行。为了保存这些容,需要建立—个专用数据结构,我们称这个数据结构为进程控制块PCB (Process Control Block)。 进程控制块是进程存在的惟一标志,它跟踪程序执行的情况,表明了进程在当前时刻的状态以及与其它进程和资源的关系。当创建一个进程时,实际上就是为其建立一个进程控制块。 在通常的操作系统中,PCB应包含如下一些信息: ①进程标识信息。为了标识系统中的各个进程,每个进程必须有惟一的标识名或标 识数。 ②位置信息。指出进程的程序和数据部分在存或外存中的物理位置。 ③状态信息。指出进程当前所处的状态,作为进程调度、分配CPU的依据。 ④进程的优先级。一般根据进程的轻重缓急其它信息。 这里给出的只是一般操作系统中PCB所应具有的容,不同操作系统的PCB结构是不同的,我们将在2.8节介绍Linux系统的PCB结构。

进程管理_实验报告一流程图

实验一 课程名称:操作系统 课程类型:必修 实验项目名称:进程管理 实验题目:短作业优先算法、动态可剥夺优先数算法和基本循环轮转算法。 一、实验目的 进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实验要求学生独立的用高级语言编写和调试一个简单的模拟进程调度的程序。通过本实验,加深学生理解有关进程控制块、进程队列的概念,并体会和了解短作业优先、优先数和时间片轮转调度算法的具体实施办法。 二、实验要求及实验环境 (1)设计一个有n 个进程的进程调度程序(具体个数可由键盘输入)。每一个进程用一个进程控制块PCB 来代表。PCB 中应包含下列信息:进程名、进程优先数、进程的状态、进程需要运行的时间及利用CPU运行的时间等。进程的个数、各进程的优先数、轮转时间片数以及进程运行需要地时间可由

键盘输入。 (2)调度程序应包含2~3 种不同的调度算法,运行时可任选一种。 (3)每个进程处于运行Run、就绪ready 和完成Finish 三种状态之一,假定初始状态都为就绪状态ready。(也可没有Finish状态,可以在设计程序时实现处以Finish状态的进程删掉)。 (4)系统能显示各进程状态和参数的变化情况。(5)动态可剥夺优先数算法是:在创建进程时给定一个初始的优先数,当进程获得一次cpu后其优先数就减少1,如果就绪队列中有优先级更高的将剥夺运行中的进程。 三、设计思想 (本程序中的用到的所有数据类型的定义,主程序的流程图及各程序模块之间的调用关系) 1.程序流程图 (见下图) 2.逻辑设计 使用链表表示就绪队列,每个元素包括进程名、进程优先数、进程的状态、进程需要运行的时间及利用CPU运行的时间等信息。 该结构需支持以下操作:取头节点,在表尾插入节

操作系统实验报告心得体会

操作系统实验报告心得体会 每一次课程设计度让我学到了在平时课堂不可能学到的东西。所以我对每一次课程设计的机会都非常珍惜。不一定我的课程设计能够完成得有多么完美,但是我总是很投入的去研究去学习。所以在这两周的课设中,熬了2个通宵,生物钟也严重错乱了。但是每完成一个任务我都兴奋不已。一开始任务是任务,到后面任务就成了自己的作品了。总体而言我的课设算是达到了老师的基本要求。总结一下有以下体会。 1、网络真的很强大,用在学习上将是一个非常高效的助手。几乎所有的资料都能够在网上找到。从linux虚拟机的安装,到linux的各种基本命令操作,再到gtk的图形函数,最后到文件系统的详细解析。这些都能在网上找到。也因为这样,整个课程设计下来,我浏览的相关网页已经超过了100个(不完全统计)。当然网上的东西很乱很杂,自己要能够学会筛选。 不能决定对或错的,有个很简单的方法就是去尝试。就拿第二个实验来说,编译内核有很多项小操作,这些小操作错了一项就可能会导致编译的失败,而这又是非常要花时间的,我用的虚拟机,编译一次接近3小时。所以要非常的谨慎,尽量少出差错,节省时间。多找个几个参照资料,相互比较,

慢慢研究,最后才能事半功倍。 2、同学间的讨论,这是很重要的。老师毕竟比较忙。对于课程设计最大的讨论伴侣应该是同学了。能和学长学姐讨论当然再好不过了,没有这个机会的话,和自己班上同学讨论也是能够受益匪浅的。大家都在研究同样的问题,讨论起来,更能够把思路理清楚,相互帮助,可以大大提高效率。 3、敢于攻坚,越是难的问题,越是要有挑战的心理。这样就能够达到废寝忘食的境界。当然这也是不提倡熬夜的,毕竟有了精力才能够打持久战。但是做课设一定要有状态,能够在吃饭,睡觉,上厕所都想着要解决的问题,这样你不成功都难。 4、最好在做课设的过程中能够有记录的习惯,这样在写实验报告时能够比较完整的回忆起中间遇到的各种问题。比如当时我遇到我以前从未遇到的段错误的问题,让我都不知道从何下手。在经过大量的资料查阅之后,我对段错误有了一定的了解,并且能够用相应的办法来解决。 在编程中以下几类做法容易导致段错误,基本是是错误地使用指针引起的 1)访问系统数据区,尤其是往系统保护的内存地址写数据,最常见就是给一个指针以0地址 2)内存越界(数组越界,变量类型不一致等) 访问到不属于你的内存区域

操作系统实验二(进程管理)

操作系统进程管理实验 实验题目: (1)进程的创建编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。试观察记录屏幕上的显示结果,并分析原因。 (2)进程的控制修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,在观察程序执行时屏幕上出现的现象,并分析原因。 (3)编制一段程序,使其实现进程的软中断通信。要求:使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按Del键);当捕捉到中断信号后,父进程调用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止:Child process 1 is killed by parent! Child process 2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止:Parent process is killed! 在上面的程序中增加语句signal(SIGINT, SIG_IGN)和signal(SIGQUIT, SIG_IGN),观察执行结果,并分析原因。 (4)进程的管道通信编制一段程序,实现进程的管道通信。使用系统调用pipe( )建立一条管道线;两个进程P1和P2分别向管道各写一句话:Child 1 is sending a message! Child 2 is sending a message! 而父进程则从管道中读出来自于两个子进程的信息,显示在屏幕上。要求父进程先接收子进程P1发来的消息,然后再接收子进程P2发来的消息。 实验源程序及报告: (1)、进程的创建 #include int main(int argc, char *argv[]) { int pid1,pid2; /*fork first child process*/ if ( ( pid1=fork() ) < 0 ) { printf( "ProcessCreate Failed!"); exit(-1); }

相关主题