搜档网
当前位置:搜档网 › 提高环氧树脂强度的方法

提高环氧树脂强度的方法

提高环氧树脂强度的方法
提高环氧树脂强度的方法

要提高环氧树脂强度,一般通过添加第二组分来增韧树脂,提高环氧树脂的韧性。据中国环氧树脂行业协会专家介绍,主要有液态橡胶增韧、聚氨酯增韧、弹性微球增韧、热致液晶聚合物(TLCP)增韧和聚合物共混、共聚改性等。

液态橡胶增韧改性环氧胶。液态橡胶增韧改性一般是指含端羧基、胺基、羟基、硫醇基、环氧基的液态丁腈橡胶、聚丁二烯等,与环氧树脂相混溶,在固化过程中析出,形成“海岛模型”的两相结构,通过活性基团相互作用,在两相界面上形成化学键而起到增韧作用。近年来,除了采用纯活性液态橡胶的预反应加成物之外,已发展到第二代采用高官能度环氧树脂和第三代采用金属茂催化剂制备嵌段共聚体改性环氧预聚物,通过这样改性之后,不但提高了剥离强度,而且整体机械性能和热性能并未明显降低。

聚氨酯增韧环氧胶。聚氨酯增韧环氧胶是通过聚氨酯和环氧树脂形成半立穿网络聚合物(SIPN)和互穿网络聚合物(IPN),起到强迫互溶和协同效应,使高弹性的聚氨酯与良好粘接性的环氧树脂有机结合在一起,通过互补和强化从而取得良好的增韧效果。

热塑性聚合物共混改性高强度环氧胶。一般是采用高性能的芳杂环聚合物聚砜、聚醚酮、聚醚醚酮、聚醚砜、聚醚酰亚胺和聚碳酸酯、聚苯醚等热塑性聚合物与环氧树脂共混改性,制备环氧结构胶粘剂,在-55~175℃以上宽温度范围内,具有高强度、高韧性、耐久性和优良的综合性能。

弹性微球增韧环氧高强度胶粘剂。国内有关研究表明,采用芯壳聚合物微球(芯是聚丁二烯或聚丙烯酸酯,壳层是聚甲基丙烯酸甲酯、聚苯乙烯)增韧环氧树脂效果更为理想,其壳层层数可以是一、二层,也可以三、四层,粒子大小和分布的均匀性对增韧效果影响都很大。

聚硅氧烷共聚改性增韧环氧胶粘剂。这种工艺是采用聚硅氧烷上的活性端基(为羧基、氨基)与环氧树脂中的环氧基、羟基反应生成嵌段聚合物,这种改性能降低环氧树脂内应力,增加韧性和耐温,并能取得良好的相容性。

纳米粒子增韧环氧树脂胶粘剂。由于纳米粒子其有较高的比表面积,因此有极高的不饱和性,表面活性很大。研究表明,采用纳米粒子改性环氧树脂,由于能形成理想的表面,所以可大幅度提高环氧树脂的拉伸强度和冲击性能。如果在环氧树脂中加入3%的纳米SiO2,在130℃下反应1h,冷却后加入固化剂固化,不但能增韧树脂而且耐热性能也大大提高。目前纳米粒子主要是添加纳米SiO2、纳米CaCO3、纳米TiO2等。有研究采用十六烷基三甲基溴化胺有机化表面处理的凹凸棒土与环氧树脂配合,其增强和增韧效果有明显提高。

环氧树脂优缺点

热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及环氧层压塑料;低压成型材料(成型压力<2.5MPa),如环氧玻璃钢和高性能环氧复合材料。玻璃钢和高性能复合材料由于制件尺寸较大(可达几个㎡)、型面通常不是平面,所以不宜用高压成型。否则模具造价太高,压机吨位太大,因而成本太贵。 (3)按环氧复合材料阶性能、成型方法、产品及应用领域的特点,并照顾到习惯上的名称综合考虑可分为:环氧树脂工程塑料、环氧树脂层压塑料、环氧树脂玻璃钢(通用型环氧树脂复合材料)及环氧树脂结构复合材料。 3、环氧树脂复合材料的特性 (1)密度小,比强度和比模量高。高模量碳纤维环氧复合材料的比强度为钢的5倍、铝合金的4倍,钻合金的3.2倍。其比模量是钢、铝合金、钦合金的5.5—6倍。因此,在强度和刚度相同的情况下碳纤维环氧复合材料构件的重量可以大大减轻。这在节省能源、提高构件的使用性能方面,是现有任何金属材料所不能相比的。 (2)疲劳强度高,破损安全特性好。环氧复合材料在静载荷或疲劳载荷作用下,首先在最薄弱处出现损伤,如横向裂纹、界面脱胶、分层、纤维断裂等。然而众多的纤维和界面会阻

环氧树脂的性能及应用特点

环氧树脂的性能及应用特点 环氧树脂、酚醛树脂及不饱和聚酯树脂被称为三大通用型热固性树脂。它们是热固性树脂中用量最大、应用最广的品种。环氧树脂中含有独特的环氧基,以及轻基、醚键等活性基团和极性基团,因而具有许多优异的性能。与其他热固性树脂相比较,环氧树脂的种类和牌号最多,性能各异。环氧树脂固化剂的种类更多,再加上众多的促进剂、改性剂、添加剂等,可以进行多种多样的组合和组配。从而能获得各种各样性能优异的、各具特色的环氧固化体系和固化物。几乎能适应和满足各种不同使用性能和工艺性能的要求。这是其他热固性树脂所无法相比的。 1、环氧树脂及其固化物的性能特点 (1)力学性能高。环氧树脂具有很强的内聚力,分子结构致密,所以它的力学性能高于酚醛树脂和不饱和聚酯等通用型热固性树脂。 (2)粘接性能优异。环氧树脂固化体系中活性极大的环氧基、羟基以及醚键、胺键、酯键等极性集团赋予环氧固化物以极高的粘接强度。再加上它有很高的内聚强度等力学性能,因此它的粘接性能特别强,可用作结构胶。 (3)固化收缩率小。一般为1%~2%。是热固性树脂中固化收缩率最小的品种之一(酚醛树脂为8%~10%;不饱和聚酯树脂为4%~6%;有机硅树脂为4%~8%)。线胀系数也很小,一般为6×10-5/℃。所以其产品尺寸稳定,内应力小,不易开裂。 (4)工艺性好。环氧树脂固化时基本上不产生低分子挥发物,所以可低压成型或接触压成型。配方设计的灵活性很大,可设计出适合各种工艺性要求的配方。 (5)电性能好。是热固性树脂中介电性能最好的品种之一。 (6)稳定性好。不合碱、盐等杂质的环氧树脂不易变质。只要贮存得当(密封、不受潮、不遇高温),其贮存期为1年。超期后若检验合格仍可使用。环氧固化物具有优良的化学稳定性。其耐碱、酸、盐等多种介质腐蚀的性能优于不饱和聚酯树脂、酚醛树脂等热固性树脂。 (7)环氧固化物的耐热性一般为80~100℃。环氧树脂的耐热品种可达200℃或更高。 (8)在热卧性树脂中,环氧树脂及其固化物的综合性能最好。 2、环氧树脂的应用特点 (1)具有极大的配方设计灵活性和多样性。能按不同的使用性能和工艺性能要求,设计出针对性很强的最佳配方。这是环氧树脂应用中的一大特点和优点。但是每个最佳配方都有一定的适用范围(条件),不是在任何工艺条件和任意使用条件下都宜采用。也就是说没有“万能”的最佳配方。必须根据不同的条件,设计出不同的最佳配方。由于不同配方的环氧树脂固化体系的固化原理不完全相同,所以环氧树脂的固化历程,即固化工艺条件对环氧固化物的结构和性能影响极大。相同的配方在不同的固化工艺条件下所得产品的性能会有非常的大的差别。所以正确地作出最佳材料配方设计和工艺设计是环氧树脂应用技术的关键,也是技术机密所在。要能生产和开发出自己所需性能的环氧材料,就必须设计出相应的专用配方及其成型工艺条件。因此,就必须深入了解和掌握环氧树脂及其固化剂、改性剂等的结构与性能、它们之间的反应机理以及对环氧固化物结构及性能的影响。这样才能在材料配方设计和工艺设计中得心应手,运用自如,取得最佳方案,生产和开发出性能最佳、成本最低的环氧材料和制品。 (2)不同的环氧树脂固化体系分别能在低温、室温、中温或高温固化,能在潮湿表面甚至在水中固化,能快速固化、也能缓慢固化,所以它对施工和制造工艺要求的适应性很强。环氧树脂可低压成型或接触压成型,因此可降低对成型设备和模具的要求,减少投资,降低成本。 (3)在三大通用型热固性树脂中,环氧树脂的价格偏高,从而在应用上受到一定的影响。但是,由于它的性能优异,所以主要用于对使用性能要求高的场合,尤其是对综合性能要求高的领域。

环氧树脂的介绍分析

环氧树脂胶(epoxy resin adhesive)一般是指以环氧树脂为主体所制得的胶粘剂,环氧树脂胶一般还应包括环氧树脂固化剂,否则这个胶就不会固化。 1种类折叠编辑本段 环氧树脂胶又分为软胶和硬胶。 1、环氧树脂软胶: 它是一种液型,双组份、软性自干型软胶,无色、透明、具有弹性,轻度划擦表 面即自行恢复原形。适用于涤纶、纸张、塑料等标牌装饰。 2、环氧树脂硬胶: 它是一种液型,双组份硬性胶,无色、透明,适用于金属标牌同时可制作各种水 晶钮扣、水晶瓶盖、水晶木梳、水晶工艺品等高档装饰品。 2分类折叠编辑本段 环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐温胶、耐低温胶、水下,潮湿 面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料 粘接胶、密封胶、特种胶、被固化胶、土木建筑胶16种。 对环氧树脂胶黏剂的分类在行业中还有以下几种分法: 1、按其主要组成,分为纯环氧树脂胶黏剂和改型环氧树脂胶黏剂; 2、按其专业用途,分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子 眼环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等; 3、按其施工条件,分为常温固化型胶、低温固化型胶和其他固化型胶; 4、按其包装形态,可分为单组分型胶、双组分胶和多组分型胶等; 还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。 3特性折叠编辑本段 1. 基本特性:双组份胶水,需AB混合使用,通用性强,可填充较大的空隙

2. 操作环境:室温固化,室内、室外均可,可手工混胶也可使用AB胶专用设备(如AB胶枪 3. 适用温度一般都在-50至+150度 4. 适用于一般环境,防水、耐油,耐强酸强碱 5. 放置于避免阳光直接照射的阴凉地方,保质期限12个月 1、环氧树脂胶是在环氧树脂的基础上对其特性进行再加工或改性,使其性能参 数等符合特定的要求,通常环氧树脂胶也需要有固化剂搭配才能使用,并且需要混合均匀后才能完全固化,一般环氧树脂胶称为A胶或主剂,固化剂称为B胶或固化剂(硬化剂)。 2、反映环氧树脂胶固化前的主要特性有:颜色、粘度、比重、配比、凝胶时间、可使用时间、固化时间、触变性(止流性)、硬度、表面张力等。 粘度(Viscosity):是指胶体在流动中所产生的内部摩擦阻力,其数值由物质种 类、温度、浓度等因素决定。 凝胶时间:胶水的固化是从液体向固化转化的过程,从胶水开始反应起到胶体趋 向固体时的临界状态的时间为凝胶时间,它由环氧树脂胶的混合量、温度等因素决定。 触变性:该特性是指胶体受外力触动(摇晃、搅拌、振动、超声波等)时,随外力作用由稠变稀,当外界因素停止作用时,胶体又恢复到原来时的稠度的现象。 硬度(Hardness):是指材料对压印、刮痕等外力的抵抗能力。根据试验方法不同 有邵氏(Shore)硬度、布氏(Brinell)硬度、洛氏(Rockwell)硬度、莫氏(Mohs)硬度、巴氏(Barcol)硬度、维氏(Vichers)硬度等。硬度的数值与硬度计类型有关,在常用的硬度计中,邵氏硬度计结构简单,适于生产检验,邵氏硬度计可分 为A型、C型、D型,A型用于测量软质胶体,C和D型用于测量半硬和硬质胶体。 表面张力(Surface tension):液体内部分子的吸引力使表面上的分子处于向内 一种力作用下,这种力使液体尽量缩小其表面积而形成平行于表面的力,称为表面张力。或者说是液体表面相邻两部分间单位长度内的相互牵引力,它是分子力的一种表现。表面张力的单位是N/㎡。表面张力的大小与液体的性质、纯度和 温度有关。 3、反映环氧树脂胶固化后特性的主要特性有:电阻、耐电压、吸水率、抗压强度、拉伸(引张)强度、剪切强度、剥离强度、冲击强度、热变形温度、玻璃化转变温度、内应力、耐化学性、伸长率、收缩系数、导热系数、诱电率、耐候性、耐老 化性等。

混凝土强度不足时的处理措施.

混凝土强度不足时的处理措施 摘要:混凝土强度是确定新建和已建混凝土结构或构件承载能力等力学性能的关键因素,混凝土强度检测技术是工程结构检测中非常重要的一项内容。本文对混凝土强度不足的情况进行了探讨,提出了一些处理措施。 关键词:混凝土;处理;加固 1引言 混凝土强度的不足将对结构的承载能力、裂缝以及耐久性等诸多方面产生不利影响,应根据其不足的程度,采取相应的处理措施。选用的加固方法有3大类:直接加固法、间接加固法、综合加固法。 2直接加固法 直接加固法即通过各种途径增加结构抗力。加固前最好能在原结构上卸载,经加固后再恢复使用荷载,但在原结构上往往很难实现。工程中,国内、外直接加固技术主要有如下几种: 2.1增大截面加固法 增大截面加固法即采取增大结构或构筑物的截面面积,以提高其承载力和刚度,满足正常使用的一种加固方法。可广泛应用于混凝土、砖混等结构的梁、板、柱、墙等构件和一般构筑物的加固。 ⑴ 该方法优点: ① 传统加固方法,技术成熟,便于操作; ② 质量好,可靠性强; ③ 提高构件抗力R及刚度的幅度大,尤其对柱的稳定性提高较大。 ⑵ 该方法缺点: ① 如果设计中未能从整体结构角度上分析,仅仅为局部加大而加大,这样会造成整体结构其它部分形成薄弱层而发生重大破坏。 ② 加大构件截面,其质量和刚度将发生变化,结构的固有频率也随之改变,很有可能进入到地震或风震的频率中而产生共振现象。 ③ 现场湿作业工作量大,养护时间长,对生产和生活有一定的影响。 ④ 对原有结构的外形以及房屋使用空间上有一定的影响。 2.2外包钢加固法 外包钢加固法即在混凝土、砌体等构件四周包以型钢的加固方法(分干式、湿式两种形式)。适用于使用上不允许增大构件截面尺寸,而又需要大幅度地提高承载力和刚度的加固。此法主要适用于混凝土、砖混结构中的柱以及梁、桁架弦杆和腹杆的加固。这种加固方法的优点是施工方便,现场工作量少,工期短,受力可靠,对建筑物外观和净空影响小;缺点是用钢量较大,加固维修费用较高。当采用化学灌浆外包钢加固时,型钢表面温度不应超过60℃;当环境具有腐蚀性介质时,必须采取可靠防护措施,以提高其耐久性。

环氧树脂特性

环氧树脂 目录 材料简介 应用特性 类型分类 使用指南 国内主要厂商 环氧树脂应用领域 环氧树脂行业 材料简介 环氧树脂 是泛指分子中含有两个或两个以 上环氧基团的有机高分子化合 物,除个别外 ,它们 的 相对分子质量 都不高。 环氧树脂的 分子结构是以分子链中含有活泼 的环氧基团为其特征 ,环氧基 团 可以位于分子 链的末端、中间或成环状 结构。由于分子结构中 含有活泼的环氧基团,使 它们可与多 种类型的固化 剂发生交联反应而形成不溶、不 熔的具有三向网状结构的高聚 物。 应用特性 1 、 形式 多样。各种树脂、固化剂、改性剂体系几乎可以适应各种应用 对形式提出的要求,其 范围可以从极 低的粘度到高熔点固 体。 2 、 固化方便。选用各种不同的 固化剂,环氧树脂体系几乎可 以在 0 ~ 180 ℃温度范围内固化 。 3 、 粘 附力强。环氧树脂分子链中固有的极 性羟基和醚键的存在,使其对各种物质 具有很高的 粘附力。环氧 树脂固化时的收缩性低,产生的 内应力小,这也有助于提高 粘 附强度。 4 、 收缩 性低。 环氧树脂和所用的固化剂的反应是 通过直接加成反应或树脂分子中 环氧基的 开 环聚合反应来 进行的,没有水或其它挥发性副 产物放出。它们和不饱和聚 酯 树脂、酚醛树脂相比, 在固化过程中 显示出很低的收缩性(小于 2%)。 5 、 力学性能。固化后的环氧 树脂体系具有优良的力学性 能。 6 、 电性能 。固化后的环氧树脂体系是一 种具有高介电性能、耐表面漏电、耐电弧 的优良绝 缘 材 料。 7 、 化学 稳定性。通常,固化后的环氧树脂体系具有优良的耐 碱性、耐酸性和耐溶剂性。像固 化环氧体系的 其它性能一样, 化学 稳定性也取决于所选用的树脂和 固化剂。 适当地选用 环氧树脂 和 固化剂,可以 使其具有特殊的化学稳定性 能。 8 、 尺寸稳定性。上述的许多 性能的综合,使环氧树脂体系 具 有突出的尺寸稳定性和耐久性 。 9 、 耐霉菌。固化的环氧树脂 体系耐大多数霉菌,可以在苛 刻 的热带条件下使用。 类型分类 根据分子 结构,环氧树脂大体上可分为五 大类: 1 、 缩水甘油醚类环氧树脂 2 、 缩水甘油酯类环氧树脂 3 、 缩水甘油胺类环氧树脂 4 、 线型脂肪族类环氧树脂 5 、 脂环族类环氧树脂

环氧树脂种类及性能

环氧树脂种类及性能 一、定义 1、环氧树脂(Epoxy Resin)是泛指含有两个或两个以上环氧基,以脂肪族、脂环族或芳香族等有机化合物为骨架并能通过环氧基团反应形成有用的热固化产物的高分了低聚体(Oligomer)□当聚合度n为零时,称Z为环氧化合物,简称 环氧化物(Epoxide) O这些低相对分了质量树脂虽不完全满足严格的定义但因具有环氧树脂的基本属性在称呼时也不加区别地统称为环氧树脂。典型的环氧树脂结构如下式。 2、环氧基是环氧树脂的特性基团,它的含量多少是这种树脂最为重要的指标。描述环氧基含量有以下几种不同的表示法: (1)环氧当量:是指含有1 mol环氧树脂的质量,低相对分了质量(分了量)环氧树脂的环氧当量为175-200g/mol, 随着分了量的增大环氧基间的链段越长,所以高分子量环氧树脂的环氧当量就相应的高。 (2)环氧值:每lOOg树脂屮所含有环氧基的物质的量(摩尔)。这种表示方法有利于固化剂用量的计量和用量的表示。因为固化剂用量的含义是每lOOg环氧树脂中固化剂的加入量 (part perhundred of resin缩写成phr)。我国采用环氧值 这一物理量。 环氧当量二100/环氧值 3、粘度的定义 粘度:液体在流动时,在其分子间产生的内摩擦的性质,称为 液体的黏性,黏性的大小用黏度表示,是用来表征液体性质相关的阻力因子。 粘度单位有两种:1、厘泊(cps)2、毫帕秒(m ? pas)

1厘泊(cps)二1毫帕秒(m*pas) 一、种类及性能 1、双酚A型环氧树脂:双酚A (即二酚基丙烷)型环氧树脂即二酚基丙烷缩水甘油瞇。在环氧树脂屮它的原材料易得、成本最低,因而产量最大(在我国约占环氧树脂总产量的90%,在世界约占环氧树脂总产量的75%?80%),用途最广,被称为通用型环氧树脂。由双酚A型环氧树脂的分了结构决定了它的性能具有以下特点: (1)是热塑性树脂,但具有热固性,能与多种固化剂,催化剂及添加剂形成多种性能优异的固化物,几乎能满足各种使用需求。 (2)树脂的工艺性好。固化时基本上不产生小分了挥发物, 可低压成型。能溶于多种溶剂。 固化物有很高的强度和粘结强度。 固化物有较高的耐腐蚀性和电性能。 固化物有一定的韧性和耐热性。 主要缺点是:耐热性和韧性不高,耐湿热性和耐候性 差。 2、双酚F型环氧树脂:这是为了降低双酚A型环氧树脂本身的粘度并具有同样性能而研制岀的一种新型环氧树脂。通常是用双酚F (二酚基甲烷)与环氧氯丙烷在NaOH作用下反应而得的液态双酚F型环氧树脂。 双酚F型环氧树脂的特点是黏度小,不到双酚A型环氧树脂黏度的1/3,对纤维的浸渍性好。其固化物的性能与双酚A 型环氧树脂几乎相同,但耐热性稍低而耐腐蚀性稍优。液态双酚F型环氧树脂可用于无溶剂涂料、胶粘剂、铸塑料、玻璃钢及碳纤维复合材料等。 3、多酚型缩水甘油醛环氧树脂:多酚型缩水甘油醴环氧树脂 是一类多官能团环氧树脂。在其分了屮有两个以上的环氧基,因此

环氧树脂特性

环氧树脂 目录 材料简介应用特性类型分类使用指南国内主要厂商环氧树脂应用领域环氧树脂行业 材料简介 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。 应用特性 1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。 2、固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。 3、粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。 4、收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。它们和不饱和聚酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。 5、力学性能。固化后的环氧树脂体系具有优良的力学性能。 6、电性能。固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的优良绝缘材料。 7、化学稳定性。通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性。像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。 8、尺寸稳定性。上述的许多性能的综合,使环氧树脂体系具有突出的尺寸稳定性和耐久性。 9、耐霉菌。固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带条件下使用。 类型分类 根据分子结构,环氧树脂大体上可分为五大类: 1、缩水甘油醚类环氧树脂 2、缩水甘油酯类环氧树脂 3、缩水甘油胺类环氧树脂 4、线型脂肪族类环氧树脂 5、脂环族类环氧树脂 复合材料工业上使用量最大的环氧树脂品种是上述第一类缩水甘油醚类环氧树脂,而其中又以二酚基丙烷型环氧树脂(简称双酚A型环氧树脂)为主。其次是缩水甘油胺类环氧树脂。 1、缩水甘油醚类环氧树脂 缩水甘油醚类环氧树脂是由含活泼氢的酚类或醇类与环氧氯丙烷缩聚而成的。

浅谈不增加水泥用量提高混凝土强度的方法与措施

浅谈不增加水泥用量 提高混凝土强度的方法与措施 混凝土做为建筑工程中使用量最大的建筑材料之一,在建筑工程中获得了极为广泛的应用。混凝土抗压强度的大小,主要取决于它的组成部分,组织结构和构造状态。混凝土的强度主要决定于水泥石的强度和水泥石与骨料之间的粘结强度。水泥石的强度主要取决于水泥标号与水灰比。水泥石与骨料的粘结力,也同样与水泥标号和水灰比有关。由此可见,水泥的强度等级及用量是影响混凝土强度的主要因素。但是如果水泥用量过大,一方面会造成水化热过大而产生裂缝,另一方面也不经济。那么在不增加水泥的用量的前提下如何提高混凝土强度?应主要从以下几个方面来处理。 1、加强对混凝土原材料的质量控制是提高混凝土强度的基础。 混凝土中的主要材料为水泥、粗、细集料、水、外加剂和掺合料。各种组成材料在混凝土中起着不同的作用,考虑不增加水泥用量,可以从以下几个方面来通过对原材料的控制来提高混凝土的强度。 (1)对水泥强度等级、水泥品种的选择:水泥强度等级的选用,不仅要使所配的混凝土强度达到要求,而且和易性和耐久性也必须满足施工和规范的要求,提高混凝土强度但不增加水泥用量,应尽量考虑使用高强度等级的水泥,但应注意满足和易性的要求。水泥品种的选用时应注意各种水泥的特性对混凝土结构强度和使用条件是否有不利影响。

(2)细集料的质量控制:通常混凝土中的细集料为砂子,根据细度模数分为粗砂、中砂、细砂。应注意到,砂子过粗,容易使新拌混凝土产生泌水现象,影响混凝土的和易性。由此可知,当混凝土的和易性要求为一定时,为了节省水泥而又能提高混凝土强度,应选用级配良好的中粗砂,另外,砂中的含泥量及泥块含量应满足国家标准的要求,对重要工程使用的砂,还应采用化学法和砂浆长度法进行骨料的碱活性检验。 (3)粗骨料的质量控制:通常混凝土中的粗骨料为石子。使用人工碎石比使用天然卵石可以增加混凝土强度,除此以外,在使用中应注意石子的最大粒径、颗粒级配、强度与坚固性等指标。粗骨料颗粒级配分为连续级配和间断级配,由于连续级配含有各种大小颗粒,互相搭配合理,拌制成的混凝土和易性较好,但由于石子总表面积比较大,所用水泥比较多。用间断级配来拌制混凝土,可以节约水泥,但和易性不好,容量产生泌水等离析现象。但对于低流动性和干硬性混凝土来说,如果采用强力振捣来施工时,则采用间断级配是较为适宜的。 (4)混凝土用水的控制:水是混凝土的主要组成材料之一。拌合用水不纯,可能产生多种有害作用。为了保证混凝土的质量,必须使用合格的水来拌制混凝土,凡符合国家标准的生活用水,均可用于拌制混凝土,地表水或地下水首次使用应进行适用性试验,合格才能使用,混凝土拌制用水应符合JGJ63-1989《混凝土拌合用水标准》的规定。 混凝土中的原材料的质量控制是提高混凝土强度的基础,在混凝土材料的选用上更应该确保质量,科学合理地选取,从而达到提高混凝土强度的目的。 2、合理进行混凝土配合比设计是提高混凝土强度的前提

环氧树脂地坪漆知识

环氧树脂地坪漆知识 一、基础知识 1、认识环氧树脂地坪漆 环氧树脂地坪漆简称“环氧地坪漆”所谓环氧意思是采用环氧树脂为原材料的一种涂料所有大家称呼为环氧树脂地坪漆,更有大部分人群称为环氧地坪漆。 2、环氧树脂地坪漆的组成 环氧树脂地坪涂料主要是由成膜物质包括环氧树脂、固化剂、活性稀释剂、颜填料、功能性助剂、溶剂(包括水)等材料组成。 3、环氧树脂地坪漆种类 3-1、按材料性质分类 环氧树脂地坪漆主要分为两种不同类型的材料:其一是溶剂型环氧树脂地坪漆,其二是无溶剂型环氧树脂地坪漆,两者都是属于油性涂料。 a、溶剂型环氧树脂地坪漆 溶剂型环氧树脂地坪漆适用于要求耐磨、耐腐蚀、耐油污、耐重压、表面光洁、容易清洗的场所,如停车场、汽车制造、机械制造、造纸、卷烟、化工、纺织、家具等行业生产车间的高标准地面。溶剂型环氧树脂地坪具有以下优点:整体无缝,易清洗,不集聚灰尘、细菌;表面平整光滑,色彩丰富,能美化工作环境;地面无毒,符合卫生要求;具有防滑性,停车场地面须有一定的粗糙度,一般水泥地面难以满足要求。 b、无溶剂型环氧树脂地坪漆

无溶剂环氧树脂地坪漆又叫水性环氧树脂地坪漆作为一种洁净度很高的地面装饰材料,环氧树脂地坪表面平整光洁,可以满足较高洁净度要求,多用于自流平的施工中,广泛使用在医药、食品、电子、精密仪器、汽车制造等对地面有极高要求的行业,无溶剂型环氧树脂地坪具有如下优点:与基层的粘接强度高,硬化时收缩率低,不易开裂;整体无缝,易清洗,不集聚灰尘、细菌;高固体份,一次成膜厚;无溶剂,施工毒性小,符合环保;强度高,耐磨损,经久耐用,能长时间经受铲车、推车和其他车的碾压;抗渗透,耐化学药品的腐蚀性能强,对油类也有较好的容忍力;室温固化成膜,容易维修保养;表面平整光滑,色彩丰富,能美化工作环境、地面无毒,符合卫生要求。 3-2、按功能性分类 a、环氧树脂平涂型地坪漆 b、环氧树脂砂浆型地坪漆 c、环氧树脂自流平地坪漆 d、环氧树脂防静电地坪漆 e、环氧树脂防腐地坪漆 f、环氧树脂彩砂地坪漆 g、环氧树脂球场地坪 二、深度了解 1、环氧树脂地坪漆主要特征 1-1、优良的附着力:环氧树脂地坪涂料具有许多羟基及醚键,所以能与底材料吸附。而且环氧树脂固化时体积收缩率低,故漆膜对金属,陶瓷,玻璃,混凝土,木材等极性底材均有优良的附着力。 1-2、环氧树脂地坪对湿面有一定的润湿力,尤其在使用聚酰胺树脂作固化剂时,可制成水下施工涂料,能排挤物体表面的水而涂布,可用于水下结构的抢修和水下结构的防腐蚀施工。

(完整)常见环氧树脂种类及性能

(完整)常见环氧树脂种类及性能 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)常见环氧树脂种类及性能)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)常见环氧树脂种类及性能的全部内容。

常见环氧树脂种类及性能 一、定义 1、环氧树脂(EpoxyResin)是泛指含有两个或两个以上环氧基,以脂肪族、脂环族或芳香族等有机化合物为骨架并能通过环氧基团反应形成有用的热固化产物的高分子低聚体(Oligomer)。当聚合度n为零时,称之为环氧化合物,简称环氧化物(Epoxide).这些低相对分子质量树脂虽不完全满足严格的定义但因具有环氧树脂的基本属性在称呼时也不加区别地统称为环氧树脂.典型的环氧树脂结构如下式。 2、环氧基是环氧树脂的特性基团,它的含量多少是这种树脂最为重要的指标。描述环氧基含量有以下几种不同的表示法: ⑴环氧当量:是指含有1mol环氧树脂的质量,低相对分子质量(分子量)环氧树脂的环氧当量为175~200g/mol,随着分子量的增大环氧基间的链段越长,所以高分子量环氧树脂的环氧当量就相应的高. ⑵环氧值:每100g树脂中所含有环氧基的物质的量(摩尔)。这种表示方法有利于固化剂用量的计量和用量的表示。因为固化剂用量的含义是每100g环氧树脂中固化剂的加入量(partperhundredofresin缩写成phr)。我国采用环氧值这一物理量。环氧当量=100/环氧值 3、粘度的定义 粘度:液体在流动时,在其分子间产生的内摩擦的性质,称为液体的黏性,黏性的大小用黏度表示,是用来表征液体性质相关的阻力因子。 粘度单位有两种: 1、厘泊(cps) 2、毫帕秒(m·pas) 1厘泊(cps)=1毫帕秒(m·pas)

工程混凝土强度不足的原因及处理方案

工程混凝土强度不足的原因及处理 “结构混凝土的强度等级必须符合设计要求。”这是工程建设施工规范规定的强制性条文,必须严格执行。但是至今仍有一些工程的混凝土因强度不足而造成不少质量问题。混凝土强度低下造成的后果主要表现在以下两方面:一是结构构件承载力下降;二是抗渗、抗冻性能及耐久性下降。因此对混凝土强度不足问题必须认真分析处理。 一、混凝土强度不足的常见原因 1. 原材料质量问题 (1)水泥质量不良 1)水泥实际活性(强度)低:常见的有两种情况,一是水泥出厂质量差,而在实际工程中应用时又在水泥28d强度试验结果未测出前,先估计水泥强度等级配置混凝土,当28d水泥实测强度低于原估计值时,就会造成混凝土强度不足;二是水泥保管条件差,或储存时间过长,造成水泥结块,活性降低而影响强度。 2)水泥安定性不合格:其主要原因是水泥熟料中含有过多的游离氧化钙(CaO)或游离氧化镁(MgO),有时也可能由于掺入石膏过多而造成。因为水泥熟料中的CaO和MgO都是烧过的,遇水后熟化极缓慢,熟化所产生的体积膨胀延续很长时间。当石膏掺量过多时,石膏与水化后水泥中的水化铝酸钙反应生成水化铝硫酸钙,也使体积膨胀。这些体积变化若在混凝土硬化后产生,都会破坏水泥结构,大多数导致混凝土开裂,同时也降低了混凝土强度。尤其需要注意的是有些安定性不合格的水泥所配制的混凝土表面虽无明显裂缝,但强度极度低下。 (2)骨料(砂、石)质量不良 1)石子强度低:在有些混凝土试块试压中,可见不少石子被压碎,说明石子强度低于混凝土的强度,导致混凝土实际强度下降。 2)石子体积稳定性差:有些由多孔燧石、页岩、带有膨胀黏土的石灰岩等制成的碎石,在干湿交替或冻融循环作用下,常表现为体积稳定性差,而导致混凝土强度下降。 3)石子形状与表面状态不良:针片状石子含量高影响混凝土强度。而石子具有粗糙的和多孔的表面,因与水泥结合较好,而对混凝土强度产生有利的影响,尤其是抗弯和抗拉强度。最普通的一个现象是在水泥和水灰比相同的条件下,碎石混凝土比卵石混凝土的强度高10%左右。 4)骨料(尤其是砂)中有机杂质含量高:如骨料中含腐烂动植物等有机杂质(主要是鞣酸及其衍生物),对水泥水化产生不利影响,而使混凝土强度下降。

高性能环氧树脂基复合材料的研究现状及应用进展

高性能环氧树脂基复合材料的研究现状及应用进展2018年8月1日星期三 Linda 中山沃瑞森 环氧树脂是一类重要的热固性树脂,具有良好的粘结性、稳定性、耐热性、力学性能、且固化收缩率小,成本低廉。环氧树脂作为胶粘剂、涂料和复合材料等的树脂基体,被广泛应用于轻工、建筑、航天航空、电子电气及其他先进复合材料的各个领域。本文由苏州挪恩复合材料有限公司研究人员从环氧树脂的增韧、耐热、增强方面对高性能环氧树脂基复合材料的现状进行阐述。 在航空航天等领域,对环氧树脂韧性耐温性和模量有着较高要求。热塑性树脂具有高韧性、高强度和耐热性好的特性,用热塑性树脂作为增韧剂可以在增韧环氧树脂的同时保持耐热性能和模量。国外将EP/CF

复合材料应用在战斗机和直升机的机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到明显减重作用,大大提高了抗疲劳耐腐蚀等性能。 在广泛的应用领域中环氧树脂除了要具备基本的力学性能要求外,还需要有良好的耐高温性能,对于提高环氧树脂体系耐热性的方法主要有改变环氧树脂、固化剂的结构或导入新结构,采用耐热性较好的材料对环氧树脂改性。 碳纤维具有十分优异的力学性能,由碳纤维增强环氧树脂所制备的复合材料性能表现优异。而由于碳纤维表面能低、与基体浸润性差,使其与基体材料的界面粘结力较弱,因此需要提前对其进行表面处理。玻璃纤维/环氧树脂复合材料是目前研究较成熟应用最广的一种环氧复合材料,该材料具有轻质高强、耐疲劳和绝缘等性能,在军事中可被用作防弹头盔、防弹衣等。 (图示:碳纤维安全头盔) 环氧树脂是先进复合材料中应用最广泛的树脂体系,适用于多种成型工

艺,可配制成不同配方,可调节粘度范围大,适用于不同的生产工艺,国内外对高性能环氧树脂的研究近几年已取得很大进展,很多环氧树脂复合材料集多种优异性能于一体,极大推动了高端科技产业的发展。 沃瑞森拥有自已强大的黏结数据库,有匹配各种功能黏结的推荐。配合世界知名品牌胶粘剂材料。给您最适合及高性价比的技术支持!

如何提高混凝土强度

如何提高混凝土的强度和耐久性 摘要:混凝土的耐久性又包括抗冻性,抗渗性,抗蚀性及抗碳化能力,而强度又和耐久性有着密切的联系 关键词:耐久性强度 (一)提高混凝土耐久性的措施主要有: 1)提高混凝土的密实度,控制水灰比及保证足够的水泥用量,是保证混凝土密实度并提高混凝土耐久性的关键,在一定范围内,水灰比越小,混凝土强度也越高,反之,水灰比越大,用水量越多,多余水分蒸发留下的毛隙孔越多,从而使强度降低。 2)改善粗细骨料的颗粒级配,砂的颗粒级配是指粒径不同的砂粒互相搭配的情况,级配良好的砂,空隙率较小,不仅可以节省水泥,而且可以改善混凝土拌和物的和易性,提高混凝土的密实度,强度和耐久性。 3)合理选择水泥品种,但是水泥的品种有很多,所以对水泥的选择又必须慎重,水泥石一旦受损,混凝土的耐久性就被破坏,因此水泥的选择需注意水泥品种的具体性能,选择碱含量小,水化热低,干缩性小,耐热性,抗水性,抗腐蚀性,抗冻性能好的水泥,并结合具体情况进行选择。水泥强度并非是决定混凝土强度和性能的唯一标准,如用较低标号水泥同样可以配制高标号混凝土。因此,工程中选择水泥强度的同时,需考虑其工程性能,有时,其工程性能比强度更重要。 4)保证混凝土的强度:尽管强度与耐久性是不同概念,但又密切相关,它们之间的本质联系是基于混凝土的内部结构,都与水灰比这个因素直接相关。在混凝土能充分密实条件下,随着水灰比的降低,混凝土的孔隙率降低,混凝土的强度不断提高。与此同时,随着孔隙率降低,混凝土的抗渗性提高,因而各种耐久性指标也随之提高。在现在的高性能混凝土中,除掺入高效减水剂外,还掺入了活性矿物材料,它们不但增加了混凝土的致密性,而且也降低或消除了游离氧化钙的含量。在大幅度提高混凝土强度的同时,也大幅度地提高了混凝土的耐久性。此外,在排除内部破坏因素的条件下,随着混凝土强度的提高,其抵抗环境侵蚀破坏的能力也越强。 5)掺入高效活性矿物掺料:普通水泥混凝土的水泥石中水化物稳定性的不足,是混凝土不能超耐久的另一主要因素。在普通混凝土中掺入活性矿物的目的,在于改善混凝土中水泥石的胶凝物质的组成。活性矿物掺料中含有大量活性Si02及活性Al203,它们能和波特兰水泥水化过程中产生的游离石灰及高碱性水化矽酸钙产生二次反映,生成强度更高、稳定性更优的低碱性水化矽酸钙,从而达到改善水化胶凝物质的组成,消除游离石灰的目的,使水泥石结构更为致密,并阻断可能形成的渗透路。此外,还能改善集料与水泥石的界面结构和界面区性能。这些重要的作用,对增进混凝土的耐久性及强度都有本质性的贡献。 6)掺入高效减水剂:在保证混凝土拌和物所需流动性的同时,尽可能降低用水量,减少水灰比,使混凝土的总孔隙,特别是毛细管孔隙率大幅度降低。水泥在加水搅拌后,会产生一种絮凝状结构。在这些絮凝状结构中,包裹着许多拌和水,从而降低了新拌混凝土的工作性。施工中为了保持混凝土拌和物所需的工作性,就必须在拌和时相应地增加用水量,这样就会促使水泥石结构中形成过多的孔隙。当加入减水剂的定向排列,使水泥质点表面均带有相同电荷。在电性斥力的作用下,不但使水泥体系处于相对稳定的悬浮状态,还在水泥颗粒表面形成一层溶剂化水膜,同时使水泥絮凝体内的游离水释放出来,因而达到减水的目的。许多研究表明,当水灰比降低到0.38以下时,消除毛细管孔隙的目标便可以实现,而掺入高效减水剂,完全可以将水灰比降低到0.38以下。

混凝土强度的提高措施

混凝土强度不足时的处理措施 1 引言 混凝土强度的不足将对结构的承载能力、裂缝以及耐久性等诸多方面产生不利影响,应根据其不足的程度,采取相应的处理措施。选用的加固方法有3大类,直接加固法、间 接加固法、综合加固法。 2 直接加固法 直接加固法即通过各种途径增加结构抗力。加固前最好能在原结构上卸载,经加固后再恢复使用荷载,但在原结构上往往很难实现。工程中,国内、外直接加固技术主要有如 下几种, 2.1增大截面加固法 增大截面加固法即采取增大结构或构筑物的截面面积,以提高其承载力和刚度,满足正常使用的一种加固方法。可广泛应用于混凝土、砖混等结构的梁、板、柱、墙等构件和 一般构筑物的加固。 (1)该方法优点, ①传统加固方法,技术成熟,便于操作; ②质量好,可靠性强; ③提高构件抗力R及刚度的幅度大,尤其对柱的稳定性提高较大。 (2)该方法缺点, ①如果设计中未能从整体结构角度上分析,仅仅为局部加大而加大,这样会造成整体 结构其它部分形成薄弱层而发生重大破坏。 ②加大构件截面,其质量和刚度将发生变化,结构的固有频率也随之改变,很有可能 进入到地震或风震的频率中而产生共振现象。 ③现场湿作业工作量大,养护时间长,对生产和生活有一定的影响。 ④对原有结构的外形以及房屋使用空间上有一定的影响。 2.2外包钢加固法 外包钢加固法即在混凝土、砌体等构件四周包以型钢的加固方法(分干式、湿式两种形式)。适用于使用上不允许增大构件截面尺寸,而又需要大幅度地提高承载力和刚度的加固。此法主要适用于混凝土、砖混结构中的柱以及梁、桁架弦杆和腹杆的加固。这种加固方法的优点是施工方便,现场工作量少,工期短,受力可靠,对建筑物外观和净空影响

环氧树脂材料性能

二十世纪四十年代末,环氧树脂开始被应用于电工绝缘领域,至今已经有五十余年的历史。 双酚A型环氧树脂/酸酐体系是当前输变电设备绝缘浇注材料的主要品种,其优点突出: ?具有良好的粘接性; ?固化过程中收缩率低; ?在固化过程中不产生小分子; ?耐热性、耐药品性优良; ?机械强度高; ?电气绝缘性能优良。 但其缺点也很明显: ?脆性大,抗开裂性能差:如产品浇注后开裂,存放期开裂,低温开裂,在线路运行中开裂; ?脆性往往导致设备性能不达标:如局放不达标,耐冷热冲击不达标,动热稳定性不达标,绝缘子抗弯力不达标等; 随着对输变电设备性能要求的提高,问题越发突显出来。例如: 1、结构复杂的输变电设备及部件应力集中问题显著,更容易开裂; 2、设备使用条件更加严酷,如需要经受强烈温度冲击,适应电网运行波动,提高动热稳定性,保证长期质量,降低局放等。 产生上述问题的原因在于环氧树绝缘材料在输变电设备制造过程及使用过程中会受到多种力的作用:

1、固化过程中由于化学反应发生收缩产生的收缩应力; 2、环氧树脂与金属的线膨胀系数的差异产生的应力 表2-1 几种常用材料的线膨胀系数 材料名称线膨胀系数(10-6/℃) 石英0.5 铝~24 铜~16 环氧树脂~100 3、绝缘层自身因温度变化而产生应力 4、电动力与外力作用 可见,绝缘体受力是必然的,不能消除的,而且是不断变化的,这种应力的存在是使环氧树脂绝缘层产生内部裂纹的主要原因,而这种力又是客观存在的,因此只有提高环氧树脂本身抵抗这种内部应力的能力才是减弱和消除内部缺陷,从而降低局放的主要手段。 提高环氧树脂绝缘浇注制品品质的三个环节 1、设计合理 2、提高环氧树脂绝缘材料的韧性 3、浇注工艺合理 从以上三点来看,由于设计一般是固定的,所以运用合理的工艺和提高环氧树脂本身的韧性,减弱和消除绝缘体内部的气泡或缺陷是降低局放的根本方法。

(word完整版)提高环氧树脂强度的方法

要提高环氧树脂强度,一般通过添加第二组分来增韧树脂,提高环氧树脂的韧性。据中国环氧树脂行业协会专家介绍,主要有液态橡胶增韧、聚氨酯增韧、弹性微球增韧、热致液晶聚合物(TLCP)增韧和聚合物共混、共聚改性等。 液态橡胶增韧改性环氧胶。液态橡胶增韧改性一般是指含端羧基、胺基、羟基、硫醇基、环氧基的液态丁腈橡胶、聚丁二烯等,与环氧树脂相混溶,在固化过程中析出,形成“海岛模型”的两相结构,通过活性基团相互作用,在两相界面上形成化学键而起到增韧作用。近年来,除了采用纯活性液态橡胶的预反应加成物之外,已发展到第二代采用高官能度环氧树脂和第三代采用金属茂催化剂制备嵌段共聚体改性环氧预聚物,通过这样改性之后,不但提高了剥离强度,而且整体机械性能和热性能并未明显降低。 聚氨酯增韧环氧胶。聚氨酯增韧环氧胶是通过聚氨酯和环氧树脂形成半立穿网络聚合物(SIPN)和互穿网络聚合物(IPN),起到强迫互溶和协同效应,使高弹性的聚氨酯与良好粘接性的环氧树脂有机结合在一起,通过互补和强化从而取得良好的增韧效果。 热塑性聚合物共混改性高强度环氧胶。一般是采用高性能的芳杂环聚合物聚砜、聚醚酮、聚醚醚酮、聚醚砜、聚醚酰亚胺和聚碳酸酯、聚苯醚等热塑性聚合物与环氧树脂共混改性,制备环氧结构胶粘剂,在-55~175℃以上宽温度范围内,具有高强度、高韧性、耐久性和优良的综合性能。 弹性微球增韧环氧高强度胶粘剂。国内有关研究表明,采用芯壳聚合物微球(芯是聚丁二烯或聚丙烯酸酯,壳层是聚甲基丙烯酸甲酯、聚苯乙烯)增韧环氧树脂效果更为理想,其壳层层数可以是一、二层,也可以三、四层,粒子大小和分布的均匀性对增韧效果影响都很大。 聚硅氧烷共聚改性增韧环氧胶粘剂。这种工艺是采用聚硅氧烷上的活性端基(为羧基、氨基)与环氧树脂中的环氧基、羟基反应生成嵌段聚合物,这种改性能降低环氧树脂内应力,增加韧性和耐温,并能取得良好的相容性。 纳米粒子增韧环氧树脂胶粘剂。由于纳米粒子其有较高的比表面积,因此有极高的不饱和性,表面活性很大。研究表明,采用纳米粒子改性环氧树脂,由于能形成理想的表面,所以可大幅度提高环氧树脂的拉伸强度和冲击性能。如果在环氧树脂中加入3%的纳米SiO2,在130℃下反应1h,冷却后加入固化剂固化,不但能增韧树脂而且耐热性能也大大提高。目前纳米粒子主要是添加纳米SiO2、纳米CaCO3、纳米TiO2等。有研究采用十六烷基三甲基溴化胺有机化表面处理的凹凸棒土与环氧树脂配合,其增强和增韧效果有明显提高。

环 氧 树 脂 应 用 转载

[应用技术] 环氧树脂在模具上的应用 一、概况 环氧树脂模具又称树脂模具,它具有制造周期短、成本低、特别适合形状复杂的制品和产品更新换代快速的工业领域;因此,在国外先进国家已得到广泛的应用,特别在汽车制造业、玩具制造业、家电制造业、五金行业和塑料制品等工业系统使用得更为普及。环氧树脂模具按不同的结构和用途,采用各种性能的环氧树脂、固化剂、增韧剂和填料(铁粉、铝粉、硅微粉、重晶石粉等)等配制成模具树脂,同时以玻璃纤维布和碳纤维布作增强材料而制成的。 环氧树脂模具按不同用途和技术要求,能设计出不同的环氧模具树脂配方组份。从国内、外环氧树脂模具实际应用统计,环氧树脂适合于制作以下几种类型的模具,在冷压模具方面有:弯曲模、拉延模、落锤模、铸造模等;在热压模具方面有:塑料注射模、注腊模、吹塑模、吸塑模、泡沫成型模、皮塑制品成型模等。环氧树脂模具的制造特点,是制造简易,快速,成本低;例如一些外形复杂、难成形的金属模具,用环氧树脂制造,采用浇注法或低压成形法,就能一次成形,无需大型精密切削机床,也可不用高级钳工。有些金属模具制造的周期要几个月至半年,采用环氧树脂模具一般只要3~5天就可完成,其成本仅仅是钢模的15~20%左右,而且树脂模具使用寿命很长,磨损了还可以很快修补好,继续使用。因此,环氧树脂模具的制造是一项打破传统机械加工工艺的新技术、新材料和新工艺。环氧树脂模具,在国外都是大型工厂设立的专门研制中心制造的,而在国内仅在于国防工业单位研制了一些,一般工厂企业都缺乏这方面的制造工艺技术和配方,所以在我国环树脂模具的应用、普及和发展的速度很缓慢。今后随着新材料、新技术的发展,环氧树脂应用技术的推广,环氧树脂模具的综合性能和制造技术被广泛了介和认识,环氧树脂复合材料性能的提高,树脂模具的制作工艺和应用工艺的简化,环氧树脂模具必然会得到飞跃的发展,成为新的高效率的低成本的先进模具。 二、环氧树脂模具的种类 1、环氧树脂冷压类型的模具 (1)弯曲模、成形模、拉延模、切口模等。 环氧树脂的复合材科主要用来制造凹凸模,可以浇注成形,也可以低压模压法成形,它可以冲压或拉延0.8毫米钢板2毫米以下的铝板,寿命在万次以上不磨损。对于大型拉延模具,如汽车驾驶室顶盖件,用环氧树脂制造模具显示出更大的优越性,无需大型切削机床。切口模用来制造结构复杂的大型零件,在凹凸模刃口部嵌以钢带。用环氧树脂制造的弯曲成形模具,冲压的另件有吊扇的风叶等,风叶型面尺寸要求很高,因关系到风量和使用效果等,环氧树脂模具固定在l O O吨冲床上冲压成形,冲压次数巳达三十余万次,树脂模具还在使用。 (2)落锤模

相关主题