搜档网
当前位置:搜档网 › 基于应变片传感器的压力测量系统

基于应变片传感器的压力测量系统

基于应变片传感器的压力测量系统
基于应变片传感器的压力测量系统

计量学概论课程项目报告

一种计量保证方案的设计与应用

(基于应变片传感器的压力测量系统)

姓名:同组人:

分工或贡献:电阻应变片压力传感器材料选择和参数计算课程名称:基于应变片传感器的压力测量系统

指导教师:田广军

完成日期: 2016年12月22日

基于应变片传感器的压力测量系统摘要:本文简要介绍了压变式压力传感器及其工作原理。本项目主要利用应变片压力传感器将应变片阻值的变化量转换为弹性元件的微小应变,从而利用力、受力面积及应变之间的关系来确定力的大小,进而求得产生作用力的物体的质量。传感器的设计主要包括弹性元件的设计和处理电路的设计。

前言:随着科学技术的迅猛发展,传感器技术已越来越广泛地应用于多种技术领域。各类传感器中,压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。本文针对电阻应变片压力传感器,对它的工作原理,材料选取、参数计算及电路设计以悬臂梁为例进行相关介绍。

1.应变式压力传感器简介及工作原理

1.1压力传感器简介

压力是生产过程和航天、航空、国防工业中的重要过程参数,不仅需要对它进行快速动态测量,而且还要将测量结果作数字化显示和记录。因此压力传感器是极受重视和发展迅速的一种传感器。压力传感器的发展趋势是进一步提高动态响应速度、精度和可靠性以及实现数字化和智能化等。

压力传感器一般由弹性敏感元件和位移敏感元件组成。弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件或应变计转换为与压力成一定关系的电信号。

1.2应变片传感器简介

常用压力传感器有电容式压力传感器、变磁阻式压力传感器、霍耳式压力传感器、光纤式压力传感器、谐振式压力传感器、电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器及膜片电极式压力传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。

1.3应变片传感器工作原理

电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。

电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。

当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。应变片在受力时产生的阻值变化通常较小,一般把4个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。

电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示

L

R S

ρ

= 式中:ρ——金属导体的电阻率(Ω·cm2/m);

S ——导体的截面积(cm2); L ——导体的长度(m );

图 电阻应变片的基本结构

电阻应变片主要由四部分组成。如上图所示,电阻丝是应变片敏感元件;基片、覆盖片起定位和保护电阻丝的作用,并使电阻丝和被测试件之间绝缘;引出线用以连接测量导线。

2.电阻应变片压力传感器各种材料的选择和参数计算

2.1弹性元件

弹性元件在传感器技术中占有极重要的地位。在传感器工作过程中,一般由弹性敏感元件首先把各种形式的物理量变成应变量或位移量等,然后配合各种转换元件,把非电量转换为电量。

选择弹性元件应遵循以下要求: (1) 强度高,弹性极限高; (2) 具有高的冲击韧性和疲劳极限;

(3) 弹性模量温度系数小而稳定;

(4) 热处理后应有均匀稳定的组织,且各向同性; (5) 热膨胀系数小;

(6) 具有良好的机械加工和热处理性能; (7) 具有高的抗氧化、抗腐蚀性能; (8) 弹性滞后尽量小;

常用材料:结构钢(CrNiMo ,30CrMnSiNi2A )、铝合金、钛合金……

可知结构钢的弹性模量最大,热膨胀系数小,适合制作负重大的传感器。故选用结构钢30CrMnSiNi2A ,其抗拉应力是1700Mpa ,屈服强度是1000Mpa ,弹性模量是211Gpa 。

同时本次设计选取弹性元件的形式为等截面梁,其示意图如图所示:

图等截面梁

作用力F 与某一位置处的应变关系可按下式计算:0

2

6Fl Ebh

ε=

式中:ε——距自由端0l 处的应变值;

l ——梁的长度; E ——梁的材料弹性模量; b ——梁的宽度; h ——梁的厚度。

通过设计,选取l=20mm,0l =14mm,b=10mm,h=3mm 现校核如下:

30

2

36

66100141093.910001010910

Fl Mpa Mpa Mpa Ebh ε---???=

==??? 因此,选取是合理的。

2.2应变片的选择

电阻应变片是主要分为电阻丝式应变片、金属箔式应变片和金属薄膜应变片。箔式应变片具有敏感栅薄而宽,粘贴性能好,传递应变性能好;散热性好,敏感栅弯头横向效应可以忽略;蠕变,机械滞后小,疲劳寿命长等优点,所以非常适合本次设计的应用。

选择4片箔式应变片(BX120-02AA )阻值为120Ω,其基底尺寸是2.4×2.4 (mm ×mm )。同时敏感珊的材料选择铂因为其灵敏系数达K s =4.6,且其最高工作温度可以达800多摄氏度,栅长做到0.5mm 。

应变片粘贴在距自由端0l 处,R1和R4粘贴在梁的上方承受正应变,R2和R3则与之对应粘贴在下方承受负应变。 粘贴剂选择环氧树脂粘贴剂。

基底材料选择胶基,厚度为0.03mm-0.05mm 。 引线材料采用直径为0.15-0.18mm 的铬镍金属丝引线。

最后在安装后的应变片和引线上涂上中性凡士林油做防护作用,以保证应变片工作性能稳定可靠。 这样最大应变为:

34

2

936

661001410 4.410211*********

Fl Mpa Mpa Ebh ε----???=

==?????? 交流电桥的最大输出输入比为:

44.410 4.62/V o s i U R

K mV U R

ε-?===??≈ 3、测量电路的设计与计算

3.1 电桥电路

应变片将应变的变化转换成电阻相对变化/R R ?,要把电阻的变化转换成电压或电流的变化,才能用电测仪表进行测量。常用的有两臂差动电路和全桥电路,如图3.1所示。

一般电桥的输出电压为

图两臂差动电路与全桥电路

()()

1423

1234o i

R R R R U U R R R R -=++

两臂差动电桥电路的电压输出为

()()()()

114223112234o i

R R R R R R U U R R R R R R +?-+?=+?++?+ 设初始时1234R R R R R ====,工作时一片受拉一片受压,即

12R R R ?=-?=?,则可以简化为

22i i

o U U R U K R ?=

?=ε 差动电桥电压灵敏度为

2

i

U U K =

同理采用四臂电桥,并设初始时1234R R R R R ====,工作时

1423R R R R R ?=?=-?=-?=?,输出为

o i i R

U U K U R

?=

=ε 四臂电桥的电压灵敏度为

U i K U =

通过比较半桥与全桥的灵敏度,四臂电桥电路的灵敏度高,故选用四臂电桥电路。

3.2放大电路

由于传感器输出的电压比较小,因此需对其进行放大使之满足后续电路的处理要求。鉴于传感器输出可能杂有共模电压,为此,选取具有高共模抑制比的AD620作为放大器来达到净化信号电压和充分节约成本和制造的空间的目的。

图 放大电路

其放大增益为:4

49.4k 1+

G R Ω

=

为了将10mV 的电压放大到10V ,需要放大1000倍,为此选择分配级为50×20,这里放大50倍,因此解得R 4=1.008k Ω

4、误差分析

误差的形成主要来源于温度误差,造成温度误差的原因主要有以下两个: 1、敏感栅电阻随温度变化引起误差

2、试件材料与应变丝材料的线膨胀系数不同,使应变丝产生附加拉长或压 缩,引起电阻变化。

这样的温度误差可以通过桥路进行补偿,如本设计中的全桥电路就很好地实现了温度的补偿;其次,电桥还具有非线性误差,由于对金属丝电阻应变片,电桥非线性误可以忽略,所以也不影响本次设计。

最后,对于如同工频等的干扰,我们尽量通过电路的优化除去干扰,如通过高共模抑制比仪放以及低通滤波器进行改进。

因此,从理论上说,本次设计中的误差还是比较好地得到了控制。

【参考文献】

[1]传感器设计及应用实例,刘少强,张靖,中国电力出版社;

[2]传感器应用设计300例,北京航空航天大学出版社;

[3]传感器应用及电路设计,化学工业出版社;

[4]传感器原理及工程应用,郁有文、常健、程继红,西安电子科技大学出版社;

[5]传感器原理及应用,赵燕,北京大学出版社。

压力和液位传感器测量实验

压力和液位传感器测量实验 一、实验目的: 1. 了解压力传感器和液位传感器的工作原理和结构 2. 学习如何安装和使用压力传感器、液位传感器 3. 学习如何测定和校正传感器的量程曲线 4. 学习传感器、数字转换仪表的连接和参数设置 二、实验装置及试剂 压力传感器一台,液位传感器一台,直流电源,数字显示仪表,高位槽,低位槽,电磁阀。 三、实验原理 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业过程的测量和自控包括石油、化工、航空、制药、环境等不同的行业和过程,按照不同的类型,还可以有用来测量液体或气体压力的,测量物体重量的,测量流体压差的和物体的位移量。也可以分别叫做压力传感器、重量传感器、液位传感器和差压传感器等名称,下本实验简单介绍一些常用传感器原理及其应用。 实验装置为一个透明的有机玻璃塔,也可以作为一个液体罐。在塔体的下部,安装有压力传感器,通过改变液体的高度,或者气体的压力,都可以造成系统压力的变化,可以用来测量塔内液体水产生的压力,并显示在数字仪表上。该数据也可以直接连接到计算机上,实现在线监控和采集。

在塔的上、下部位,安装有液位传感器,用来测量液体的位差。本实验中液体是水,不管液体上方的气体压力如何变化,液位传感器只是测量上下两个测量口之间的压力差。 图1 压力/液位传感器测量试验流程图 传感器测量原理: 压力传感器的种类繁多,有压阻式压力传感器、电容式压力传感器、半导体应变片压力传感器电、感式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感

器,它具有极低的价格和较高的精度以及较好的线性特性。 压阻式压力传感器: 通常是将电阻膜片通过特殊的粘和剂紧密的粘合在一个固定基体上,当基体受力发生应力变化时,膜片的电阻值也发生相应的改变,如果电路中有一个恒流源,从而使加在电阻上的电压发生变化。通过用电桥放大后测量该电压值,就可以知道施加到膜片上的压力值。电阻膜片应用最多的是金属电阻膜片和半导体膜片两种。金属电阻膜片又分丝状膜片和金属箔状片两种。 金属电阻膜片是利用吸附在基体材料上金属丝或金属箔,受应力变化时,电阻发生变化的特性来测量的。应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。 图2 传感器接线原理 采用水的变化来引起压力和压差的变化,用压力传感器来测量气

电阻应变式传感器.

电阻应变式传感器 应变式传感器是基于测量物体受力变形所产生应变的一种传感器,最常用的传感元件为电阻应变片。 应用范围:可测量位移、加速度、力、力矩、压力等各种参数。 应变式传感器特点 ①精度高,测量范围广; ②使用寿命长,性能稳定可靠; ③结构简单,体积小,重量轻; ④频率响应较好,既可用于静态测量又可用于动态测量; ⑤价格低廉,品种多样,便于选择和大量使用。 1、应变式传感器的工作原理 (1) 金属的电阻应变效应 金属导体在外力作用下发生机械变形时,其电阻值随着它所受机械变形(伸长或缩短)的变化而发生变化的现象,称为金属的电阻应变效应。 公式推导: 若金属丝的长度为L,截面积为S,电阻率为ρ,其未受力时的电阻为R,则: (9.1)

如果金属丝沿轴向方向受拉力而变形,其长度L变化dL,截面积S 变化dS,电阻率ρ变化,因而引起电阻R变化dR。将式(9.1)微分,整理可得: (9.2) 对于圆形截面有: (9.3) 为金属丝轴向相对伸长,即轴向应变;而则为电阻丝径向相对伸长,即径向应变,两者之比即为金属丝材料的泊松系数μ,负号表示符号相反,有: (9.9) 将式(9.9)代入(9.3)得: (9.5) 将式(9.5)代入(9.2),并整理得: (9.6) (9.7) 或 K0称为金属丝的灵敏系数,其物理意义是单位应变所引起的电阻相对变化。 K0称为金属丝的灵敏系数,其物理意义是单位应变所引起的电阻相对变化。

公式简化过程: 由式可以明显看出,金属材料的灵敏系数受两个因素影响: 一个是受力后材料的几何尺寸变化所引起的,即项;另一个是受力后材料的电阻率变化所引起的,即项。对于金属材料项比项小得多。大量实验表明,在电阻丝拉伸比例极限范围内,电阻的相对变化与其所受的轴向应变是成正比的,即K0为常数,于是可以写成: (9.8) Array通常金属电阻丝的K0=1.7~4.6。 通常金属电阻丝的K0=1.7~4.6。 (2) 应变片的基本结构及测量原理 距 用面积。应变片的规格 一般以使用面积和电 阻值表示,如 2 为 的电阻丝制成的。 高的阻值, 栅状, 在绝缘的基底上。 两端焊接引线。

电阻应变片传感器

电阻应变片传感器,对于外行人来说,或者不懂它具体指的是哪一款类型的传感器,其实弄懂其中关系就很简单,传感器代表的是一种产品,而电阻应变片实际是特指电阻应变式原理下的一款重要零部件。所以说,电阻应变片传感器可以用一句话解释,即工作原理是电阻应变式原理的传感器。 电阻应变式传感器是基于这样一个原理:弹性体在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 由此可见,电阻应变片是电阻应变式传感器中不可缺少一个部分。电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来

介绍一下它的意义。 设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R: R=ρL/S(Ω)(2—1) 当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。 对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有: ΔR=ΔρL/S+ΔLρ/S–ΔSρL/S2(2—2) 用式(2--1)去除式(2--2)得到 ΔR/R=Δρ/ρ+ΔL/L–ΔS/S(2—3) 另外,我们知道导线的横截面积S=πr2,则Δs=2πr*Δr,所以 ΔS/S=2Δr/r(2—4) 从材料力学我们知道 Δr/r=-μΔL/L(2—5) 其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。把式(2—4)(2—5)代入(2--3),有

《电容式传感器的工作原理及其在压力测量中的应用》

检测与转换技术 大作业 题目 院系 班级 学生姓名 日期

电容式传感器的工作原理及其在压力测量中的应用 摘要: 电容式传感器以各种类型的电容器作为传感器元件,通过传感器元件将被测物理量的变化转换为电容量的变化,在经过测量电路转化为电压、电流或频率。电容式传感器广泛的应用于位移、振动、角度、加速度等机械量的测量,还应用于压力、差压、液位、料位等热加工量的测量。本文主要介绍电容式传感器的工作原理及其在压力测量中的应用。 关键词: 电容式传感器 工作原理 压力测量 应用发展 Summary: In all types of capacitive sensors as the sensor capacitor element, the sensor element by changes in the measured physical quantity as a change in capacitance is converted, after measuring circuit into a voltage, current or frequency. Capacitive sensors are widely used in displacement, vibration, angle, acceleration and other mechanical measurement of the amount, also applies pressure, differential pressure, level, level and other thermal processing of the measurement. This paper describes the working principle of the capacitive sensor and its application in pressure measurement. Keywords: capacitive pressure sensor measurement applications development works 1.引言 电容式传感器是把被测量转换为电容量变化的一种参量型传感器。电容式传感器广泛应用于压力、液位、位移等各种检测中,由于形式多种多样,传感器电容值相差很大。电容式传感器可分为变面积变化式、变间隙式、变介电常数式三类。变面积变化式一般用于测量角位移或较大的线位移。变间隙式一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化。变介电常数式常用于物位测量和各种介质的温度、密度、湿度的测定。这种传感器具有高阻抗、小功率、动态范围大、动态响应较快、几乎没有零漂、结构简单和适应性强等优点。70年代末以来,随着集成电路技术的发展,出现了与微型测量仪表封装在一起的电容式传感器。这种新型的传感器能使分布电容的影响大为减小,使其固有的缺点得到克服。电容式传感器是一种用途极广,很有发展潜力的传感器。 电容式传感器的基本工作原理 以储存电荷为目的制成的元件称为电容器。由绝缘介质分开的两个平行金属板组成的平板电容器, 如果不考虑边缘效应, 其电容量为 d A d A c r εεε0= =

电阻应变片压力传感器设计

《电阻应变片的压力传感器设计》 题目电阻应变片的压力传感器设计时间 201608 班级 2014级 姓名 序号 指导教师 教研室主任 系教学主任 2016年08月 前言

随着科学技术的迅猛发展,非物理量的测试与控制技术,已越来越广泛地应用于航天、航空、交通运输、冶金、机械制造、石化、轻工、技术监督与测试等技术领域,而且也正逐步引入人们的日常生活中去。传感器技术是实现测试与自动控制的重要环节。在测试系统中,被作为一次仪表定位,其主要特征是能准确传递和检测出某一形态的信息,并将其转换成另一形态的信息。 传感器是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置。其中电阻应变式传感器是被广泛用于电子秤和各种新型机构的测力装置,其精度和范围度是根据需要来选定的。因此,应根据测量对象的要求,恰当地选择精度和范围度是至关重要的。但无论何种条件、场合使用的传感器,均要求其性能稳定,数据可靠,经久耐用。 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。 本次课程设计的是一个大量程称重传感器,测量范围为1t到100t。 本次课程设计的称重传感器就是利用应变片阻值的变化量来确定弹性元件的微小应变,从而利用力,受力面积及应变之间的关系来确定力的大小,进而求得产生作用力的物体的质量。应变片阻值的变化可以通过后续的处理电路求得。 传感器的设计主要包括弹性元件的设计和处理电路的设计。由于传感器输出的信号是微弱信号,故需要对其进行放大处理;由于传感器输出的信号里混有干扰信号,故需要对其进行检波滤波;由于传感器输出的信号通常都伴随着很大的共模电压(包括干扰电压),故需要设计共模抑制电路。除此之外,还要设计调零电路。 目录

压力传感器原理及应用-称重技术

压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电 信号作输出,给显示仪表显示压力值,或供控制和报警使用。 压力传感器的种类繁多,如压阻式压力传感器、应变式压力传感器、压电式压力传感器、电容式压力传感 器、压磁式压力传感器、谐振式压力传感器及差动变压器式压力传感器,光纤压力传感器等。 一、压阻式压力传感器 固体受力后电阻率发生变化的现象称为压阻效应。压阻式压力传感器是基于半导体材料(单晶硅)的压阻效应原理制成的传感器,就是利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻,当硅膜片 受压时,膜片的变形将使扩散电阻的阻值发生变化。 压阻式具有极低的价格和较高的精度以及较好的线性特性。 1、压阻式压力传感器基本介绍 压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成粘贴式应变片,称为半导体应变片,因此 应变片制成的传感器称为半导体应变式传感器,另一种是在半导体材料的基片上用集成电路工艺制成的扩 散电阻,以此扩散电阻的传感器称为扩散型压阻传感器。 半导体应变式传感器半导体应变式传感器的结构形式基本上与电阻应变片传感器相同,也是由弹性敏感元件等三部分组成,所不同的是应变片的敏感栅是用半导体材料制成。半导体应变片与金属应变片相比,最 突出的优点是它的体积小而灵敏高。它的灵敏系数比后者要大几十倍甚至上百倍,输出信号有时不必放大 即可直接进行测量记录。此外,半导体应变片横向效应非常小,蠕变和滞后也小,频率响应范围亦很宽, 从静态应变至高频动态应变都能测量。由于半导体集成化制造工艺的发展,用此技术与半导体应变片相结 合,可以直接制成各种小型和超小型半导体应变式传感器,使测量系统大为简化。但是半导体应变片也存 在着很大的缺点,它的电阻温度系统要比金属电阻变化大一个数量级,灵敏系数随温度变化较大它的应变 —电阻特性曲线性较大,它的电阻值和灵敏系数分散性较大,不利于选配组合电桥等等。 扩散型压阻式传感器扩散型压阻传感器的基片是半导体单晶硅。单晶硅是各向异性材料,取向不同时特性不一样。因此必须根据传感器受力变形情况来加工制作扩散硅敏感电阻膜片。 利用半导体压阻效应,可设计成多种类型传感器,其中压力传感器和加速度传感器为压阻式传感器的基本 型式。 硅压阻式压力传感器由外壳、硅膜片(硅杯)和引线等组成。硅膜片是核心部分,其外形状象杯故名硅杯,在硅膜上,用半导体工艺中的扩散掺杂法做成四个相等的电阻,经蒸镀金属电极及连线,接成惠斯登电桥 再用压焊法与外引线相连。膜片的一侧是和被测系数相连接的高压腔,另一侧是低压腔,通常和大气相连,也有做成真空的。当膜片两边存在压力差时,膜片发生变形,产生应力应变,从而使扩散电阻的电阻值发 生变化,电桥失去平衡,输出相对应的电压,其大小就反映了膜片所受压力差值。

实验一电阻应变片传感器特性实验

实验一、二 电阻应变片传感器特性实验 一、 实验目的: 1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 2.比较半桥,全桥测量电路与单臂电桥的不同性能、了解各自的特点。 二、 基本原理: 敏感元件—金属箔在外力作用下,其电阻值会发生变化。即金属的电阻应变效应。根据推导可以得出: l l k l l l l l l R R ?=???++=?++?=?02121)()(ρρμρρμ “应变效应”的表达式。k 0称金属电阻的灵敏系数,从式(3)可见,k 0受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是) (ρερ ?,是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料 而言,以前者为主,则 μ210+≈k ,对半导体,0 k 值主要是由电阻率相对变化所决定。实验也表明,在金属丝拉伸 比例极限内,电阻相对变化与轴向应变成比例。通常金属丝的灵敏系数k 0=2左右。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系εσE = (4) 式中 σ——测试的应力; E ——材料弹性模量。 可以测得应力值σ。通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。 单臂电桥:即应变片电阻接入电桥的一臂,测出其电阻变化值,结构比较简单,但是灵敏度较差; 半桥:把不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压UO2=EG ε/2。式中E 为电桥供电电压。 全桥:测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U 03=KE ε。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善 三、需用器件与单元:应变式传感器实验模板、砝码、数显表、±15V 电源、±5V 电源、万用表。 四、实验内容与步骤: 1、应变片的安装位置如图(1-1)所示,应变式传感器已装到应变传感器模块上。传感器中各应变片已接入模板的左上方的R1、R 2、R 3、R4。可用万用表进行测量,R1=R2=R3=R4=350Ω。 R1 R2 R3R4 图1-1 应变式传感器安装示意图 图1-2 应变式传感器单臂电桥实验接线图 2、接入模板电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,顺时针调节Rw2使之大致位于中间位置,再进行差动放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V 档)。关闭主控箱电源。(注意:当Rw2的位置一旦确定,就不能改变。) 3、按图1-2将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、

压阻式压力传感器的压力测量实验

实验二压阻式压力传感器的压力测量实验 一、实验目的: 了解扩散硅压阻式压力传感器测量压力的原理和方法。 二、基本原理: 扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压力变化。 图一压阻式压力传感器压力测量实验 三、需用器件与单元: 主机箱、压阻式压力传感器、压力传感器实验模板、引压胶管。 四、实验步骤: 1、将压力传感器安装在实验模板的支架上,根据图二连接管路和电路(主机箱内的气源部分,压缩泵、贮气箱、流量计已接好)。引压胶管一端插入主机箱面板上气源的快速接口中(注意管子拆卸时请用双指按住气源快速接口边缘往内压,则可轻松拉出),另一端口与压力传感器相连。压力传感器引线为4芯线: 1端接地线,2端为U0+,3端接+4V电源, 4端为Uo-,接线见图9-2。

2、实验模板上R W2用于调节放大器零位,R W1 调节放大器增益。按图9-2将实 验模板的放大器输出V02接到主机箱(电压表)的Vin插孔,将主机箱中的显示选 择开关拨到2V档,合上主机箱电源开关,R W1 旋到满度的1/3位置(即逆时针旋 到底再顺时针旋2圈),仔细调节R W2 使主机箱电压表显示为零。 3、输入气压,压力上升到4Kpa左右时调节调节Rw2(低限调节),,使电压表显示为相应的0.4V左右。再仔细地反复调节旋钮使压力上升到19Kpa左右时调节差动放大器的增益电位器Rw1(高限调节),使电压表相应显示1.9V左右。 4、再使压力慢慢下降到4Kpa,调节差动放大器的调零电位器,使电压表显示为相应的0.400V。再仔细地反复调节汽源使压力上升到19Kpa时调节差动放大器的增益电位器,使电压表相应显示1.900V。 5、重复步骤4过程,直到认为已足够精度时仔细地逐步调节流量计旋钮,使压力在4-19KPa之间变化,每上升3KPa气压分别读取电压表读数,将数值列于表1。 作业: 1、画出实验曲线,并计算本系统的灵敏度和非线性误差。实验完毕,关闭所有电源。

基于应变片传感器的压力测量

“传感器与检测技术”研究小论文基于应变片传感器的压力测量 姓名:李 班级:2011 学号: 2014年4 月14 日

目录 第1章应变片传感器综述 (3) 1.1 应变片传感器简介 (3) 1.2 应变片传感器的工作原理 (3) 第2章传感器的选用 (4) 2.1 几种传感器及外围电路的比较 (4) 2.2 市场上的同类产品 (5) 第3章具体方案设计与分析 (6) 3.1 温度补偿电路 (6) 3.2 测量电路 (7) 3.3 系统总图 (8) 参考文献 (8)

应变片传感器综述 1.1应变片传感器简介 压力传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及膜片电极式压力传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2应变片传感器的工作原理 电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把4个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: S L R ρ= 式中: ρ——金属导体的电阻率(Ω·cm2/m ) S ——导体的截面积(cm2) L ——导体的长度(m )

应变片称重传感器

第一章摘要 应变片称重传感器信号调理电路设计,在分析重力传感器信号特性的基础上,通过电路设计,把重量变化引起的应变片电阻的变化,反应到电压的变化上。信号调理电路是那模拟信号变换为用于数据采集、控制过程、执行计算显示、处或其他目的的数字信号。此称重传感器信号调理电路应用了模块化设计,并通过仿真实验得出了较理想的仿真结果。 Multisim仿真结果表明:此电路设计能实时、准确的处理信号。且工作稳定、可靠、重复性好、抗干扰能力强,可实现精密测量的目的。 第二章引言 随着科学技术的发展和自动化程度的提高,作为获取信息的传感器应用越来越广,对高精度信号调理技术的要求也越来越高。传感器输出的信号往往存在非线性问题、滞后误差、蠕变、温漂等问题,因此它的信号通常不能被控制元件直接接收,信号调理电路就成为数据采集系统中不可缺少的一部分,并且其电路设计的优化程度直接关系到数据采集系统的精度和稳定性。 称重传感器信号检测的精度受到诸多因素的影响,其中电桥激励电压源的精度和稳定度是影响信号精确度的重要因素之一。由称重传感器的分析可知:电桥输出与激励电压成正比,使得激励电压出现任何漂移都将导致电桥输出出现相应的漂移。并且现场工

作环境恶劣,可能存在粉尘、振动、噪声以及电磁干扰等,称重传感器输出的几百微伏至几十毫伏信号极易受到干扰。所以研究抗干扰能力强、实时性好的信号变送和传输技术对保证检测精度具有重要意义。 第三章电路设计 根据设计要求,采用电压驱动电桥,这样就确保了检测信号的精确度和线性度。利用电阻电桥测量微小电阻变化,电桥由连成四边形的四个电阻组成,其中一个对角接激励电压源,而另一个对角接电压检测器,检测器将测量两个分压电阻中点间的电压。这种电桥电路在实际中可以根据输出电压直接观测出电阻差。 3.1信号处理电路的设计 信号处理电路的模块结构如图1所示:采用应变片称重传感器提高检测精度和使加卸载曲线对称,调理电路采用5V参考电压芯片AD588,使输出为符合设计要求的电压输出,精密齐纳二极管型参考源AD588对温度变化具有极低的激励漂移和增益。调理模块采用精确度高、使用简易、噪声低的仪用放大器AD620.保证了信号调理器的精确度和稳定度。

电阻应变式压力传感器设计说明

传感器与检测技术电阻应变式压力传感器的设计 学院:信息技术学院 指导老师:蔡杰 班级:B1106 :佳林 学号:0915110629

目录 一、设计任务分析 (2) 二、方案设计 (2) 2.1原理简述 (2) 2.2应变片检测原理 (3) 2.3弹性元件的选择及设计 (4) 2.4应变片的选择及设计 (5) 三、单元电路的设计 (6) 3.1电桥电路的设计 (6) 3.2放大电路的设计 (6) 3.3移相器的设计 (7) 3.4过零比较器的设计 (8) 3.5相敏检波电路的设计 (9) 3.6低通滤波器的设计 (9) 四、误差分析 (10) 五、心得体会 (10) 六、致 (11)

电阻应变式压力传感器的设计 一、设计任务分析 采用电阻应变片设计一种电阻应变式质量(压力)传感器,具体要求如下: 1.正确选取电阻应变片的型号、数量、粘贴方式并连接成交流电桥; 2.选取适当形式的弹性元件,完成其机械结构设计、材料选择和受力分析, 3.并根据测试极限围进行校核; 4.完成传感器的外观与装配设计; 5.完成应变电桥输出信号的后续电路(包括放大电路、相敏检波电路、低通 滤波电路)的设计和相关电路参数计算,并绘制传感器电路原理图; 二、方案设计 2.1原理简述 电阻应变式传感器为本设计的主要部件,传感器中的弹性元件感受物体的重 力并将其转化为应变片的电阻变化,再利用交流全桥测量原理得到一定大小的输 出电压,通过电路输出电压和标准重量的线性关系,建立具体的数学模型,在显 示表头中将电压(V)改为质量(kg)即可实现对物品质量的称重。 本设计所测质量围是0-10kg,同时也将后续处理电路的电压处理为与之对 应的0-10V。由于采用了交流电桥,所以后续电路包括放大电路,相敏检波电路, 移相电路,波形变换电路,低通滤波电路(显示电路本次未设计)。 原理框图如图一所示。 (质量)压力电阻应变片交流电桥5KHZ交流 放大器移相器数显表头 过零比较器 相敏检波 低通滤波

压力和液位传感器测量实验最终版.

化工专业实验报告 天津大学化工技术实验中心印制

实验十一压力和液位传感器测量实验 一、实验目的: 1. 了解压力传感器和液位传感器的工作原理和结构 2. 学习如何安装和使用压力传感器、液位传感器 3. 学习如何测定和校正传感器的量程曲线 4. 学习传感器、数字转换仪表的连接和参数设置 5. 学习用液位计和电磁阀一起控制液位的原理及应用 二、实验装置及试剂 压力传感器一台,液位传感器一台,直流电源,数字显示仪表,高位槽,低位槽,电磁阀 三、实验原理 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业过程的测量和自控包括石油、化工、航空、制药、环境等不同的行业和过程,按照不同的类型,还可以有用来测量液体或气体压力的,测量物体重量的,测量流体压差的和物体的位移量。也可以分别叫做压力传感器、重量传感器、液位传感器和差压传感器等名称,下本实验简单介绍一些常用传感器原理及其应用。 实验装置为一个透明的有机玻璃塔,也可以作为一个液体罐。在塔体的下部,安装有压力传感器,通过改变液体的高度,或者气体的压力,都可以造成系统压力的变化,可以用来测量塔内液体水产生的压力,并显示在数字仪表上。该数据也可以直接连接到计算机上,实现在线监控和采集。 在塔的上、下部位,安装有液位传感器,用来测量液体的位差。本实验中液体是水,不管液体上方的气体压力如何变化,液位传感器只是测量上下两个测量口之间的压力差。 液位传感器除了测量水的液位,还可以用来控制液位。本实验就采用液位传感器,控制一个电磁阀。先从仪表设定一个需要控制的液位高度,当传感器测量到的高度超过这个设定值时,仪表会输出一个信号,控制电磁阀的打开,让塔内的液体排出。当液位低于设定的数值时,仪表会停止控制信号的输出,电磁阀处于关闭的状态,这样,就能保持塔内的液位,处在一个固定的范围内波动。 传感器测量原理: 压力传感器的种类繁多,有压阻式压力传感器、电容式压力传感器、半导体应变片压力

压力传感器原理及应用

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,江苏省苏科仪表有限公司技术部的同志就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

(完整版)四种压力传感器的基本工作原理及特点

四种压力传感器的基本工作原理及特点 一:电阻应变式传感器 1 1电阻应变式传感器定义 被测的动态压力作用在弹性敏感元件上,使它产生变形,在其变形的部位粘贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称为电阻应变式压力传感器。 1.2 电阻应变式传感器的工作原理 电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片。 箔式应变片是以厚度为0.002——0.008mm 的金属箔片作为敏感栅材料,,箔栅宽度为0.003——0.008mm 。丝式应变片是由一根具有高电阻系数的电阻丝(直径0.015--0.05mm),平行地排成栅形(一般2——40条),电阻值60——200 ?,通常为120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即制成了纸基的电阻丝式应变片。测量时,用特制的胶水将金属电阻应变片粘贴于待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时,电阻片也跟随变形。如下图所示。B 为栅宽,L 为基长。 材料的电阻变化率由下式决定: d d d R A R A ρρ=+ (1) 式中; R —材料电阻

由材料力学知识得; [(12)(12)]dR R C K μμεε=++-= (2) K —金属电阻应变片的敏感度系数 式中K 对于确定购金属材料在一定的范围内为一常数,将微分dR 、dL 改写成增量ΔR 、ΔL,可得 R L K K R L ε??== (3) 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形ε,而形应变值可由丝式应变片或箔式应变片测出,从而得到了ΔR 的变化,也就得到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。 1.3电阻应变式传感器的分类及特点 测低压用的膜片式压力传感器 常用的电阻应变式压力传感器包括 测中压用的膜片——应变筒式压力传感器 测高压用的应变筒式压力传感器 1.3.1膜片——应变筒式压力传感器的特点 该传感器的特点是具有较高的强度和抗冲击稳定性,具有优良的静态特性、动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。适于测量高频脉动压力,又加上强制水冷却。也适于高温下的动态压力测量,如火箭发动机的压力测量,内燃机、压气机等的压力测量。 1.3.2 膜片式应变压力传咸器的特点 A 这种膜片式应变压力传感器不宜测量较大的压力,当变形大时,非线性较大。但小压力测量中由于变形很小,非线性误差可小于0.5%,同时又有较高的灵敏度,因此在冲击波的测量中,国内外都用过这种膜片式压力传感器。 B 这种传感器与膜片—应变筒式压力传感器相比,自振频率较低,因此在低ρ—材料电阻率

电阻应变式传感器

1.一丝绕应变计的灵敏系数为2,初始阻值100Ω,试求当试件受力后的应变为1.8?103 时该应变计的电阻变化ΔR。 2.一试件受力后的应变为2?10-3;丝绕应变计的灵敏系数为2,初始阻值120Ω,温度 C0/,线膨胀系数为14?10-6C0/;试件的线膨胀系数为12?10-6C0/。试系数-50?10-6 求:温度升高20℃时,应变计输出的相对误差和相对热输出。 3.在悬臂梁的上下方各贴一片电阻为120Ω的金属应变片R1和R2。若应变片的灵敏系数 k=2,电源电压U=2V,当悬臂梁顶端受到向下的力F时,电阻R1和R2的变化值ΔR1=ΔR2 =0.48Ω,试求电桥的输出电压。 4.图为一直流应变电桥,图中U=4V,R1=R2=R3=R4=120Ω,试求: ①R1为金属应变片,其余为外接电阻,当R1的增量为ΔR1=1.2Ω时,电桥输出电压U O。 ② R1、R2都是应变片,且批号相同,感应应变的极性和大小都相同,其余为外接电阻, 电桥输出电压U O。 ③题②中,如果R2与R1的感受应变的极性相反且ΔR1=ΔR2=1.2Ω,电桥输出电压U O。 5.图3-6为等强度梁测力系统,R1为电阻应变片,应变片灵敏 度系数K=2.05,未受应变时,R1=120Ω,当试件受力F时, 应变片承受平均应变ε=800μm/m,试求: ①应变片的电阻变化量R1和电阻相对变化量ΔR1/R ②将电阻应变片R1置于单臂测量电桥,电桥电流电压为直流3V,求电桥输出电压及 电桥非线性误差。

③若要减小非线性误差,应采取何种措施?分析其电桥输出电压及非线性误差的大小。 6.利用悬臂梁结构可以构成称重传感器。试就在悬臂梁的上下方各贴一片金属应变片组成 差动半桥和各贴二片金属应变片组成差动全桥时的应变电阻片的布贴方式、电桥连接方法和相应的输出电压大小做出说明, 并说明其差动和温度补偿的原理。 7.一个初始阻值为120Ω的应变片,灵敏度为K=2.0,如果将该应变片用 总阻值为12Ω的导线连接到测量系统,求此时应变片的灵敏度K’。 8.采用四片相同的金属丝应变片(K=2),将其粘贴在如图所示的实心圆柱形测力 弹性元件上。已知力F=10kN,圆柱横截面半径r=1cm,材料的弹性模量2 10-7 N/cm2,泊松比μ=0.3。 (1)画出应变片在圆柱上的粘贴位置及相应的测量桥路原理图。 (2)求各应变片得应变及电阻相对变化量。 (3)若电桥供电电压U=6V,求桥路输出电压U o。 (4)此种测量方法能否补偿环境温度对测量的影响,说明理由。

一、压力传感器

一、压力传感器 压力的定义:物理学将压力定义为“单位面积上的力”。从接近于绝对真空的极低压力变化到极快的爆炸压力峰值,我公司都有专门的技术为每 一应用领域都提供精确和可靠的压力测量。 应用-工业通用压力测量 奇石缘静态、动态压力测量具有可靠、精确和应用灵活的特点。它为 各种应用领域提供了压电和压阻式压力传感器及响应的测量系统。奇石缘 压力测量仪器在机械工程、航空、化工、研究、交通工程、能源及医学领 域的应用经受了长期的考查,应用领域相当广泛。 交通工程 奇石缘传感器和变送器测量0.2~3000bar的压 力(环境温度为-40~350℃),精度等级为0.05~2%F S。这些传感器即使在腐蚀性截止中也是高度稳固 的。典型的应用包括刹车系统、一样操纵系统、闭 环系统、安全栅、压缩机、变速操纵系统和液压动力组件。特点/用途: 使用寿命长、载荷循环高、高动态载荷。 航天 太空之旅中即使是最微小的误差也会给宇航员带来庞大的生命威逼。 奇石缘在那个要求严格的领域中开拓了专门的压力传感器,并通过了大量 的系统测试。一个典型应用是监控卫星燃油箱内的压力。特点/用途:极高的灵敏度和可靠的传感器、高达15年的使用寿命,结构牢固和高可靠性、气密设计传感器确保设备免受恶劣环境阻碍、抗辐射。 石油和天然气

在石油和天然气领域,奇石缘传感器和变送器一样用在海洋平台安装、 深孔监测系统、钻井设备和高温高压的应用领域。特点/用途:防爆传感器、结构牢固、耐高温、精度高。 过程工业 对用于过程工业的传感器来讲,最重要的是指标可靠性和耐腐蚀。陶 瓷或耐腐蚀金属因而被选用。典型的应用领域专门广泛,包括计量泵、高 压容器、生物反应器和压缩机等。特点/用途:耐腐蚀性极高、测量死区小、防爆传感器。 应用-爆炸压力等高压测量 奇石缘端面密封式高压传感器是世界公认的标准传感器,应用于安全 气囊引爆器内爆炸物的开发和武器的试验与开发。特点/用途:由于对安装条件不敏锐,测量重复性专门高、全量程范畴的线性都专门好、端面密封 和优化的膜片设计使其具有专门长的使用寿命、对不洁环境不敏锐。 1) 压电式压力传感器-压电测量技术 压电式传感器 奇石缘公司的压电测量技术源于军工,并逐步进展与完善,产品应用 领域包括爆炸物理研究、发动机测试、生产过程操纵、材料试验、道路安 全、靶场与靶机、模态分析等。这种传感器已历经了时刻的考查,即使在 最极端的条件下也能提供可靠的测试结果。现在,新一代专门的压电晶体 正在越来越多地作为传感器的敏锐元件,长期工作温度可达到400℃以上,瞬时(10个毫秒级)冲击温度可达4000K以上。 应用领域: 压电式测量设备今天已广泛地应用与试验室和生产过程。在各种需要 精确测量和记录诸如压力、力和振动等力学量动态变化的场合中的应用随 处可见并持续扩展,目前包括:

市场上常见的压力传感器的种类及原理分析

市场上常见的压力传感器的种类及原理分析 什么是压力传感器呢?压力传感器是指将接收的气体、液体等压力信号转变成标准的电流信号(4~20mADC),以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节的元器件。它主要是由测压元件传感器、测量电路和过程连接件等组成的(进气压力传感器)。 那么压力传感器的种类有哪些呢?就目前市场而言,压力传感器一般有差压传感器、绝压传感器、表压传感器,静态压力传感器和动态压力传感器。对于这几者之间的关系,我们可以这样定义定义:差压是两个实际压力的差,当差压中一个实际压力为大气压时,差压就是表压力。绝压是实际压力,而有意义的是表压力,表压力=绝压-大气压力。静态压力是管道内流体不流动时的压力。动态压力可以简单理解为管道内流体流动后发生的压力。 根据不同的方式压力传感器的种类也不尽相同。小编通过搜集整理资料,将与压力传感器的种类相关的知识做如下介绍,下面我们来看具体分析。 1.扩散硅压力传感器 扩散硅压力传感器工作原理是被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。 扩散硅压力传感器原理图 2.压电式压力传感器 (1)压电式压力传感器原理 压电式压力传感器原理基于压电效应。压电效应是某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应。 (2)压电式压力传感器的种类与应用 压电式压力传感器的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。这种传感器的特点是体积小、动态特性好、耐高温等。 现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。石英是一种非常好的压电材料,压电效

应变片压力传感器

应变片压力传感器,实际上从字面上,可以了解到它也是一种电阻应变式传感器,可以把位移、力、压力、加速度、扭矩等非电物理量转换为电阻值变化的传感器,从而被我们知道具体的数量值。 那么,应变片压力传感器具体是怎么工作的呢?首先由它的弹性元件上粘贴应变敏感元件,当被测物理量作用在弹性元件上时,弹性元件的形变引起了应变敏感件的变形,从而其阻值,发生变化,再通过测量转换电路将阻值变化转换为电压信号输出,电信号的大小也就反应了被测量的大小。电阻应变式传感器结构简单,性能稳定,使用方便,灵敏度高,响应速度快,广泛应用到航空、机械、电力、化工、建筑、医学等领域。

现在应变压力传感器它主要包括电阻应变式传感器、电位器式传感器等,它们重要的精密零部件都是应变片。而这种应变片由于用途广泛,结构类型也多种多样,但可以大致分为金属应变片及半导体应变片两大类。 金属应变片又可以具体分为金属丝式应变片、箔式应变片、薄膜式应变片三种。目前箔式应变片应用较多,金属丝式应变片使用最早,有纸基、胶基之分。由于金属丝式应变片蠕变较大,金属丝易脱胶,有逐渐被箔式所取代的趋势。但其价格便宜,多用于应变、应力的大批量、一次性试验。 蚌埠高灵传感系统工程有限公司在自主创新的基础上开发生产出力敏系列各类传感器上百个品种,各种应用仪器仪表和系统,以及各种起重机械超载保护装置,可以广泛应用于油田、化工、汽车、起重机械、建设、建材、机械加工、热电、军工、交通等领域。公司除大规模生产各种规格的高精度、高稳定性、高可靠性常规产品外,还可根据用户具体要求设计特殊的非标传感器,以满足用户的特殊要

求。如果您想进一步的了解,可以直接点击官网高灵传感进行在线了解。

相关主题