搜档网
当前位置:搜档网 › 高中物理专题复习——动量和能量的综合

高中物理专题复习——动量和能量的综合

高中物理专题复习——动量和能量的综合
高中物理专题复习——动量和能量的综合

专题(五) 动量和能量的综合

一、大纲解读

动量、能量思想是贯穿整个物理学的基本思想,应用动量和能量的观点求解的问题,是力学三条主线中的两条主线的结合部,是中学物理中涉及面最广,灵活性最大,综合性最强,内容最丰富的部分,以两大定律与两大定理为核心构筑了力学体系,能够渗透到中学物理大部分章节与知识点中。将各章节知识不断分化,再与动量能量问题进行高层次组合,就会形成综合型考查问题,全面考查知识掌握程度与应用物理解决问题能力,是历年高考热点考查内容,而且命题方式多样,题型全,分量重,小到选择题,填空题,大到压轴题,都可能在此出题.考查内容涉及中学物理的各个版块,因此综合性强.主要综合考查动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定律的运用等.相关试题可能通过以弹簧模型、滑动类模型、碰撞模型、反冲等为构件的综合题形式出现,也有可能综合到带电粒子的运动及电磁感应之中加以考查.

二、重点剖析

1.独立理清两条线:一是力的时间积累——冲量——动量定理——动量守恒;二是力的空间移位积累——功——动能定理——机械能守恒——能的转化与守恒.把握这两条主线的结合部:系统..

。即两个或两个以上物体组成相互作用的物体系统。动量和能量的综合问题通常是以物体系统为研究对象的,这是因为动量守恒定律只对相互作用的系统才具有意义。

2.解题时要抓特征扣条件,认真分析研究对象的过程特征,若只有重力、系统内弹力

做功就看是否要应用机械能守恒定律;若涉及其他力做功,要考虑能否应用动能定理或能的转化关系建立方程;若过程满足合外力为零,或者内力远大于外力,判断是否要应用动量守恒;若合外力不为零,或冲量涉及瞬时作用状态,则应该考虑应用动量定理还是牛顿定律.

3.应注意分析过程的转折点,如运动规律中的碰撞、爆炸等相互作用,它是不同物理过程的交汇点,也是物理量的联系点,一般涉及能量变化过程,例如碰撞中动能可能不变,也可能有动能损失,而爆炸时系统动能会增加.

三、考点透视

考点1、碰撞作用

碰撞类问题应注意:⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,碰后系统总动能小于或等于碰前总动能,即1212k k k k E '+E 'E +E ≤;⑶速度要符合物理情景:如果碰前两物体同向运动,则后面的物体速度一定大于前面物体的速度,即v v 后前>,碰撞后,原来在前面的物体速度一定增大,且≥v v 后前;如果两物体碰前是相向运动,则碰撞后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。

例1A 、B 两球在光滑水平面上沿同一直线运动,A 球动量为p A =5kg·m/s ,B 球动量为

p B =7kg·m/s ,当A 球追上B 球时发生碰撞,则碰后A 、B 两球的动量可能是:( )

A .p A =6kg·m/s 、p

B =6kg·m/s B .p A =3kg·m/s 、p B =9kg·m/s

C .p A =-2kg·m/s 、p B =14kg·m/s

D .p A =5kg·m/s 、p B =17kg·m/s

解析:动量守恒四个选项都满足,那么第二个判断依据是速度情景:A 的动量不可能原方向增大,A 错;第三个判断依据是能量关系:碰后系统总动能只能小于等于碰前总动能。

计算得BC 正确D 错。碰前总动能为 2222A B k A B

p p E =+m m ,由于5kg m/s 7kg m/s A A A B B B p =m υ=,p =m υ=??,A 要追上B ,则有A B υυ>,即

5757A B A B >,m

39572222A B A B

++m m m m ≤,得2B A m =m ,满足57A B m

222214572222A B A B -++m m m m ≤,14721213B A A m =m =m ,同样满足57A B m

答案:BC

点拨:判断的优先顺序为:动量守恒→速度情景→动能关系,动量守恒最容易判断,其次是速度情景,动能关系要通过计算才能作结论,简捷方法是先比较质量关系,再比较动量的平方,如果两物体质量相等,则可直接比较碰撞前后动量的平方和。

考点2、爆炸和反冲

⑴爆炸时内力远大于外力,系统动量守恒;

⑵由于有其它形式的能转化为动能(机械能),系统动能增大。

例22007年10月24日18时05分,中国首枚绕月探测卫星“嫦娥一号”顺利升空,24日18时29分,搭载 “嫦娥一号”的“长征三号甲”火箭成功实施“星箭分离”。此次采用了爆炸方式分离星箭,爆炸产生的推力将置于箭首的卫星送入预定轨道运行。为了保证在爆炸时卫星不致于由于受到过大冲击力而损坏,分离前关闭火箭发动机,用“星箭分离冲击传感器”测量和控制爆炸作用力,使星箭分离后瞬间火箭仍沿原方向飞行,关于星箭分离,下列说法正确的是( )

A .由于爆炸,系统总动能增大,总动量增大

B .卫星的动量增大,火箭的动量减小,系统动量守恒

C .星箭分离后火箭速度越大,系统的总动能越大

D .若爆炸作用力持续的时间一定,则星箭分离后火箭速度越小,卫星受到的冲击力越大

解析:由于爆炸,火药的化学能转化为系统动能,因此系统总动能增大。爆炸力远大于星箭所受外力(万有引力),系统动量守恒,卫星在前,动量增大,火箭仍沿原方向运动,

动量则一定减小,A 错B 对;121/p=p +p ,又21p

=(m +m )v ,分离后总动能22121222///k p p E =+m m ,联立解得()()22212122122k p -m m +m -m +m E '=m ????

v v v ,式中v 是星箭分离前的共同速度,依题

意2>v v ,即()()1212220m +m -m +m >v v ,因此火箭速度v 2越大,分离后系统总动能越小,

(也可用极限法直接判断:假设星箭分离后星箭速度仍相等,则动能不变,火药释放的能量为0,系统总动能为最小)C 错;爆炸力为一对相互作用的内力,因此大小相等、作用时间相同,卫星和火箭受到的爆炸力的冲量大小一定相等,分离后火箭速度越小,则火箭动量的变化量越大,所受爆炸力的冲量越大,则卫星受到的冲量(与火箭受到的爆炸力的冲量等大反向)越大,相互作用时间一定,则卫星受到的冲击力越大,D 正确。。

答案:BD

点拨:注意提取有效解题信息,把握关键字句,如“置于箭首的卫星”、“星箭分离后瞬间火箭仍沿原方向飞行”等,结合爆炸特点和物理情景判断解题。

考点3、两个定理的结合

例3:如图所示,质量m1为4kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ=0.24,木板右端放着质量m2为1.0kg 的小

物块B(视为质点),它们均处于静止状态.木板突然受到

水平向右的12N S ?的瞬时冲量I 作用开始运动,当小

物块滑离木板时,木板的动能

1m E 为8.0J ,小物块的动能2m E 为0.50J ,重力加速度取10m/s2,求:

(1)瞬时冲量作用结束时木板的速度V0.

(2)木板的长度L

解析:(1)设水平向右为正方向,有0A I m v =① 代入数据解得0 3.0/v m s =②

(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为

AB F 、BA F 和CA F ,B 在A 上滑行的时间为t ,B 离开A 时A 和B 的速度分别为

A v 和

B v ,有0

()BA CA A A A F F t m v m v -+=-③ AB B B F t m v =④ 其中AB BA F F =,12()CA F m m g μ=+⑤

设A 、B 相对于C 的位移大小分别为A s 和B s ,有22011()22BA CA A A A A F F s m v m v -+=-⑥AB B kB F s E = ⑦

动量与动能之间的关系为

A A m v =⑧

B B B m v =⑨ 木板的长度A B l s s =-⑩ 代入数据得L=0.50m

点拨:涉及动量定理和动能定理综合应用的问题时,要注意分别从合力对时间、合力对位移的累积作用效果两个方面分析物体动量和动能的变化,同时应注意动量和动能两个量之间的关系.

考点4、碰撞与圆周运动、平抛运动的结合

例4(2008年北京)有两个完全相同的小滑块A 和B ,A 沿光滑水平面以速度v 0与静止

在平面边缘O 点的B 发生正碰,碰撞中无机械能损失。碰后B 运动的轨迹为OD 曲线,如图所示。(1)已知滑块质量为m ,碰撞时间为t ?,求碰撞过程中A 对B 平均冲力的大小。(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动,特制做一个与B 平抛轨道完全相同的光滑轨道,并将该轨道固定在与OD 曲线重合的位置,让A 沿该轨道无初速下滑(经分析,A 下滑过程中不会脱离轨道)。

a.分析A 沿轨道下滑到任意一点的动量p A 与B 平抛经过该点的动量p B 的大小关系;

b.在OD 曲线上有一M 点,O 和M 两点连线与竖直方向的夹角为45°。求A 通过M 点时的水平分速度和竖直分速度。

解析:(1)滑动A 与B 正碰,满足:mv A -mv B =mv 0

222111222

A B a mv mv mv += 由①②,解得v A =0, v B =v 0,

根据动量定理,滑块B 满足 F ·?t=mv 0

解得 0mv F t

=? (2)a.设任意点到O 点竖直高度差为d ,A 、B 由O 点分别运动至该点过程中,只有重力做功,所以机械能守恒。选该任意点为势能零点,有

E A =mgd ,E B = mgd+2012

mv 由于p

12220<+==gd U gd E E P P KB kA B A 即 P A

b.以O 为原点,建立直角坐标系xOy,x 轴正方向水平向右,y 轴正方向竖直向下,则对B 有::x =v 0t ,y=12

gt 2 B 的轨迹方程 y =222a

g x v 在M 点x=y ,所以 g

v y 202= 因为A 、B 的运动轨迹均为OD 曲线,故在任意一点,两者速度方向相同。设B 水平和竖直分速度大小分别为Bx v 和By v ,速率为v B ;A 水平和竖直分速度大小分别为Ax v 和Ay v ,速率为v A ,则:,Ay By Ax Bx A B A B

v v v v v v v v == B

做平抛运动,故0,Bx By B v v v v === 对A 由机械能守恒得v A =2gy

由由以上三式得

Ax Ay v v =

= 将g

v y 202=

代入得:00,Ax Ay v v == 点拨:碰撞过程中的动量与能量关系,碰撞后与平抛运动的规律相结合是近几年高考的热点,复习时应加强这方面的训练。

四、热点分析

动量和能量是物理学乃至整个自然科学的核心,可以综合中学物理的所有版块命题,一直是历届高考关注的重点和热点。可独立命题,也可综合命题,2007年全国试题中选择题4道,计算题共有7道,试题可分为以下几种常见模型:

热点1、子弹打木块模型

例1如图5-4所示,在光滑的水平地面上静止着质量为M 的木块,一粒质量为m 初速为0v 的子弹水平击中木块,打入深度为d ,试求转化为内能的值E ?是多少?

解析:水平面光滑,动量守恒,以子弹初速度方向为正方向,V M m mv )(0+=, 子弹和木块发生的是完全非弹性碰撞,损失的动能最多, 通过内力做负功转化为系统的内能:

反思:子弹打木块模型是一个典型的物理模型,系统通过一对内力做负功,把“子弹”的部分动能转化为其他形式的能量,是高考的热点,复习时要重视。

例2如图5-5所示,质量为M 的天车静止在光滑轨道上,下面用长为L 的细线悬挂着质量为m 的沙箱,一颗质量为0m 的子弹,以0v 的水平速度射入沙箱,并留在其中,在以后运动过程中,求:沙箱上升的最大高度。

解析:子弹打入沙箱,水平方向动量守恒,1000)(v m m v m +=,

此后由天车、沙箱和子弹组成的系统机械能守恒,当沙箱上摆到最高点时,系统具有相等的水平速度,损失的动能转化为沙箱的重力势能,运用“子弹打木块”的结论, 21000)(2

1)()(v m m M m m M gh m m +?++=+, 联系以上两式,则沙箱上升的最大高度为:

g

M m m m m Mv m h )()(20202020+++=。 反思:冲击摆是一个经典的物理模型,是子弹打木块模型巧妙迁移地应用。

热点2、人船模型

例3如图5-6所示浮动起重机从岸上吊起m =2t 的重物。开始时浮吊起重杆OA 与竖直方向成60°角,当转至杆与竖直方向成30°角时,求起

重机的水平方向的位移。设浮吊质量为20t ,起重杆长

l =8m ,水的阻力与杆重均不计。

解析:浮吊与重物组成的系统水平方向不受外力,

动量守恒且初总动量为零,为一人船模型,则:

[]Mx x L m =-?-?)30sin 60(sin

解得x =0.266m ,即起重机的水平向左的位移为

0.266m 。

反思:人船模型是作用力和反作用力的同时性,

当系统动量守恒时平均动量也守恒。用人船模型的公

式解这类变速直线运动的位移不涉及速度的问题时,

是非常简便的,应用时要注意人船模型的条件与正确找出物体位移间的几何关系。

热点3“带弹簧的木板与滑块”模型

例4(2006年天津)如图5-7所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,另一端与质量为m 2的档板相连,弹簧处于原长时,B 恰好位于滑道的末端O 点。A 与B 碰撞时间极短,碰撞后结合在一起共同压缩弹簧。已知在OM 段A 、B 与水平面间的动摩擦因数为μ,其余各处的摩擦不计,重力加速度为g ,求

(1)物块A 在档板B 碰撞瞬间的速度v 的大小;

(2)弹簧最大压缩时为d 时的弹性势能E P (设弹簧处于原长时弹性势能为零)。

解析:(1)由机械能守恒定律得,有 21111

2

m g h m v = v h (2)A 、B 在碰撞过程中动量守恒有/112()m v m m v =+

A 、

B 克服摩擦力所做的功 W =12()m m gd μ+

根据能量守恒定律得 /212121()()2

P m m v E m m gd μ+=++ 解得 211212

()P m E gh m m gd m m μ=-++ 反思: “带弹簧的木板与滑块”模型,分为三个过程:A 物体下滑过程,遵循机械能守恒或动能定理求解;A 物体碰撞B 物体过程,由于内力远大于外力,遵循动量守恒定律;

A 、

B 整体压缩弹簧的过程,又遵循能量守恒定律(摩擦力做功,机械能不守恒),分清物理过程,正确应用物理规律建立方程,是解决这类问题的关键。

五、能力突破

1. 动量守恒和机械能守恒的应用

例2如图5-8所示,滑块A 、B 的质量分别为m 1与m 2,m 1<m 2,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。两滑块一起以恒定的速率v 0向右滑动。突然轻绳断开,当弹簧伸至本身的自然长度时,滑块A

的速度正好为0。求:

(1)绳断开到第一次恢复自然长度的过程中弹簧释放的

弹性势能E p ;

(2)在以后的运动过程中,滑块B 是否会有速度为0的

时刻?试通过定量分析证明你的结论.

解析:(1)当弹簧处压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和,当弹簧伸长到自然长度时,弹性势能为0,因这时滑块A 的速度为0,故系统的机械能等于滑块B 的动能。设这时滑块B 的速度为v ,则有2212

E=

m v 。 因系统所受外力为0,由动量守恒定律

(m 1+m 2)v 0=m 2 v 解得()2212022m +m E=m v

由于只有弹簧的弹力做功,系统的机械能守恒

()2

12012

p m +m +E =E v 解得()211202

2p m m +m E =m v (2)假设在以后的运动中滑块B 可以出现速度为0的时刻,并设此时A 的速度为v 1,弹簧的弹性势能为E p ’,由机械能守恒定律得

()2

1202112122p m +m m +E '=m v v 根据动量守恒得(m 1+m 2) v 0=m 1 v 1,

求出v 1代入上式得:

()()2212012012

22p m +m m +m +E '=m m v v 因为E p ’≥0,故得:

()()2212012012

22m +m m +m m m ≤v v 即m 1≥m 2,这与已知条件中m 1<m 2不符。可见在以后的运动中不可能出现滑块B 的速度为0的情况。

反思:“假设法”是科学探索常用的方法之一,其特点是:先对某个结论提出可能的假设,再利用已知的规律知识对该假设进行剖析,其结论若符合题意的要求,则原假设成立。

2.动量守恒、机械能守恒与圆周运动结合

例2(2006年重庆) 如图5-9所示,半径为R 的光滑圆形轨

道固定在竖直面内。小球A 、B 质量分别为m 、βm (β为待定系数)。

A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最

低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为R 4

1,碰撞中无机械能损失。重力加速度为g 。试求:

(1)待定系数β; (2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的

压力;

(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。

解析:(1)由机械能守恒定律可得:mgR =

4mgR +4

mgR β得 β=3 (2)设A 、B 碰撞后的速度分别为v 1、v 2,则 2121mv =4mgR 2121mv β=4mgR β 设向右为正、向左为负,解得 v 1=gR 21,方向向左 v 2=gR 2

1,方向向右 设轨道对B 球的支持力为N ,B 球对轨道的压力为N /,方向竖直向上为正、向下为负。则

1图

N -βmg =βm R

v 22 N /=-N =-4.5mg ,方向竖直向下 (3)设A 、B 球第二次碰撞刚结束时的速度分别为V 1、V 2,则

??

???+=+=--212121212121mV mV mgR mV mV mv mv βββ 解得:V 1=-gR 2,V 2=0(另一组:V 1=-v 1,V 2=-v 2,不合题意,舍去)

由此可得:当n 为奇数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与第一次碰撞刚结束时相同;当n 为偶数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与第二次碰撞刚结束时相同

反思:(1)碰撞中无能量损失意味着整个过程中机械能守恒。(2)求轨道压力肯定要用

到牛顿第二定律。(3)在做这种题目时需要先确定研究的是哪个过程,那个状态。

3.碰撞中动量与能量结合问题

例3(2008年四川)一倾角为45?θ=的斜面固定于地面,斜面顶端离地面的高度h 0=1m ,斜面底端有一垂直于斜面的固定挡板。在斜面顶端自由释放

一质量m =0.09kg 的小物块(视为质点)。小物块与斜面之间

的动摩擦因数u =0.2。当小物块与挡板碰撞后,将以原速返回。

重力加速度g =10 m/s 2。在小物块与挡板的前4次碰撞过程中,

挡板给予小物块的总冲量是多少?

解析:设小物块从高为h 处由静止开始沿斜面向下运动,到达斜面底端时速度为v ,由功能关系得:21cos 2sin h mgh mv mg μθθ

=+ ① 以沿斜面向上为动量的正方向,碰撞过程中挡板给小物块的冲量:()I mv m v =-- ② 设碰撞后小物块所能达到的最大高度为h ',则

21cos 2sin h mv mgh mg μθθ''=+ ③ 同理,有:21cos 2sin h mgh mv mg μθθ

'''=+ ④ ()I mv m v '''=-- ⑤

式中,v '为小物块再次到达斜面底端时的速度,I '为再次碰撞过程中挡板给小物块的冲量。由①②③④⑤式得I kI '= ⑥

式中k =⑦ 可知小物块前4次与挡板碰撞所获得冲量成等比级数,

首项为12I =⑧

总冲量为:2312341(1)I I I I I I k k k =+++=+++ ⑨ 由21111n

n k k k k k

--+++=-…+ ⑩

得4

121k I k

-=-代入数据得 s N I /)63(4.0+=

反思:合理选择不同阶段的研究对象,准确分析碰撞前后各研究对象的受力情况及各力的做功情况,应用功能原理将碰撞前后的速度与已知条件联系,再结合碰撞过程的动量与能量关系,是解答本题的关键。

4. 功能关系在电学中的综合应用

例4如图所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场,磁场的方向垂直纸面向里.线框向上离开磁场时的速度刚好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场.整个运动过程中始终存在着大小恒定的空气阻力f 且线框不发生转动. 求:(1)线框在下落阶段匀速进人磁场时的速度V 2;

(2)线框在上升阶段刚离开磁场时的速度V 1;

(3)线框在上升阶段通过磁场过程中产生的焦耳热Q .

解析:线框在上升过程中受到向下的重力和安培力还有空气阻力

的作用,其中克服重力做功只是使重力势能发生变化,不改变线框的

机械能,而安培力做功和克服空气阻力做功转化成焦耳热。在上升过

程中已知进入磁场和离开磁场的速度关系,可由能量守恒定律列出产

生焦耳热的表达式;由于线框向上离开磁场时还有一定的速度,在重

力和空气阻力的作用下继续向上运动到最高点又返回进入磁场,这个

过程中克服空气阻力做功使机械能继续减小;再次进入磁场时,线框

匀速运动,重力、空气阻力和安培力平衡。

(1)由于线框匀速进入磁场,则合力为零,有222B a v mg f R =+,解得222()mg f R v B a

-= (2)设线框离开磁场能上升的高度为h,则从刚离开磁场到刚落回磁场的过程中

211()2

mg f h mv +?=

221()2mg f h mv -?=

解得1v =2v =(3)在线框向上刚进入到磁场到刚离开磁场的过程中,根据能量守恒定律和转化定律可得:221111(2)()22

m v mv mg b a Q =+++ 解得:2

44

3()()()2m mg f mg f R Q mg b a B a +-=-+。 反思:能量守恒定律和功能关系是物理解题中特别倚重的规律,本题在研究线框上升时,利用而安培力做功和克服空气阻力判断机械能的变化,进而判断物体的运动。同时,能量守恒定律是自然界普遍适用的规律,一般没有限制条件,在机械能守恒定律和动量守恒定律不适用的情况下,也可使用。

六、规律整合

本专题在高考中涉及的主要知识点有:动量、冲量、功和机械能等四个重要概念和动量定理、动量守恒定律、动能定理、机械能守恒定律四大规律,考查重点是知识的应用方面,而且难度较大,能力要求较高,要求考生具有较强的理解能力、对物理过程和物理规律的综合分析能力以及应用数学解决物理问题的能力,故2009年高考在这方面仍然有所体现。

本专题解题方法有:

1.仔细审题、分析题意,明确研究对象,或研究的系统及其组成。

2.要对系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的力,即内力;哪些是系统外的物体对系统内物体的作用力,即外力。在受力分析的基础上,明确对象的运动过程,弄清各力做功情况,判断是否符合机械能守恒的条件。如果不符合机械能守恒条件,应优先考虑应用动能定理、动量守恒定律或动量定理,根据动量守恒的条件,判断能否应用动量守恒定律。

3.明确所研究的相互作用过程,确定过程的始末状态,恰当选取参考平面,确定研究对象在过程的初状态和末状态的机械能,包括动能和重力势能,以及系统内各个物体的初动量和末动量的量值或表达式。对于物体在相互作用前后运动方向都在一条直线上的情形,动量守恒方程中各个动量或速度的方向可用代数符号表示。选取某个已知量的方向为正方向以后,凡是和选定的正方向同向的已知量取正值,反向的要取负值。

4.建立机械能守恒方程或动量守恒方程,代入已知量,解出待求量。待求量若为矢量,计算结果如果是正的,说明该量的方向和正方向相同;如果是负的,则说明和选定的正方向相反。

友情提醒:对于本专题复习时要注意:

⑴本专题涉及的概念和规律均是力和运动及其规律的延伸和拓展,是物理规律的升华,因此应用动量和能量分析问题时,不仅要用到力和运动的规律,而且要运用受力分析、运动分析、过程分析以及隔离法、整体法等重要的基本分析方法,在分析时还要熟练运用力学知识综合分析动量和能量问题。

⑵要梳理清楚动量和能量知识之间的相互渗透关系。要注意本专题涉及的动量和能量是

两个彼此独立、物理意义不同的概念,但两者又是相互渗透的。上述四个规律虽然各自表征运动的特性,但彼此有牵连。在相关的物理问题中,可能遵循其中若干或全部规律,这需要对具体问题进行具体分析,因而这些知识的综合性极强。

⑶动量和能量的概念与规律虽然由力学问题归纳出来,但它们是整个物理现象中的“主体”,不少电磁现象、热学现象以及原子、原子核的运动都可以用它们来描述和表征。

七、高考预测

动量和能量综合问题涉及的内容是力和运动规律的延伸,是动力学内容的继续和深化,又由于动量守恒定律、能量守恒定律是自然界中普遍适用的基本规律,故本专题是高中物理学习的重点,也是高考考查的热点之一。要求考生在复习备考中对本专题内容要特别关注,加强对概念、规律的理解和掌握,培养和提高综合应用动量与能量的观点处理问题的能力。纵观近几年高考,动量、能量知识年年必考,并常以压轴题的形式出现,预测也是2009年高考的热点和命题点,一般分值16-20分,难度系数约0.5。

八、专题专练:

一、选择题(本题共10小题,每小题4分,共40分.每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确.全部选对的得4分,选对但不全的得2分,有选错的或不答的得0分)

1.以下说法中,正确的是( )

A .一个物体所受的合外力为零,它的机械能一定守恒

B .一个物体所受合外力的冲量为零,它的机械能可能守恒

C .一个物体做匀速直线运动,它的机械能一定守恒

D .一个物体所受的合外力对它不做功,这个物体的动量一定不发生变化

2.美国著名的网球运动员罗迪克的发球速度时速最快可达60m/s ,这也是最新的网球发球时速的世界记录,可以看作罗迪克发球时使质量约为60g 的网球从静止开始经0.02s 后速度增加到60m/s ,则在上述过程中,网球拍对网球的作用力大小约为( )

A.180N

B.90N

C.360N

D.1800N

3.如图1所示,A 、B 两物体质量比为1:2。原来静止在平板小车C 上,A 、B 之间有一根被压缩了的弹簧,A 、B 与车面间的动摩擦因数之比为2:1,平板小车C 与地面之间的摩擦不计,当弹簧释放后,若弹簧释放时弹力大于两物体与车间的摩擦力,则下列判断中正

确的是( )

A.小车将向左运动

B.小车将向右运动

C.A 、B 两物体组成的系统的总动量守恒

D.A 、B 、C 三者组成的系统的总动量守恒

4.质量为1.0kg 的小球从高20m 处自由下落(空气阻力不计,g 取10m/s 2)到软垫上,反弹后上升最大高度为5.0m ,小球与软垫接触的时间为1.0s ,在接触时间内小球受到软垫的平均作用力为( )

A.30N

B.40N

C.60N

D.80N

5.质量为m 的质点,在水平面内以速度v 做半径为R 的匀速圆周运

动.如图2所示,质点从位置A 开始经半个周期到位置B 的过程中,

所受的合外力的冲量是( )

A. 0

B. mv

C. 2mv

D. g

2R m 6.发射同步卫星的一种方法是:先用火箭将星体送入一近地轨道运行,

然后再适时开动星载火箭,将其通过椭圆形过渡轨道,最后送上与地球自传同步运动的圆形轨道,那么变轨后与变轨前相比,卫星()

A.机械能增大,动能增大

B.机械能增大,动能减小

C.机械能减小,动能减小

D.机械能减小,动能增大

7.在粗糙的水平面商运动的物体,从a点开始受到一个水平恒力F的作用沿直线运动到b 点,已知物体在b点的速度与在a点的速度大小相等,则从a点到b点()

A.物体一定做匀速运动

B.恒力F的方向始终与摩擦力的方向相反

C.恒力F与摩擦力对物体的总冲量一定为零

D.恒力F与摩擦力对物体所做的总功量一定为零

8.在光滑水平地面上有两个相同的弹性小球A、B质量均为m,现A球向B球运动,并发

E,则碰前A球的速生正碰,已知碰撞过程中机械能守恒,两球压缩最紧时的弹性势能为

P

度不等于()

ABC.D.

9.如图3所示,斜面上除了AB段粗糙外,其余部分均是光滑的,小物体与AB段的动摩擦因数处处相等,今使该物体从斜面的顶端由静止开始下滑,经过A点时的速度与经过C

点时的速度相等,已知AB=BC,则下列说法正确的是

()

A.物体在AB段与BC段的加速度大小相等

B.物体在AB段与BC段的运动时间相等

C.重力在这两段中所做的功相等

D.物体在AB段与BC段的动量变化相等

10.有一种硬气功表演,表演者平卧于地面,将一大石

板置于他的身子上,另一人将重锤举到高出并砸向石板,石板被砸碎,表演者却安然无恙,假设重锤与石板撞击后两者具有相同的速度,表演者在表演时尽量挑选质量较大的石板。对这一现象说法正确的是()

A.重锤在与石板撞击的过程中,重锤与石板的总机械能守恒

B.石板的质量越大,石板获得的动量就越小

C.石板的质量越大,石板所受到的打击力就越小

D.石板的质量越大,石板获得的速度就越小

二、填空题(共2小题,共26分,把答案填在题中的横线上)

11. 在“验证机械能守恒定律”的实验中,打点计时器所用电源频率为50 HZ,当地重力加速度的值为9.80m/s2,测得所用重物的质量为1.00kg。甲、乙、丙三学生分别用同一装置打出三条纸带,量出各纸带上第1、2两点间的距离分别为0.12cm,0.19cm和0.25cm,

可见操作上有错误的是,错误操作:_______。

若按实验要求正确地选出纸带进行测量,量得连续三

点A,B,C到第一个点的距离如图所示(相邻计数点

时间间隔为0.02s),那么

(1)纸带的_____端与重物相连;

(2)打点计时器打下计数点B 时,

物体的速度v B =_______;

(3)从起点O 到打下计数点B 的过程中重力势能减少量是ΔE P =_____,此过程中物体动能的增加量是ΔE K _______(取g=9.8 m /s 2);

(4)通过计算,数值上ΔE P ______ΔE K (填“>、=、<”),这是因为_____;

(5)实验的结轮是________。

12. 如图5所示气垫是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在轨道上,滑块在轨道上的运动可视为没有摩擦。我们可以用带竖直挡板C和D的气垫轨道以及滑块A和B来验证动量守恒定律,实验装置如图所示(弹簧的长度忽略不计),采用的实验步骤如下:

a.调整气垫轨道,使导轨处于水平;

b.在A和B间放入一个被压缩的轻弹

簧,用电动卡销锁定,静止放置在气垫导

轨上;

c.按下电钮放开卡销,同时使分别记

录滑块A、B运动时间的计数器开始工作,当A、B滑块分别碰撞C、D挡板时停止计时,记下滑块A、B分别到达挡板C、D的运动时间1t 和2t ;

d.用刻度尺测出滑块A的左端至C挡板的距离1L 、滑块B的右端到D挡板的距离2L 。 (1)试验中还应测量的物理量是 ;

(2)利用上述过程测量的实验数据,验证动量守恒定律的表达式是 ; (3)利用上述实验数据导出的被压缩弹簧的弹性势能的表达式是 .

三、计算题(共6小题,共92分,解答下列各题时,应写出必要的文字说明、表达式和重要步骤。只写最后答案的不得分。有数值计算的题,答案中必须明确写出数值和单位。)

13.如图6所示,长度为L=1m的细绳一端固定于O点,另一端竖

直悬吊一个50kg的小球,若用水平恒力F=500N拉小球,当悬绳拉到

竖直方向成300角时,撤去拉力F。(g=102/m s )求:

(1)小球摆回到最低点时,绳的;拉力是多少?

(2)小球能摆到多大高度?

14.美国通共汽车公司推出的“氨气1型”汽车是一种使用燃料电池驱动的电动汽车,它利用的是氢气和氧气直接反应,其生成物只有水,因此对环境没有污染,该车质量为1.5t,额定输出机械功率为60kw,当它以额定功率行驶时的最高速度为120km/h.求:

(1)该汽车以上述最高速度行驶时所受的阻力是车所受重力的多少倍?

(2)若行驶中汽车所受重力与速度大小无关,该车行驶时输出机械功率保持额定功率不变,当速度增大到60km/h时瞬时加速度是多少?

15.质量M=0.6kg的平板小车静止在光滑水面上,如图7所示,当t=0时,两个质量都为m=0.2kg的小物体A和B,分别从小车的左端和右端以水平速度1 5.0/v m s =和2 2.0/v m s =同时冲上小车,当它们相对于小车停止滑动

时,没有相碰。已知A、B两物体与车面的动摩擦因数都是0.20,取g=102/m s ,求: (1)A、B两物体在车上都停止滑动时车的速度;

(2)车的长度至少是多少?

16..如图8所示,A、B两球质量均为m,期间有压缩的轻短弹簧处于锁定状态。弹簧的长度、两球的大小均忽略,整体视为质点,该装置从半径为R的竖

直光滑圆轨道左侧与圆心等高处由静止下滑,滑至最低点时,解除对

弹簧的锁定状态之后,B球恰好能到达轨道最高点,求弹簧处于锁定

状态时的弹性势能。

17.炮竖直向上发射炮弹.炮弹的质量为M =6.0 kg (内含炸药的质量可以忽略不计),射出的初速度v 0=60 m/s.当炮弹到达最高点时爆炸分裂为沿水平方向运动的两片,其中一片质量为m =4.0 kg.现要求这一片不能落到以发射点为圆心、以R =600 m 为半径的圆周范围内,则刚爆炸完时两弹片的总动能至少多大?(g =10 m/s 2,忽略空气阻力)

参考答案

1.B 2.A 3.B 4. B 5.C 6.B 7.D 8.ABD .ABC 10.D

11. 丙 错误操作是先放开纸带后接通电源。

(1)左;(2) 2122

h gT mm =≈ (3) J s mg E OB P 94.0=?=? J mv E B K 84.0212==?

(4) ΔE P >ΔE K 这是因为实验中有阻力。

(5)在实验误差允许围内,机械能守恒

12.(1)用天平分别测出滑块A、B的质量A m 、B m

(2)1212

A B L L m m t t = (3)221212

11()()22A B L L m m t t + 由能量守恒知222212121111()()2222P A A B B A B L L E m v m v m m t t =

+=+ 13.解:(1)设小球摆回到最低点的速度为v,绳的拉力为T,从F开始作用到小球返回到最低点的过程中,运用动能定理有021sin 302

FL mv =,在最低点根据牛顿第二定律有2

v T mg m L

-=,02sin 301000T mg F N =+=

(2)设小球摆到的最高点与最低点相差高度为H,对全过程运用动能定理有

sin 300FL mgH -=,0

sin 300.5FL H m mg ==。 14.解:(1)汽车以正常情况下的最高速度行驶时 的功率是额定功率0m P Fv = 这时汽车做的匀速运动,牵引力和阻力大小相等,即F=F1

设阻力是重力的k倍,F1=kmg

代入数据得k=0.12

(2)设汽车以额定功率行驶速度为/v 时的牵引力为/F ,则,//0P F v =

而阻力大小仍为1F kmg =由/1F F ma -=代入数据可得a=1.22/m s 。

15.解:(1)设物体A、B相对于车停止滑动时,车速为v ,根据动量守恒定律 212()(2)m v v M m v -=+

0.6/v m s =

方向向右

(2)设物体A、B在车上相对于车滑动的距离分别为1L 2、L ,车长为L,由功能关系

22212121

11()(2)222

mg L L mv mv M m v μ+=+-+ 12 6.8L L L m ≥+=

可知L至少为6.8m

16.解:设A、B系统滑到圆轨道最低点时锁定为0v ,解除弹簧锁定后A、B的速度分别为A B v v 、,B到轨道最高点的速度为V,则有

201222

mgR mv = 02A B m mv mv =+

22201112222

A B mv E mv mv ?+=+弹 2

v mg m R

= 2211222

B mv mg R mv =?+

解得:(7E mgR =-弹

17.解:炮弹上升到达最高点的高度为H ,根据匀变速直线运动规律,有 v 02=2gH 设质量为m 的弹片刚爆炸后的速度为V ,另一块的速度为v ,根据动量守恒定律,

有mV =(M -m )v

设质量为m 的弹片运动的时间为t ,根据平抛运动规律,有 H =

2

1gt 2 R =Vt 炮弹刚爆炸后,由能量守恒定律可得:两弹片的总动能E k =21mV 2+21(M -m )v 2 解以上各式得 E k =2120

2

2)(v m M g MmR =6.0×104 J

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

2020届高考物理必考经典专题 专题06 动力学、动量和能量观点的综合应用(含解析)

2020届高考物理必考经典专题 专题6 动力学、动量和能量观点的综合应用 考点一 “子弹打木块 ”类问题的综合分析 子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动.下面从动量、能量和牛顿运动定律等多个角度来分析这一类问题. 1.动量分析 子弹和木块最后共同运动,相当于完全非弹性碰撞,子弹射入木块过程中系统动量守恒mv0=(M+m)v. 2.能量分析 该过程系统损失的动能全部转化为系统的内能.设平均阻力大小为Ff,子弹、木块的位移大小分别为s1,s2,子弹钻入深度为d,如图所示,有s1-s2=d;对子弹应用动能定理有-F f s 1=错误!未找到引用源。 mv 2-错误!未找到引用源。m 错误!未找到引用源。;对木块应用动能定理有F f s 2=错误!未找到引用源。mv2,联立解得F f d=错误!未找 到引用源。m 错误!未找到引用源。-错误!未找到引用源。(M+m)v2=2 02() Mmv M m +错误!未找到引用源。.式中F f d 恰好等于系统动能的损失量,根据能量守恒定律,系统动能的损失量应该等于系统内能的增加量,则有ΔE k =F f d =Q=2 02()Mmv M m +错误!未找到引用源。,由此可得结论:两物体由于摩擦产生的热量(机械能转化为内能),数值上等 于摩擦力大小与两物体相对滑动路程的乘积.由上面各式联立可得F f =2 02()Mmv M m d +错误!未找到引用 源。,s 2= m M m +错误!未找到引用源。d. 3.动力学分析 从牛顿运动定律和运动学公式出发,也可以得出同样的结论.由于子弹和木块都在恒力作用下做匀变速运动, 位移与平均速度成正比,有22 s d s +错误!未找到引用源。=022 v v v +错误!未找到引用源。=0v v v +错误!未找到引用

高中物理-动量守恒与能量守恒经典题目资料

专题四 动能定理与能量守恒 本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《大纲》对本部分考点要求为Ⅱ类有五个, 功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常与牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。 二、重点剖析 1、理解功的六个基本问题 (1)做功与否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。 (2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。②用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。 (3)关于求功率问题:①t W P = 所求出的功率是时间t 内的平均功率。②功率的计算式:θcos Fv P =,其中θ是力与速度间的夹角。一般用于求某一时刻的瞬时功率。 (4)一对作用力和反作用力做功的关系问题:①一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零;②一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。1 (5)了解常见力做功的特点:①重力做功和路径无关,只与物体始末位置的高度差h 有关:W=mgh ,当末位置低于初位置时,W >0,即重力做正功;反之重力做负功。②滑动摩擦力做功与路径有关。当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

高中物理复习专题 动量与能量(精选.)

专题三动量与能量 思想方法提炼 牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题. 一、能量 1.概述 能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度. 高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。在每年的高考物理试卷中都会出现考查能量的问题。并时常发现“压轴题”就是能量试题。 2.能的转化和守恒定律在各分支学科中表达式 (1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。(动能定理) (2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。(功能原理) 注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能 (2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。 (3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。重力势能 变化只与重力做功有关,与其他做功情况无关。 (4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。 注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。 (5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。 (6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之 差。 (7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。(可以以粒子的动

能量和动量的综合应用(超详细)

【本讲主要内容】 能量和动量的综合应用 相互作用过程中的能量转化及动量守恒的问题 【知识掌握】 【知识点精析】 1. 应用动量和能量的观点求解的问题综述: 该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。 2. 有关机械能方面的综述: (1)机械能守恒的情况: 例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。等等…… (2)机械能增加的情况: 例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。等等…… (3)机械能减少的情况: 例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析: 如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。 滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。 A 、 B 为系统,动量守恒。(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。 由动量守恒定律可求出共同速度0 v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。由图可知,s A ≠s B , 且s A =(s B +Δs ),根据动能定理: 对A :W fA =2020202B 2 1)(212121)(mv m M mv m mv mv s s f -+=-=?+-

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

动量与能量结合综合题附答案汇编

动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则() A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

动量和能量综合专题

动H和能H综合例析 例1、如图,两滑块A、B的质量分别为m i和m2, 皇8 . 置丁光滑的水平■面上,A、B问用一劲度系数7 77 // [/ 为K的弹簧相连。开始时两滑块静止,弹簧为原长。一质量为m的子弹以速度V 0沿弹簧长度方向射入滑块A并留在其中。试 求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量);(2)滑块B相对丁地面的最大速度和最小速度。 【解】(1 )设子弹射入后A的速度为V】,有: V1 = — m V o= ( m + m i) Vi (1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: )V (2) (m + m 1) Vi = (m + m i + m 2 十= -^(m + mj + 十 (2) mVo= (m + m 1) V2 + m?V3 :(皿*m])V技 +!也¥^ 由(1)、(4)、(5)式得:

V3 [ (m + m i+ m 2) V 3 — 2mV 0]=0 解得:V 3=0 (最小速度) 例2、如图,光滑水平面上有A 、B 两辆小车,C 球用0 .5 m 长的细线悬挂在A 车的 支架上,已知mA =m B =1kg , m c =0.5kg 。开始时B 车静止,A 车以V 。=4 m/s 的速度驶向B 车并与 其正碰后粘在一起。若碰撞时间极短且不计空气阻力, g 取10m/s 2 ,求C 球摆起的 最大高度。 【解】由丁 A 、B 碰撞过程极短,C 球尚未开始摆动, B A 1 _ ~~i I 1 ., “一橙一、厂 / / / / / / / / / / / / / / / 故对该过程依前文解题策略有: m A V °=(m A +m B )V I (1) -m A VQ 3 --C m A +m —)W E 内= 」 ⑵ B 、 C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A +mC )V 0=(m A +m B +m C )V 2 (3) 由上述方程分别所求出A 、B 刚粘合在一起的速度V 1=2 m / s, E 内=4 J, 系统最后的共同速度V 2= 2 .4 m/s,最后求得小球C 摆起的最大高度 h=0.16m 。 例3、质量为m 的木块在质量为 M 的长木板中央,木块与长木板间的动摩擦因数为 ,木 块和长木板一起放在光滑水平面上,并以速度 v 向右运动。为了使长木板能停在水平面上, 可以在木块上作用一时间极短的冲量。试求: (1) 要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何? (2) 木块受到冲量后,瞬间获得的速度为多大?方向如何? (3) 长木板的长度要满足什么条件才行? 2mV 0 (最大速度) 对A 、B 、C 组成的系统,图示状态为初始状态, C 球摆起有最大高度时,A 、

高中物理《动量能量》专题复习

《动量、能量》二轮复习方案 一、命题趋向及热点情景 从04到08高考题演变来看,动量、能量知识在09高考中应表现为选择题一道,实验题无,25题为动量与能量的压轴题,这种布局可能性很高. 因为压轴情形大增故此板块我市二轮备考应有重点突破. 选择题通常借助一幅不太复杂的情景考查学生对动量能量主要知识初步理解能力,特别地近些年来能图像式的选项来影响考生的判断…… 计算题则以生活中或从实际中抽象出来的理想的相对复杂情景,考查学生物理理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 通常考查对象通常两个或以上,考查情景中的全程或局部,对象的全部或局部含有能量和动量变化或守恒.考查的情形有关碰撞的问题、滑块问题、传送带、绳杆管轨道类等问题…… 二、重难点突破意义及对策 得综合者得高考,得物理者得理综,物理中有关热点主干知识重难点突破者得物理.物理题目是否顺手关键在于选择中一两道、设计型实验、压轴题的突破.这几个方面解决得好会对理综成绩提升会有乘数效应,相反就会是一种伤心的痛. 通常一道题学生做得如何在于对题的情景感知程度和对情景的把握.这里面有属于学生层面的千差万别的个体因素,还有属于教师层面的引导传授的群体因素.前者我们很多时候无法把握,后者正要我们作为教者对症下药. 【对策1】创设丰富的情景引导学生分析研究 老师应手头上必备近些年来高考和模拟题库,最好是分成板快的,还要借助学校及本组教师的资源优势从网上、从来往学校组织题源,老师多做多探索结合本校学生过去和现在的训练,把那些学生没有经历的相对新颖有代表性最能本板块新题型、新情景及时补充到课堂、训练和考试中.除此外在二轮复习中还应把学生过去分散感受过经典爱错的老情景集中呈现,增强学生实考中快速切入的能力. 【对策2】形成分类专题突破 要精讲一道题要像学生刚做该题那样,分析题目已知条件,建立此情景全局画面,寻找连结各画面的逻辑连结关系,建立学生最熟悉的模型,用最恰当定理公式建立物理量的关系. 一类题要精讲一道,学生最需要的是如何切入,整体把握以及提醒关键细节的易错点. 做好这方面的事老教师往往在自己头脑里有一套成熟的题集,但也要结合集体智慧不断结合高考和学生实际推陈出新. 专题目标形成一类题的解题方法和套路,进一步提高学生理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 【对策3】强化必要的物理思维定势 动量和能量的综合题注定要呈现两个及以上物体分析的优势;相对复杂的情景也注定有大过程中包含许多子过程,大过程和子过程有着复杂的连接关系;相对复杂的情景也注定耗时较多,解这类题很注重效率. A. 用动量、能量观解题优先级别高于牛顿运动定律。 B.尽可能列出动量、能量转化始末的全程方程。 列方程中,要关注公式定理及守恒条件,做到粗中有细. 特别是涉及有碰撞或爆炸类动能定理方程时类情形时则应在撞前撞后分别列方程而不应该列出贯穿大过程始末的方程,这并不是全程方程有什么问题而是像碰撞中能量转化涉及作用力,作用时间位移小,这些力的作功在方程中无法呈现的缘故。 C. 两个及以上物体系的优先系统分析法 系统分析法在牛顿运动定律和动量定理中获取了极大的成功,但在动能定理中却受到了极大的压制,但系统分析法从来就是一种优化的解题观念。这里最难办的就是系统内力作功问题,关于内力作功大量的选择题来强化学生的认识,不是无的放矢。系统动能定理不是不能用,但不可滥用。系统动能定量完全可表述为:多物体构成的系统中所有系统外力作功和所有系统内力作功的代数和等于系统内各物体动能变化的总和。但这样一个结论下了和没下没什么差别,因为它在很多时候不能给我们带来便利。

高中物理-动量和能量的综合

动量和能量的综合 一、大纲解读 动量、能量思想是贯穿整个物理学的基本思想,应用动量和能量的观点求解的问题,是力学三条主线中的两条主线的结合部,是中学物理中涉及面最广,灵活性最大,综合性最强,容最丰富的部分,以两大定律与两大定理为核心构筑了力学体系,能够渗透到中学物理大部分章节与知识点中。将各章节知识不断分化,再与动量能量问题进行高层次组合,就会形成综合型考查问题,全面考查知识掌握程度与应用物理解决问题能力,是历年高考热点考查容,而且命题方式多样,题型全,分量重,小到选择题,填空题,大到压轴题,都可能在此出题.考查容涉及中学物理的各个版块,因此综合性强.主要综合考查动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定律的运用等.相关试题可能通过以弹簧模型、滑动类模型、碰撞模型、反冲等为构件的综合题形式出现,也有可能综合到带电粒子的运动及电磁感应之中加以考查. 二、重点剖析 1.独立理清两条线:一是力的时间积累——冲量——动量定理——动量守恒;二是力的空间移位积累——功——动能定理——机械能守恒——能的转化与守恒.把握这两条主线的结合部:系统.. 。即两个或两个以上物体组成相互作用的物体系统。动量和能量的综合问题通常是以物体系统为研究对象的,这是因为动量守恒定律只对相互作用的系统才具有意义。 2.解题时要抓特征扣条件,认真分析研究对象的过程特征,若只有重力、系统弹力做 功就看是否要应用机械能守恒定律;若涉及其他力做功,要考虑能否应用动能定理或能的转化关系建立方程;若过程满足合外力为零,或者力远大于外力,判断是否要应用动量守恒;若合外力不为零,或冲量涉及瞬时作用状态,则应该考虑应用动量定理还是牛顿定律. 3.应注意分析过程的转折点,如运动规律中的碰撞、爆炸等相互作用,它是不同物理过程的交汇点,也是物理量的联系点,一般涉及能量变化过程,例如碰撞中动能可能不变,也可能有动能损失,而爆炸时系统动能会增加. 三、考点透视 考点1、碰撞作用 碰撞类问题应注意:⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,碰后系统总动能小于或等于碰前总动能,即1212k k k k E '+E 'E +E ≤;⑶速度要符合物理情景:如果碰前两物体同向运动,则后面的物体速度一定大于前面物体的速度,即v v 后前>,碰撞后,原来在前面的物体速度一定增大,且≥v v 后前;如果两物体碰前是相向运动,则碰撞后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。

专题20 动量与能量综合问题(解析版)

2021届高考物理一轮复习热点题型归纳与变式演练 专题20 动量与能量综合问题 【专题导航】 目录 热点题型一 应用动量能量观点解决“子弹打木块”模型 ..................................................................................... 1 热点题型二 应用动量能量观点解决“弹簧碰撞”模型 ......................................................................................... 4 热点题型三 应用动量能量观点解决“板块”模型 ............................................................................................... 9 热点题型四 应用动量能量观点解决斜劈碰撞现象 ............................................................................................. 13 【题型演练】 (16) 【题型归纳】 热点题型一 应用动量能量观点解决“子弹打木块”模型 子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。 设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。 从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……① 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有d s s =-21 对子弹用动能定理:20212 121mv mv s f -=?- ……① 对木块用动能定理:222 1 Mv s f =? ……① ①相减得:()() 2 22022121v m M Mm v m M mv d f +=+-= ? ……① 对子弹用动量定理:0 -mv mv t f -=? ……① s 2 d s 1 v 0

2010届高三物理备考专题复习:动量与能量

2010届高三物理专题复习:动量与能量 一、知识概要 注意汽车的两种启动方式。 二、对比区别基本概念和基本规律 1、?????? ?? ????? ?=?? ?=总功 总冲量一般由动能定理求解変力做功,方法较多, 恒力做功功(标量)定理求解変力冲量,一般由动量恒力冲量的方向决定)冲量(矢量,方向有力αcos FS W Ft I 2、??? ? ?????==--=----=--k K k mE P m P E v mv E v mv p 22212 2或二者大小关系瞬时状态量大小有关)(只跟动能(标量)瞬时状态量同向)(方向与动量(矢量) 3 、

?? ?----差(顺序不能变)等于末动能与初动能之动能变化量(标量) 要规定正方向)矢量差(顺序不能变,等于末动量与初动量的动量变化量(矢量) ???? ? ?? ???????????-=???++-=?? ?-=???++-=2022 1202021021212 121cos 4mv mv W W mv mv S F mv mv Ft Ft mv mv t F t t t t 于动能变化量各外力所做功的总和等变化量合外力做的功等于动能)动能定理(标量表达式于动量变化量各外力冲量的矢量和等 变化量合外力的冲量等于动量 )动量定理(矢量表达式、合合α 5 、 ?? ? ? ? ??? ????某个系统的机械能守恒单个物体的机械能守恒意问题)表达式,守恒条件,注机械能守恒定律(标量问题)达式,守恒条件,注意动量守恒定律(矢量表 6、功能原理 ????? ? ?-=-=初 末其他初 末其他于系统机械能增量其他力所做功代数和等内部弹簧弹力做功外,对系统,除重力及系统 于机械能增量其他力所做功代数和等对单个物体,除重力外E E W E E W 7、重力做功与重力势能变化 三、注意事项 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对位移的积累,其作用效果是改变物 体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,对此,要像熟悉力和运动的关系一样熟悉。在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。 应用动量定理和动能定理时,研究对象可以是单个物体,也可以是多个物体组成的系统,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点: 1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。

2021年高考物理二轮复习 人教版 专题07 动量和能量的综合应用(练习)

第二部分 功能与动量 专题07 动量和能量的综合应用【练习】 【基础】 1.如图所示,质量为m 的小球A 静止于光滑水平面上,在A 球与墙之间用轻弹簧连接。现用完全相同的小球B 以水平速度v 0与A 相碰后粘在一起压缩弹簧。不计空气阻力,若弹簧被压缩过程中的最大弹性势能为E ,从球A 被碰后开始到回到原静止位置的过程中墙对弹簧的冲量大小为I ,则下列表达式中正确的是( ) A .E =12mv 2 0,I =mv 0 B .E =1 2mv 20,I =2mv 0 C .E =1 4mv 20 ,I =mv 0 D . E =1 4mv 20 ,I =2mv 0 2. “爆竹声中一岁除,春风送暖入屠苏”,爆竹声响是辞旧迎新的标志,是喜庆心情的流露.有一个质量为3m 的爆竹斜向上抛出,到达最高点时速度大小为v 0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m ,速度大小为v ,方向水平向东,则另一块的速度为( ) A .3v 0-v B .2v 0-3v C .3v 0-2v D .2v 0+v 3.(多选)如图所示,已知物体与三块材料不同的长方形板间的动摩擦因数分别为μ、2μ和3μ,三块板长度均为L ,并排铺在水平地面上,该物体以一定的初速度v 0,从第一块板的最左端a 点滑上第一块板,恰好滑到第三块板的最右端d 点停下来,物体在运动过程中三块板均保持静止.若让物体从d 点以相同大小的初速度水平向左运动,三块板仍能保持静止,则下列说法正确的是( ) A .物体恰好运动到a 点并停下来 B .物体不能运动到a 点 C .物体两次经过c 点时速度大小相等 D .物体两次经过b 点时速度大小相等 4.一质量为M 的航天器,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( )

2020年高考一轮复习:限时规范专题练(2) 动量与能量问题综合应用

限时规范专题练(二) 动量与能量问题综合应用 时间:60分钟 满分:100分 一、选择题(本题共6小题,每小题8分,共48分。其中 1~4为单选,5~6为多选) 1.如图所示,在光滑水平面上的两小车中间连接有一根处于压缩状态的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中错误的是( )

A.两手同时放开后,系统总动量始终为零 B.先放开左手,再放开右手之后动量不守恒 C.先放开左手,后放开右手,总动量向左 D.无论何时放手,在两手放开后、弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零 答案 B 解析当两手同时放开时,系统所受的合外力为零,所以系统的动量守恒,又因开始时总动量为零,故两手同时放开后系统总动量始终为零,A正确;先放开左手,左边的物体向左运动,再放开右手后,系统所受合外力为零,故系统在两手都放开后动量守恒,且总动量方向向左,故B错误,C、D正确。 2.(2019·湖南六校联考)如图所示,质量为m的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射手。首先左侧射手开枪,子弹水平射入木块的最大深度为d1,然后右侧射手开枪,子弹水平射入木块的最大深度为d2。设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同。当两颗子弹均相对于木块静止时,下列判断正确的是( )

A .木块静止,d 1=d 2 B .木块向右运动,d 1

2020年高考物理专题复习 动量和能量

2020年高考物理专题复习 动量和能量 第一讲 基本知识介绍 一、冲量和动量 1、冲力(F —t 图象特征)→ 冲量。冲量定义、物理意义 冲量在F —t 图象中的意义→从定义角度求变力冲量(F 对t 的平均作用力) 2、动量的定义 动量矢量性与运算 二、动量定理 1、定理的基本形式与表达 2、分方向的表达式:ΣI x =ΔP x ,ΣI y =ΔP y … 3、定理推论:动量变化率等于物体所受的合外力。即t P ??=ΣF 外 三、动量守恒定律 1、定律、矢量性 2、条件 a 、原始条件与等效 b 、近似条件 c 、某个方向上满足a 或b ,可在此方向应用动量守恒定律 四、功和能 1、功的定义、标量性,功在F —S 图象中的意义 2、功率,定义求法和推论求法 3、能的概念、能的转化和守恒定律 4、功的求法

a 、恒力的功:W = FScos α= FS F = F S S b 、变力的功:基本原则——过程分割与代数累积;利用F —S 图象(或先寻求F 对S 的平均作用力) c 、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点 五、动能、动能定理 1、动能(平动动能) 2、动能定理 a 、ΣW 的两种理解 b 、动能定理的广泛适用性 六、机械能守恒 1、势能 a 、保守力与耗散力(非保守力)→ 势能(定义:ΔE p = -W 保) b 、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达 2、机械能 3、机械能守恒定律 a 、定律内容 b 、条件与拓展条件(注意系统划分) c 、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。 七、碰撞与恢复系数 1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类) 碰撞的基本特征:a 、动量守恒;b 、位置不超越;c 、动能不膨胀。 2、三种典型的碰撞 a 、弹性碰撞:碰撞全程完全没有机械能损失。满足—— m 1v 10 + m 2v 20 = m 1v 1 + m 2v 2 21 m 1210v + 21 m 2220v = 21 m 121v + 2 1 m 222v 解以上两式(注意技巧和“不合题意”解的舍弃)可得:

【2020】最新高三物理专题复习-第五专题-动量与能量试卷及参考答案

三、注意事项 冲量是力对时间的积累,其作用效果是改变物体的动量;功是 力对位移的积累,其作用效果是改变物 体的能量;冲量和动量的变化、功和能量的变化都是原因和结 果的关系,对此,要像熟悉力和运动的关系一样熟悉。在此基础 上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变 的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思 考问题是研究物理问题的一个重要而普遍的思路。 应用动量定理和动能定理时,研究对象可以是单个物体,也可以是多个物体组成的系统,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点: 1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是: 1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。 2.若是多个物体组成的系统,优先考虑两个守恒定律。 3.若涉及系统内物体的相对位移(路程)并涉及摩擦力的,要考虑应用能量守恒定律。 四、20xx年高考题选讲 1、(09年全国卷Ⅰ A.2 B.3 C.4 D. 5 2、(09年全国卷Ⅱ)20. 以初速度v0竖直向上抛出一质量为m的小物体。假定物块所受的空气阻力f大小不变。已知重力加速度为g,则物体上升的最大高度和返回到原抛出点的速率分别为 A.和 B.和

物理高考总复习动量与能量的综合压轴题(各省市高考题,一模题答案详解)

高考第2轮总复习首选资料 动量的综合运用 1.(20XX 年重庆卷理科综合能力测试试题卷,T25 ,19分) 某兴趣小组用如题25所示的装置进行实验研究。他们在水平桌面上固定一内径为d 的圆柱形玻璃杯,杯口上放置一直径为 2 3 d,质量为m 的匀质薄原板,板上放一质量为2m 的小物体。板中心、物块均在杯的轴线上,物块与板间动摩擦因数为μ,不计板与杯口之间的摩擦力,重力加速度为g ,不考虑板翻转。 (1)对板施加指向圆心的水平外力F ,设物块与板 间最大静摩擦力为max f ,若物块能在板上滑动,求F 应满足的条件。 (2)如果对板施加的指向圆心的水平外力是作用时间极短的较大冲击力,冲量为I , ①I 应满足什么条件才能使物块从板上掉下? ②物块从开始运动到掉下时的位移s 为多少? ③根据s 与I 的关系式说明要使s 更小,冲量应如何改变。 答案: (1)设圆板与物块相对静止时,它们之间的静摩擦力为f ,共同加速度为a 由牛顿运动定律,有 对物块 f =2ma 对圆板 F -f =ma 两物相对静止,有 f ≤f max 得 F≤ 32 f max 相对滑动的条件 m a x 3 2 F f > (2)设冲击刚结束的圆板获得的速度大小为0v ,物块掉下时,圆板和物块速度大小分别为1v 和2v 由动量定理,有0I mv = 由动能定理,有 对圆板2210311 2()422mg s d mv mv μ-+=- 对物块221 2(2)02 mgs m v μ-=- 由动量守恒定律,有 0122mv mv mv =+ 要使物块落下,必须12v v > 由以上各式得

3 2 I > s = 2 12g μ ? ?? ? 分子有理化得 s =2 3 12md g μ?? ? 根据上式结果知:I 越大,s 越小. 2.(20XX 年湛江市一模理综) 如图所示,光滑水平面上有一长板车,车的上表面0A 段是一长为己的水平粗 糙轨道,A 的右侧光滑,水平轨道左侧是一光滑斜面轨道,斜面轨道与水平轨道在O 点平 滑连接。车右端固定一个处于锁定状态的压缩轻弹簧,其弹性势能为Ep ,一质量为m 的小物体(可视为质点)紧靠弹簧,小物体与粗糙水平轨道间的动摩擦因数为μ,整个装置处于静止状态。现将轻弹簧解除锁定,小物体被弹出后滑上水平粗糙轨道。车的质量为 2m ,斜面轨道的长度足够长,忽略小物体运动经过O 点处产生的机械能损失,不计空气阻力。求: (1)解除锁定结束后小物体获得的最大动能; (2)当∥满足什么条件小物体能滑到斜面轨道上,满足此条件时小物体能上升的最 大高度为多少? 解析:(1)设解锁弹开后小物体的最大速度饷大小为v 1,小物体的最大动啦为E k ,此时长板车的速度大小为v 2,研究解锁弹开过程小物体和车组成的系统,根据动量守恒和机械能守恒,有 ①(2分) ②(3分) ③(1分) 联立①②③式解得 ④(2分) (2)小物体相对车静止时,二者有共同的速度设为V 共 ,长板车和小物体组成的系统水平方向动量守恒 ⑤(2分) 所以v 共=0 ⑥(1分) 120mv mv -=221211 .222p E mv mv = +2111 2 k E mv =12 3k p E E =(2)0m m v +=共

相关主题