搜档网
当前位置:搜档网 › 主轴驱动基本要求

主轴驱动基本要求

主轴驱动基本要求
主轴驱动基本要求

主轴驱动基本要求

一.对主传动的要求

数控机床与普通机床一样,有主运动及进给运动。相应地,存在着主传动链及进给传动链。由于数控机床的高自动化及高精度,对主运动提出了更高的要求。

1.转速高,功率大:

数控机床对工件能完成大切削用量的粗加工及高速旋转下的精加工。粗加工时,扭矩大;精加工时,转速高。而数控机床的功率P=T?N,无论是T大,还是N大,都会使得功率大。2.变速范围宽,且能实现无级变速:

满足不同的加工要求,就要有不同的加工速度。由于数控机床的加工通常在自动的情况下进行,尽量减少人的参与,因而要求能够实现无级变速。

3.实现恒切削速度加工:

在加工端面时,为了保证端面稳定的加工质量,要求工件端面的各部位能保持恒定的线切削速度。

设:主轴的恒定的旋转速度为N,线速度V=N?ΠD,即随着直径的减少,V也在减少,为了获得稳定的线速度,随着加工的进行,通过调节主轴的转速N使得保持恒定的线切削速度。4.主传动链尽可能短:

传动链越短,则累积误差越小。

5.实现刀具的快速或自动装卸:

主运动是刀具旋转运动的数控机床,由于机床可以进行多工序加工,工序变换是时刀具也要更换,因此要求能够自动换刀。

二.主运动的变速方式及实现

1.分段无级变速:

?实现:交流或直流无级变速电机+齿轮变速

?适用范围:适用于大、中型数控机床,特别是粗加工的场合。确保低速时主轴输出大扭矩特性的要求。

?无级变速电机的特性:

从图中可以看出,无级变速电机低速时为恒扭矩输出;高速时为恒功率输出。

2.通过带传动的主传动:

?实现:交流或直流无级变速电机+同步带传动

?适用范围:适用于小型数控机床,特别是低扭矩特性要求的主轴

?带传动:

同步带是一种综合了带、链传动优点的新型传动。同步带的结构如图所示,带的工作面及带轮的外圆上均制成齿状,通过带轮与轮齿相啮合,作无滑动的啮合传动。

?带传动的优点:

a.无滑动,传动比准确。

b.传动效率高,可达98﹪。

c.传动平稳,噪声小(带传动具有吸振的功能)。

d.使用范围较广,速度可达50m/s,传动比可达10左右,传递功率由几瓦至数千瓦。e.维修保养方便,不需要润滑。

3.由调速电机直接驱动的主传动:

?实现:交流或直流无级变速电机

?适用范围:适用于主轴输出扭矩小的场合。

| | | | |

主轴驱动系统常见故障及处理

第5章主轴驱动系统常见故障及处理 数控机床的主轴驱动系统也就是主传动系统,它的性能直接决定了加工工件的表面质量,因此,在数控机床的维修和维护中,主轴驱动系统显得很重要。 ——; ——。 ——。 5.1主轴驱动系统概述 主轴驱动系统也叫主传动系统,是在系统中完成主运动的动力装置部分。主轴驱动系统通过该传动机构转变成主轴上安装的刀具或工件的切削力矩和 切削速度,配合进给运动,加工出理想的零件。它是零件加工的成型运动之一,它的精度对零件的加工精度有较大的影响。 5.1.1数控机床对主轴驱动系统的要求 机床的主轴驱动和进给驱动有较大的差别。机床主轴的工作运动通常是旋转运动,不像进给驱动需要丝杠或其它直线运动装置作往复运动。数控机床通常通过主轴的回转与进给轴的进给实现刀具与工件的快速的相对切削运动。在20纪60-70年代,数控机床的主轴一般采用三相感应电动机配上多级齿轮变速箱实现有级变速的驱动方式。随着刀具技术、生产技术、加工工艺以及生产效率的不断发展,上述传统的主轴驱动已不能满足生产的需要。现代数控机床对主轴传动提出了更高的要求: (1)调速范围宽并实现无极调速 为保证加工时选用合适的切削用量,以获得最佳的生产率、加工精度和表面质量。特别对于具有自动换刀功能的数控加工中心,为适应各种刀具、工序和各种材料的加工要求,对主轴的调速范围要求更高,要求主轴能在较宽的转速范围内根据数控系统的指令自动实现无级调速,并减少中间传动环节,简化主轴箱。 目前主轴驱动装置的恒转矩调速范围已可达1∶100,恒功率调速范围也可达1∶30,一般过载1.5倍时可持续工作达到30min。 主轴变速分为有级变速、无级变速和分段无级变速三种形式,其中有级变速仅用于经济型数控机床,大多数数控机床均采用无级变速或分段无级变速。在无级变速中,变频调速主轴一般用于普及型数控机床,交流伺服主轴则用于中、高档数控机床。

课主轴驱动系统故障维修例[

第七章第四课主轴驱动系统故障维修50 例[1] 2009-05-15 05:55 例301.机床剧烈抖动、驱动器显示AL-04 报警 故障现象:一台配套FANUC 6系统地立式加工中心, 在加工过程中, 机床出现剧烈抖动、交流主轴驱动器显示AL-04 报警. 分析与处理过程:FANU(交流主轴驱动系统AL-04报警地含义为“交流输入电路中地P1、F2、F3熔断器熔断”,故障可能地原因有: 1>交流电源输出阻抗过高. 2>逆变晶体管模块不良. 3>整流二极管(或晶闸管>模块不良. 4>浪涌吸收器或电容器不良. 针对上述故障原因, 逐一进行检查. 检查交流输入电源, 在交流主轴驱动器地输入电源,测得R、S相输入电压为220V,但T相地交流输入电压仅为120V,表明驱动器地三相输入电源存在问题. 进一步检查主轴变压器地三相输出, 发现变压器输入、输出, 机床电源输入均同样存在不平衡, 从而说明故障原因不在机床本身. 检查车间开关柜上地三相熔断器,发现有一相阻抗为数百欧姆.将其拆开检查,发现该熔断器接线螺钉松动, 从而造成三相输入电源不平衡;重新连接后, 机床恢复正常. 例302?驱动器出现报警“ A”地故障维修 故障现象:一台配套FANUC 0■地数控车床,开机后,系统处在“急停”状态,显示“ NOTREADY,操作面板上地主轴报警指示灯亮. 分析与处理过程:根据故障现象, 检查机床交流主轴驱动器, 发现驱动器显示为“ A” . 根据驱动器地报警显示, 由本章前述可知, 驱动器报警地含义是“驱动器软件出错” , 这一报警在驱动器受到外部偶然干扰时较容易出现, 解决地方法通常是对驱动器进行初始化处理. 在本机床按如下步骤进行了参数地初始化操作: 1>切断驱动器电源, 将设定端S1 置TEST. 2>接通驱动器电源. 3>同时按住MOD E UP DOWNDATASET个键4>当显示器由全暗变为“ FFFFF后,松

(数控加工)数控机床主轴驱动系统故障维修例精编

(数控加工)数控机床主轴驱动系统故障维修例

数控机床主轴驱动系统故障维修50例 第七章第四课主轴驱动系统故障维修50例[1] 2009-05-1505:55 例301.机床剧烈抖动、驱动器显示AL-04报警 故障现象:壹台配套FANUC6系统的立式加工中心,在加工过程中,机床出现剧烈抖动、交流主轴驱动器显示AL-04报警。 分析和处理过程:FANUC交流主轴驱动系统AL-04报警的含义为“交流输入电路中的P1、F2、F3熔断器熔断”,故障可能的原因有: 1)交流电源输出阻抗过高。 2)逆变晶体管模块不良。 3)整流二极管(或晶闸管)模块不良。 4)浪涌吸收器或电容器不良。 针对上述故障原因,逐壹进行检查。检查交流输入电源,在交流主轴驱动器的输入电源,测得R、S相输入电压为220V,但T相的交流输入电压仅为120V,表明驱动器的三相输入电源存在问题。 进壹步检查主轴变压器的三相输出,发现变压器输入、输出,机床电源输入均同样存在不平衡,从而说明故障原因不在机床本身。 检查车间开关柜上的三相熔断器,发现有壹相阻抗为数百欧姆。将其拆开检查,发现该熔断器接线螺钉松动,从而造成三相输入电源不平衡;重新连接后,机床恢复正常。 例302.驱动器出现报警“A”的故障维修 故障现象:壹台配套FANUC0T的数控车床,开机后,系统处在“急停”状态,显示“NOTREADY”,操作面板上的主轴报警指示灯亮。 分析和处理过程:根据故障现象,检查机床交流主轴驱动器,发现驱动器显示为“A”。 根据驱动器的报警显示,由本章前述可知,驱动器报警的含义是“驱动器软件出错”,这壹报警在驱动器受到外部偶然干扰时较容易出现,解决的方法通常是对驱动器进行初始化处理。在本机床按如下步骤进行了参数的初始化操作: 1)切断驱动器电源,将设定端S1置TEST。 2)接通驱动器电源。 3)同时按住MODE、UP、DOWN、DATASET4个键 4)当显示器由全暗变为“FFFFF”后,松开全部键,且保持1s之上。 5)同时按住MODE、UP键,使参数显示FC-22。 6)按住DATASET键1s之上,显示器显示“GOOD”,标准参数写入完成。 7)切断驱动器电源,将S1(SH)重新置“DRIVE”。 通过之上操作,驱动器恢复正常,报警消失,机床恢复正常工作。

企业诊断-第四章主轴驱动系统的故障诊断与维修 精品

学习情境四数控机床主轴故障维修 学习情境描述: 数控机床的主轴驱动系统也就是主传动系统,它的性能直接决定了加工工件的表面质量,它结构复杂,机、电、气联动,故障率较高,它的可靠性将直接影响数控机床的安全和生产率。因此,在数控机床的维修和维护中,主轴驱动系统显得很重要。 维修人员根据维修单,到现场进行故障询问调查,确定维修方案、拟定维修工作计划、计划工时和费用;通过查阅数控机床PLC的相关显示界面和电路原理图、数控系统和就变频器说明书等维修资料,分析故障原因;使用通用工具及万用表,检测判断故障部位,在机床现场快速排除故障,填写维修记录并交接验收。 学习任务: 1、主轴不能转动故障维修 2、主轴速度慢、主轴振动等故障维修 3、变频器故障维修 学习目标: 1、学会数控机床维修方法:隔离法。 2、具备数控机床主轴系统的故障诊断能力和排除故障能力。 3、能使用所配置的主轴变频器及参数设置方法,会检测判断并修理变频器简单故障。 4、在故障诊断、检测及更换中能严格执行相关技术标准规范和安全操作规程,有纪律观念和团队意识,以合作方式拟定诊断与修理计划,并具备环境保护和文明生产的基本素质。 5、能撰写维修工作报告,总结、反思、改进工作过程。 学习内容: 1、学习主轴系统的基本构造和运行特点及工作原理。 2、学习数控机床主轴相关变频器的功能及使用方法、电气原理图、主轴装配图、气动系统图。

3、学习主轴相关梯形图并据此分析说明M、S功能、主轴正反转、倍率调节等工作原理。 4、学习主轴相关参数含义及设置。 5、学习主轴故障维修流程图的画法。 完整的工作过程:获得信息(维修任务单、图纸、说明书等)——制订计划(原因分析/确定流程/费用估算)——实施计划(检查与更换)——检查(自检、验收、总结与工作过程反馈); 4.1 主轴相关知识 数控机床主轴驱动系统是数控机床的大功率执行机构,其功能是接受数控系统(C)的S码速度指令及M码辅助功能指令,驱动主轴进行切削加工。它包括主轴驱动装置、主轴电动机、主轴位置检测装置、传动机构及主轴。通常主轴驱动被加工工件旋转的是车削加工,所对应的机床是车床类;主轴驱动切削刀具旋转的是铣削加工,所对应的机床是铣床类。 4.1.1 主轴系统分类及特点 全功能数控机床的主传动系统大多采用无级变速。目前,无级变速系统根据控制方式的不同主要有变频主轴系统和伺服主轴系统两种,一般采用直流或交流主轴电机,通过带传动带动主轴旋转,或通过带传动和主轴箱内的减速齿轮(以获得更大的转矩)带动主轴旋转。另外根据主轴速度控制信号的不同可分为模拟量控制的主轴驱动装置和串行数字控制的主轴驱动装置两类。模拟量控制的的主轴驱动装置采用变频器实现主轴电动机控制,有通用变频器控制通用电机和专用变频器控制专用电机两种形式。目前大部分的经济型机床均采用数控系统模拟量输出+变频器+感应(异步)电机的形式,性价比很高,这时也可以将模拟主轴称为变频主轴。串行主轴驱动装置一般由各数控公司自行研制并生产,如西门子公司的611系列,日本发那克公司的α系列等。 1、普通笼型异步电动机配齿轮变速箱 这是最经济的一种方法主轴配置方式,但只能实现有级调速,由于电动机始终工作在额定转速下,经齿轮减速后,在主轴低速下输出力矩大,重切削能力强,非

主轴驱动基本要求

主轴驱动基本要求 一.对主传动的要求 数控机床与普通机床一样,有主运动及进给运动。相应地,存在着主传动链及进给传动链。由于数控机床的高自动化及高精度,对主运动提出了更高的要求。 1.转速高,功率大: 数控机床对工件能完成大切削用量的粗加工及高速旋转下的精加工。粗加工时,扭矩大;精加工时,转速高。而数控机床的功率P=T?N,无论是T大,还是N大,都会使得功率大。2.变速范围宽,且能实现无级变速: 满足不同的加工要求,就要有不同的加工速度。由于数控机床的加工通常在自动的情况下进行,尽量减少人的参与,因而要求能够实现无级变速。 3.实现恒切削速度加工: 在加工端面时,为了保证端面稳定的加工质量,要求工件端面的各部位能保持恒定的线切削速度。 设:主轴的恒定的旋转速度为N,线速度V=N?ΠD,即随着直径的减少,V也在减少,为了获得稳定的线速度,随着加工的进行,通过调节主轴的转速N使得保持恒定的线切削速度。4.主传动链尽可能短: 传动链越短,则累积误差越小。 5.实现刀具的快速或自动装卸: 主运动是刀具旋转运动的数控机床,由于机床可以进行多工序加工,工序变换是时刀具也要更换,因此要求能够自动换刀。 二.主运动的变速方式及实现 1.分段无级变速: ?实现:交流或直流无级变速电机+齿轮变速 ?适用范围:适用于大、中型数控机床,特别是粗加工的场合。确保低速时主轴输出大扭矩特性的要求。 ?无级变速电机的特性:

从图中可以看出,无级变速电机低速时为恒扭矩输出;高速时为恒功率输出。 2.通过带传动的主传动: ?实现:交流或直流无级变速电机+同步带传动 ?适用范围:适用于小型数控机床,特别是低扭矩特性要求的主轴 ?带传动: 同步带是一种综合了带、链传动优点的新型传动。同步带的结构如图所示,带的工作面及带轮的外圆上均制成齿状,通过带轮与轮齿相啮合,作无滑动的啮合传动。 ?带传动的优点: a.无滑动,传动比准确。 b.传动效率高,可达98﹪。 c.传动平稳,噪声小(带传动具有吸振的功能)。 d.使用范围较广,速度可达50m/s,传动比可达10左右,传递功率由几瓦至数千瓦。e.维修保养方便,不需要润滑。 3.由调速电机直接驱动的主传动: ?实现:交流或直流无级变速电机 ?适用范围:适用于主轴输出扭矩小的场合。 【方案】DALSA IPD 视觉系统在药片缺失检测中应用 引用| 回复| 编辑| 推荐| 举报| 奖励惩罚删除精华普通管理

主轴驱动系统和主轴电机发展趋势

主轴驱动系统和主轴电机发展趋势 050810133 李阳阳数控机床主轴驱动系统作为机床的最核心的关键部件之一,其输出性能对数控机床的整体水平是至关重要的。主轴驱动远不同于一般工业驱动,它不但要求较高的速度精度,动态刚度,而且要求连续输出的高转矩能力和非常宽的恒功率运行范围。目前,各主要机床生产厂家和研究单位纷纷把目光投向交流主轴驱动系统。随着功率电子,计算机技术,控制理论,新材料和电机设计的进一步发展和完善,矢量控制交流电机主轴驱动系统的性能已经达到甚至超过了直流主轴驱动系统。交流主轴驱动系统正在逐步取代直流系统。 1交流主轴驱动系统发展趋势 交流主轴驱动系统的逆变器一般基于矢量控制原理,采用正弦波宽调制方式,功率器件采用ICBT。根据电机类型可分为感应电机主轴驱动系统,永磁同步电机主轴驱动系统,开头磁阻电机主轴驱动系统。 1.1 感应电机交流主轴驱动系统 感应电机交流主轴驱动系统是当前商用主轴驱动系统的主流,其功率范围为从零点几个千瓦到几百千瓦,广泛应用于各种数控机床上。 感应主轴电机基速以上的放展运动范围可以通过弱磁控制实现。其恒功率运动范围可达1:5.如果采用最新的绕组切换技术,其恒功率运动范围可达1:14.甚至更宽。目前,感应主轴电机最高转速可达100000r/min以上。尽管感应主轴电机结构相对简单,但其变频控制器价格却较高。而采用了磁场定向控制技术的变频器能提供连续的转矩/速度调节能力,较高的精度,运行可行性和较低的运行费用,因而在一定程度上抵消了整个系统的初始高价格。 感应式主轴电机的控制无一例外地采用磁场定向技术。该技术又分为间接磁场定向和直接磁场定向两种实现方式,其中间接转子磁场定向控制技术由于较容易实现而被广为应用。它能提供较高的控制品质,但这种技术过分依赖于电机的参数,当参数变化时,控制性能将严重下降,遗憾的是,在电机运行过程中,转子时间常数可以在400%的范围以内变化,因此现代主轴控制器均采用辨识,估算和自整定技术对参数变化在线补偿。这项技术另一个难题是随着电机速度要求越来越高,在恒功率弱磁运行时,当转子磁场发生变化,而滑查增益无法动态补偿时,将引起磁通和转矩的振荡。近年来,随着自适应观测器和微处理器性能的提高,直接磁场定向控制技术在主轴驱动中有取代间接磁场定向之势。 1.2 永磁交流主轴驱动系统 永磁交流主轴电机分为正弦波驱动主轴电机和方波驱动直流主轴电机。此类主轴电机以转子无功耗,高效率和高功率/转矩密度著称。其低速运行时可获得更大的功率和转矩,因此在同步攻丝时的伺服锁定运行和快速定向方面有较大的优势。一般永磁主轴电机功率在10千瓦以下,速度低于8000r/min。但目前转速在20000-30000r/min之间,功率超过10千瓦的主轴电机已经在制造。永磁主轴电机在转子上不存在发热元件,显著提高了电机效率,同时高效铁硼材料的应用,使得永磁主轴电机在所有形式的交流主轴电机中具有最高的效率和最小的体积。PMSM和BDCM电机均可运行于高速范围。但调磁范围受到一定的限制,使得速度不能很高。在控制策略方面,PMSM电机的定子绕组经特殊绕制后将产生正弦反电势,当绕组通入正弦电流后,便可以获得恒定的转矩。但是磁场定

主轴驱动控制

九.主轴的驱动控制 1。控制框图 主轴控制主要是速度及电动机的转速控制。在程序中用指令:S 及五位数值指令主轴的转数。 例如:S1200; 表示要求主轴以 1200 转转动。正反转的指令为 M03(正转);M04(反转) 。为了检测 主轴的转速,在主轴或主轴电动机上安装了速度传感器。 在车床的 Cs 轴控制等功能中还要用到主轴的位置控制。车床和铣床的螺纹加工、加工中心的 换刀等还要用到主轴的一转信号,因此主轴上还安装了位置编码器。 下图是主轴的控制框图。 CNC
Motion d
Serial Fine Positio Velocity HRV HRV
SPINDLE HRV Control
Spindle t
High res.
High res.
Velocity feedback Position feedback
BZi
Spindle
主轴控制框图 2. 主轴速度传感器与位置传感器 只是速度控制时无位置反馈回路。 主轴电动机的速度测量与反馈用装在主轴电动机轴上的磁性 传感器。 如下图所示。 随着主轴电动机的转动, 传感器转一转发出 128, 256, 384 或 512 个脉冲 (取 决于电动机的型号) ,计算出主轴电动机的转数。若电动机与主轴间不是 1:1 耦合,则必须在主轴 上安装位置编码器,用编码器发出的一转信号测量主轴的转数。通常这种编码器是光电式的,转一 转发出 1024 个脉冲,此外还发出一个一转信号。用这种编码器可实现螺纹加工和刚性攻丝及加工 中心机床换刀时的主轴定向。
Z phase ring
1
0.01 de
accuracy ( 384λ/rev )
A/B phase ring
Mounting ring
128, 256, 384 and 512λ ring are available
主轴速度传感器
43

简述交流主轴驱动系统的特点

1、简述交流伺服主轴驱动系统? 交流伺服主轴驱动系统通常采用感应电动机作为驱动电机,由伺服驱动器实施控制,有速度开环或闭环控制方式。也有采用永磁同步电动机作为驱动电机,由伺服驱动器实现速度环的矢量控制。 2、交流主轴驱动系统与直流主轴驱动系统相比有哪些特点? 1)由于驱动系统必须采用微处理器和现代控制理论进行控制,因此其运行平稳、振动和噪声小。 2)驱动系统一般都具有再生制动功能,在制动时,即可将能量反馈回电网,起到节能的效果,又可以加快起制动速度。 3)特别是对于全数字式主轴驱动系统,驱动器可直接使用CNC的数字量输出信号进行控制,不要经过A/D转换,转速控制精度得到了提高。 4)与数字式交流伺服驱动一样,在数字式主轴驱动系统中,还可采用参数设定方法对系统进行静态调整与动态优化,系统设定灵活、调整准确。 5)由于交流主轴无换向器,主轴通常不需要进行维修。 6)主轴转速的提高不受换向器的限制,最高转速通常比直流主轴更高,可达到数万转。 3、主轴准停有哪三种实现方式? ①机械准停控制:由带V型槽的定位盘和定位用的液压缸配合动作。 ②磁性传感器的电器准停控制发磁体安装在主轴后端,磁传感器安装 在主轴箱上,其安装位置决定了主轴的准停点。 ③编码器型的准停控制通过主轴内置安装或在机床主轴上直接安装一 个光电编码器来实现准停控制,准停角度可任意设定。 4、当主轴伺服系统发生故障时,通常有哪三种表现形式? 1. CRT或操作面板上显示报警内容或报警信息 2. 是在主轴驱动装置上用报警灯或数码管显示主轴驱 动装置的故障; 3. 主轴工作不正常,但无任何报警信息。 5、什么是数控机床的开环控制、半闭环控制和闭环控制? 1) 开环数控控制: 其数控装置发出的指令信号是单向的,没有检测反馈装置对运动部件的实际位移量进行检测,不能进行运动误差的校正。 2) 半闭环数控机床 这类机床的检测元件装在驱动电机或传动丝杠的端部,可间接测量执行部件的实际位置或位移。这种系统的闭环环路内不包括机械传动环节,控制系统的调试十分方便,因此可以获得稳定的控制特性。 3)全闭环数控机床 这类机床的位置检测装置安装在进给系统末段端的执行部件上,该位置检测装置可实测进给系统的位移量或位置。数控装置将位移指令与工作台端测得的实际位置反馈信号进行比较,根据其差值不断控制运动,使运动部件严格按照实际需要的位移量运动。

数控机床的伺服驱动系统

第五章数控机床的伺服驱动系统 §5—1 概述 数控机床伺服驱动系统是指以机床移动部件(如工作台、动力头等,本书仅以工作台为例)的位置和速度作为控制量的自动控制系统,又称拖动系统。在数控机床上,伺服驱动系统接收来自插补装置或插补软件生成的进给脉冲指令,经过一定的信号变换及电压、功率放大,将其转化为机床工作台相对于切削刀具的运动。目前,这主要通过对交、直流伺服电机或步进电机等进给驱动元件的控制来实现。 数控机床的伺服驱动系统作为一种实现切削刀具与工件间运动的进给驱动和执行机构,是数控机床的一个重要组成部分,它在很大程度上决定了数控机床的性能,如数控机床的最高移动速度、跟踪精度、定位精度等一系列重要指标取决于伺服驱动系统性能的优劣。因此,随着数控机床的发展,研究和开发高性能的伺服驱动系统,一直是现代数控机床研究的关键技术之一。 一、伺服驱动系统的性能 对数控机床伺服驱动系统的主要性能要求有下列几点: mm, (1) 进给速度范围要大。不仅要满足低速切削进给的要求,如5min 还要能满足高速进给的要求,如10000mm min。 (2) 位移精度要高。伺服系统的位移精度是指指令脉冲要求机床工作台进给的位移量和该指令脉冲经伺服系统转化为工作台实际位移量之间的符合程度。两者误差愈小,伺服系统的位移精度愈高。目前,高精度的数控机床伺服系统位移精度可 ±m。通常,插补器或计算机的插补软件每发出一个进给脉达到在全程范围内5μ

冲指令,伺服系统将其转化为一个相应的机床工作台位移量,我们称此位移量为机床的脉冲当量。一般机床的脉冲当量为0.01~0.005 mm脉冲,高精度的CNC 机床其脉冲当量可达0.001 mm脉冲。脉冲当量越小,机床的位移精度越高。 (3) 跟随误差要小。即伺服系统的速度响应要快。 (4) 伺服系统的工作稳定性要好。要具有较强的抗干扰能力,保证进给速度均匀、平稳,从而使得能够加工出粗糙度低的零件。 二、数控机床伺服驱动系统的基本组成 数控机床伺服驱动系统的基本组成如图5-1所示。数控机床的伺服驱动系统按有无反馈检测单元分为开环和闭环两种类型(见数控机床伺服驱动系统分类),这两种类型的伺服驱动系统的基本组成不完全相同。但不管是哪种类型,执行元件及其驱动控制单元都必不可少。驱动控制单元的作用是将进给指令转化为驱动执行元件所需要的信号形式,执行元件则将该信号转化为相应的机械位移。 图5-1 数控机床伺服驱动系统的基本组成 开环伺服驱动系统由驱动控制单元、执行元件和机床组成。通常,执行元件选用步进电机。执行元件对系统的特性具有重要影响。 闭环伺服驱动系统由执行元件、驱动控制单元、机床,以及反馈检测单元、比较控制环节组成。反馈检测单元将工作台的实际位置检测后反馈给比较控制环节,比较控制环节将指令信号和反馈信号进行比较,以两者的差值作为伺服系统的跟随误差经驱动控制单元,驱动和控制执行元件带动工作台运动。

数控机床主轴驱动系统跟维修资料

第五章数控机床主轴驱动系统与维修数控机床的主轴驱动系统也就是主传动系统,它的性能直接决定了加工工件的表面质量,因此,在数控机床的维修和维护中,主轴驱动系统显得很重要。 本章主要内容: ——介绍数控机床主轴驱动系统组成及特点、分类等; ——介绍了通用变频器及典型系统变频主轴的连接线路、相关参数等; ——简介了通用变频主轴、伺服主轴的主要故障及处理方法,并介绍了一些维修实例。 5.1 概述 数控机床主轴驱动系统是数控机床的大功率执行机构,其功能是接受数控系统(CNC)的S码速度指令及M码辅助功能指令,驱动主轴进行切削加工。它包括主轴驱动装置、主轴电动机、主轴位置检测装置、传动机构及主轴。通常主轴驱动被加工工件旋转的是车削加工,所对应的机床是车床类;主轴驱动切削刀具旋转的是铣削加工,所对应的机床是铣床类。 5.1.1 数控机床对主轴驱动系统的要求 机床的主轴驱动和进给驱动有较大的差别。机床主轴的工作运动通常是旋转运动,不像进给驱动需要丝杠或其它直线运动装置作往复运动。数控机床通常通过主轴的回转与进给轴的进给实现刀具与工件的快速的相对切削运动。在20纪60-70年代,数控机床的主轴一般采用三相感应电动机配上多级齿轮变速箱实现有级变速的驱动方式。随着刀具技术、生产技术、加工工艺以及生产效率的不断发展,上述传统的主轴驱动已不能满足生产的需要。现代数控机床对主轴传动提出了更高的要求: 1、调速范围宽并实现无极调速

为保证加工时选用合适的切削用量,以获得最佳的生产率、加工精度和表面质量。特别对于具有自动换刀功能的数控加工中心,为适应各种刀具、工序和各种材料的加工要求,对主轴的调速范围要求更高,要求主轴能在较宽的转速范围内根据数控系统的指令自动实现无级调速,并减少中间传动环节,简化主轴箱。 目前主轴驱动装置的恒转矩调速范围已可达1∶100,恒功率调速范围也可达1∶30,一般过载1.5倍时可持续工作达到30min。 主轴变速分为有级变速、无级变速和分段无级变速三种形式,其中有级变速仅用于经济型数控机床,大多数数控机床均采用无级变速或分段无级变速。在无级变速中,变频调速主轴一般用于普及型数控机床,交流伺服主轴则用于中、高档数控机床。 2、恒功率范围要宽 主轴在全速范围内均能提供切削所需功率,并尽可能在全速范围内提供主轴电动机的最大功率。由于主轴电动机与驱动装置的限制,主轴在低速段均为恒转矩输出。为满足数控机床低速、强力切削的需要,常采用分级无级变速的方法(即在低速段采用机械减速装置),以扩大输出转矩。 3、具有4象限驱动能力 要求主轴在正、反向转动时均可进行自动加、减速控制,并且加、减速时间要短。目前一般伺服主轴可以在1秒内从静止加速到6000r/min。 4、具有位置控制能力 即进给功能(C轴功能)和定向功能(准停功能),以满足加工中心自动换刀、刚性攻丝、螺纹切削以及车削中心的某些加工工艺的需要。 5、具有较高的精度与刚度,传动平稳,噪音低。 数控机床加工精度的提高与主轴系统的精度密切相关。为了提高传动件的制造精度与刚度,采用齿轮传动时齿轮齿面应采用高频感应加热淬火工艺以增加耐磨性。

数控机床主轴驱动系统故障维修 50 例

数控机床主轴驱动系统故障维修50 例 第七章第四课主轴驱动系统故障维修50 例[1] 2009-05-15 05:55 例301.机床剧烈抖动、驱动器显示AL-04报警 故障现象:一台配套FANUC 6系统的立式加工中心, 在加工过程中,机床出现剧烈抖动、交流主轴驱动器显示AL-04报警。 分析与处理过程:FANUC交流主轴驱动系统AL-04报警的含义为“交流输入电路中的P1、F2、F3熔断器熔断”,故障可能的原因有: 1)交流电源输出阻抗过高。 2)逆变晶体管模块不良。 3)整流二极管(或晶闸管)模块不良。 4)浪涌吸收器或电容器不良。 针对上述故障原因,逐一进行检查。检查交流输入电源,在交流主轴驱动器的输入电源,测得R、S相输入电压为220V,但T相的交流输入电压仅为120V,表明驱动器的三相输入电源存在问题。 进一步检查主轴变压器的三相输出,发现变压器输入、输出,机床电源输入均同样存在不平衡,从而说明故障原因不在机床本身。 检查车间开关柜上的三相熔断器,发现有一相阻抗为数百欧姆。将其拆开检查,发现该熔断器接线螺钉松动,从而造

成三相输入电源不平衡;重新连接后,机床恢复正常。 例302.驱动器出现报警“A”的故障维修 故障现象:一台配套FANUC 0T的数控车床,开机后,系统处在“急停”状态,显示“NOTREADY”,操作面板上的主轴报警指示灯亮。 分析与处理过程:根据故障现象,检查机床交流主轴驱动器,发现驱动器显示为“A”。 根据驱动器的报警显示,由本章前述可知,驱动器报警的含义是“驱动器软件出错”,这一报警在驱动器受到外部偶然干扰时较容易出现,解决的方法通常是对驱动器进行初始化处理。在本机床按如下步骤进行了参数的初始化操作: 1)切断驱动器电源,将设定端S1置TEST。 2)接通驱动器电源。 3)同时按住MODE、UP、DOWN、DATASET4个键 4)当显示器由全暗变为“FFFFF”后,松开全部键, 并保持1s以上。 5)同时按住MODE、UP键,使参数显示FC-22。 6)按住DATASET键1s以上,显示器显示“GOOD”,标准参数写入完成。 7)切断驱动器电源,将S1(SH)重新置“DRIVE” 。 通过以上操作,驱动器恢复正常,报警消失,机床恢复正常工作。 例303.驱动器出现过电流报警的故障维修 故障现象:一台配套FANUC 11M系统的卧式加工中心,在加工时主轴运行突然停止,驱动器显示过电流报警。 分析与处理过程:经查交流主轴驱动器主回路,发现再生制动回路、主回路的熔断器均熔断,经更换后机床恢复正常。但机床正常运行数天后,再次出现同样故障。 由于故障重复出现,证明该机床主轴系统存在问题,根据报警现象,分析可能存在的主要原因有: 1)主轴驱动器控制板不良。 2)电动机连续过载。 3)电动机绕组存在局部短路。 在以上几点中,根据现场实际加工情况,电动机过载的原因可以排除。考虑到换上元器件后,驱动器可以正常工作数天,故主轴驱动器控制板不良的可能性亦较小。因此,故障原因可能性最大的是电动机绕组存在局部短路。 维修时仔细测量电动机绕组的各相电阻,发现U相对地绝缘电阻较小,证明该相存在局部对地短路。 拆开电动机检查发现,电动机内部绕组与引出线的连接处绝缘套已经老化;经重新连接后,对地电阻恢复正常。 再次更换元器件后,机床恢复正常,故障不再出现。 例304.主轴驱动器AL-12报警的维修 故障现象:一台配套FANUC 11M系统的卧式加工中心, 在加工过程中,主轴运行突然停止,驱动器显示12号报警。 分析与处理过程:交流主轴驱动器出现12号报警的含义是“直流母线过电流”,由本章前述可知,故障可能的原因如下:

第三章,主轴驱动系统相关知识

第三章主轴驱动系统相关知识 王晶 武汉华中数控

对主轴传动系统的要求 主轴驱动系统就是在系统中完成主运动(旋转运动)的动力装置部分。它带动工件或刀具作相应的旋转运动,从而能配合进给运动,加工出理想的零件。 1、调速范围宽 为保证加工时选用合适的切削用量,以获得最佳的生产率、加工精度和表面质量,特别对于具有自动换刀功能的数控加工中心,为适应各种刀具、工序和材料的加工要求,对主轴的调速范围提出了更高的要求,要求主轴能在较宽的转速范围内根据数控系统的指令自动实现无级调速,并减少中间传动环节。 武汉华中数控

2、恒功率范围要宽 要求主轴在调速范围内均能提供所需的切削功率,并尽可能在调速范围内提供主轴电机的最大功率。由于主轴电机与驱动装置的限制,主轴在低速段均为恒转矩输出。为满足数控机床低速、强力切削的需要,常采用分段无级变速的方法(即在低速段采用机械减速装置),以扩大输出转矩。 3、具有四象限驱动能力 要求主轴在正、反向转动时均可进行自动加、减速控制,并且加、减速时间要短。 武汉华中数控

4、具有位置控制能力 即进给功能(C 轴功能)和定向功能(准停功 能),以满足加工中心自动换刀、刚性攻丝、螺纹切削以及车削中心的某些加工工艺的需要。 类型: 变频主轴、伺服主轴、电主轴 调速方式 有级调速:异步电机+变速箱+主轴 无级调速异步电机+变频器+主轴 伺服电机+伺服驱动器+主轴 电主轴 武汉华中数控

对电机知识的回顾 三相异步电机结构 1、定子:由机座、定子铁心、定子绕组组成: 定子铁心:由厚0.5mm的硅钢片冲叠而成,铁心内开有均布的槽,嵌放定子绕组。 定子绕组:由完全相同的三个绕组组成,空间互差120度 2、转子:由转轴、转子铁心、转子绕组组成: 转子铁心:由厚0.5mm的硅钢片冲叠而成,铁心内开有均布的槽,嵌放转子绕组、或浇铸铝。 转子绕组:分绕线式绕组、鼠笼式绕组武汉华中数控

数控机床主轴驱动系统故障维修案例

数控机床主轴驱动系统故障维修 50 例 第七章第四课主轴驱动系统故障维修 50 例[1] 2009-05-15 05:55 例301.机床剧烈抖动、驱动器显示AL-04报警 故障现象:一台配套FANUC 6系统的立式加工中心, 在加工过程中,机床出现剧烈抖动、交流主轴驱动器显示AL-04

报警。 分析与处理过程:FANUC交流主轴驱动系统AL-04报警的含义为“交流输入电路中的P1、F2、F3熔断器熔断”,故障可能的缘故有: 1)交流电源输出阻抗过高。 2)逆变晶体管模块不良。 3)整流二极管(或晶闸管)模块不良。 4)浪涌汲取器或电容器不良。 针对上述故障缘故,逐一进行检查。检查交流输入电源,在交流主轴驱动器的输入电源,测得R、S相输入电压为220V,但T相的交流输入电压仅为120V,表明驱动器的三相输入电源存在问题。 进一步检查主轴变压器的三相输出,发觉变压器输入、输出,机床电源输入均同样存在不平衡,从而讲明故障缘故不在机床本身。 检查车间开关柜上的三相熔断器,发觉有一相阻抗为数百欧姆。将其拆开检查,发觉该熔断器接线螺钉松动,从而造成三相输入电源不平衡;重新连接后,机床恢复正常。 例302.驱动器出现报警“A”的故障维修 故障现象:一台配套FANUC 0T的数控车床,开机后,系统处在“急停”状态,显示“NOTREADY”,操作面板上的主轴报警指示灯亮。 分析与处理过程:依照故障现象,检查机床交流主轴驱动器,发觉驱动器显示为“A”。 依照驱动器的报警显示,由本章前述可知,驱动器报警的含义是“驱动器软件出错”,这一报警在驱动器受到外部偶然干扰时较容易出现,解决的方法通常是对驱动器进行初始化处理。在本机床按如下步骤进行了参数的初始化操作: 1)切断驱动器电源,将设定端S1置TEST。 2)接通驱动器电源。 3)同时按住MODE、UP、DOWN、DATASET4个键 4)当显示器由全暗变为“FFFFF”后,松开全部键, 并保持1s以上。 5)同时按住MODE、UP键,使参数显示FC-22。 6)按住DATASET键1s以上,显示器显示“GOOD”,标准参数写入完成。 7)切断驱动器电源,将S1(SH)重新置“DRIVE” 。 通过以上操作,驱动器恢复正常,报警消逝,机床恢复正常工作。 例303.驱动器出现过电流报警的故障维修 故障现象:一台配套FANUC 11M系统的卧式加工中心,在加工时主轴运行突然停止,驱动器显示过电流报警。 分析与处理过程:经查交流主轴驱动器主回路,发觉再生制动回路、主回路的熔断器均熔断,经更换后机床恢复正常。但机床正常运行数天后,再次出现同样故障。 由于故障重复出现,证明该机床主轴系统存在问题,依照报警现象,分析可能存在的要紧缘故有:

数控机床主轴驱动系统概述

主轴驱动系统概述 直流主轴驱动系统 从原理上说,直流主轴驱动系统与通常的直流调速系统无本质的区别,但因为数控机床高速、高效、高精度的要求,决定了直流主轴驱动系统具有以下特点: 1)调速范围宽。采用直流主轴驱动系统的数控机床通常只设置高、低两级速度的机械变速机构,电动机的转速由主轴驱动器控制,实现无级变速,因此,它必须具有较宽的调速范围。 2)直流主轴电动机通常采用全封闭的结构形式,可以在有尘埃和切削液飞溅的工业环境中使用。 3)主轴电动机通常采用特殊的热管冷却系统,能将转子产生的热量迅速向外界发散。此外,为了使电动机发热最小,定子往往采用独特附加磁极,以减小损耗,提高效率。 4)直流主轴驱动器主回路一般采用晶闸管三相全波整流,以实现四象限的运行。 5)主轴控制性能好。为了便于与数控系统的配合,主轴伺服器一般都带有D/A转换器、“使能”信号输入、“准备好”输出、速度/转矩显示输出等信号接口。 6)纯电气主轴定向准停控制功能。由于换刀、精密镗孔、螺纹加工等需要,数控机床的主轴应具有定向准停控制功能,而且应由电气控制系统自动实现,以进一步缩短定位时间,提高机床效率。数控机床常用的直流主轴驱动系统的原理框图如图7-1所示。 由图可见,主轴驱动系统类似于直流进给伺服系统,它也是由速度环和电流环构成的双环速度控制系统,通过控制直流主轴电动机的电枢电压实现变速。控制系统的主回路一般采用晶闸管反并联可逆整流电路。系统的工作原理可参阅直流进给伺服系统部分,在此不再赘述。 图7-1的上半部分为励磁控制回路,由于主轴电动机功率通常较大,且要求恒功率调速范围尽可能大,因此,一般采用他励电动机,励磁绕组与电枢绕组相互独立,并由单独的可调直流电源供电。

FANUC主轴驱动系统的通用故障分析

FANUC主轴驱动系统的通用故障分析 2009-01-13 11:23:34| 分类:资料下载|举报|字号订阅 FANUC主轴驱动系统的通用故障分析 FANUC 主轴驱动系统的简单分类: 序号名称维修品的特点简介所配系统型号 1直流可控 硅主轴伺 服单元 型号特征为A06B-6041-HXXX 主回路有12个可控硅组成正反两组可 逆整流回路,200V三相交流电输入,六路可控硅全波整流,接触器, 三只保险。电流检测器,控制电路板(板号为: A20B-0008-0371~0377)的作用是接受系统的速度指令(0-10V模拟 电压)和正反转指令,和电机的速度反馈信号,给主回路提供12 路触发脉冲。报警指示有四个红色二极管显示各自的意义。 配早期系统, 如:3,6,5, 7,330C,200C, 2000C等。 2交流模拟主 轴伺服单 元 型号特征为A06B-6044-HXXX,主回路有整流桥将三相185V交流电 变成300V直流,再由六路大功率晶体管的导通和截止宽度来调整 输出到交流主轴电机的电压,以达到调节电机的速度的目的。还有 两路开关晶体管和三个可控硅组成回馈制动电路,有三个保险、接 触器、放电二极管,放电电阻等。 控制电路板作用原理与上述基本相同(板号为: A20B-0009-0531~0535或A20B-1000-0070 ~ 0071 )。报警指示有 四个红色二极管分别代表8,4,2,1编码,共组成15个报警号。 较早期系统, 如: 3,6,7, 0A等。 3交流数字主 轴伺服单 元 型号特征为A06B-6055-HXXX,主回路与交流模拟主轴伺服单元相 同,其他结构相似,控制板的作用原理与上述基本相似(板号为 A20B-1001-0120),但是所有信号都转换为数字量处理。有五位的 数码管显示电机速度,报警号,可进行参数的显示和设定。 较早期系统, 如:3,6,0A, 10/11/12, 15E,15A,0E, 0B等。 4交流S系列型号特征为A06B-6059-HXXX,主回路该为印刷板结构,其他元件有0系列,

相关主题