搜档网
当前位置:搜档网 › 独立同分布的随机变量强大数定律的证明整理

独立同分布的随机变量强大数定律的证明整理

独立同分布的随机变量强大数定律的证明整理
独立同分布的随机变量强大数定律的证明整理

独立同分布随机变量序列的顺序统计方法(2019)

独立同分布随机变量序列的顺序统计方法 设有限长度离散随机变量序列12,,...,n x x x ,对其按从小到大的顺序排列,得到新的随机序列12,,...,n y y y ,满足:12...n y y y ≤≤≤;假设12,,...,n x x x 是独立同分布的连续取值型随机变量,每个变量的概率分布函数及概率密度分布函数分别为(),()F x f x 。 (1)求(1)k y k n ≤≤的概率密度分布函数()k y f y 解:k y 在y 处无穷小邻域取值的概率()k y f y dy 可以等效为这样一些事件发生的概率之 和:12,,...,n x x x 这n 个随机变量中有任意一个在y 处无穷小邻域取值,而剩余的n -1个随机变量中有任意k -1个的取值小于等于y ,对应的另外n -k 个变量的取值大于等于y 事件的个数(变量的组合数)为111n n k -???? ???-???? ,每个事件的概率为1[()]()[1()]k n k f y dy F y F y ---,则 11()()()[1()]11k k n k y n n f y dy f y dyF y F y k ---????=- ???-???? => 1!()()[1()]() (1)(1)!()! k k n k y n f y F y F y f y k n k n k --= -≤≤-- (2)求随机变量,(1)k l y y k l n ≤<≤的联合概率密度分布函数(,)k l y y f u v 解:(,) ()k l y y k l <在平面上的点(,) ()u v v u ≥处无穷小邻域取值的概率

香农采样定理

香农采样定理 采样定理,又称香农采样定理,奈奎斯特采样定理,是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E. T. Whittaker(1915年发表的统计理论),克劳德·香农与Harry Nyquist都对它作出了重要贡献。另外,V. A. Kotelnikov 也对这个定理做了重要贡献。 采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样定理指出, 如果信号是带限的,并且采样频率高于信号带宽的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。 带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是有限的。采样定理是指,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。 采样简介 从信号处理的角度来看,此采样定理描述了两个过程:其一是采样,这一过程将连续时间信号转换为离散时间信号;其二是信号的重建,这一过程离散信号还原成连续信号。 连续信号在时间(或空间)上以某种方式变化着,而采样过程则是在时间(或空间)上,以T为单位间隔来测量连续信号的值。T称为采样间隔。在实际中,如果信号是时间的函数,通常他们的采样间隔都很小,一般在毫秒、微秒的量级。采样过程产生一系列的数字,称为样本。样本代表了原来地信号。每一个样本都对应着测量这一样本的特定时间点,而采样间隔的倒数,1/T即为采样频率,fs,其单位为样本/秒,即赫兹(hertz)。 信号的重建是对样本进行插值的过程,即,从离散的样本x[n]中,用数学的方法确定连续信号x(t)。 从采样定理中,我们可以得出以下结论: 如果已知信号的最高频率f H,采样定理给出了保证完全重建信号的最低采样频率。这一最低采样频率称为临界频率或奈奎斯特频率,通常表

带通抽样定理

《信号与系统A(2)》课程自学报告 实施报告 题目:带通采样定理与软件无线电

带通抽样定理 实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。若带通信号的上截止频率为H f ,下截止频率为L f ,这时并不需要抽样频率高于两倍上截止频率H f ,可按照带通抽样定理确定抽样频率。 [定理] 带通抽样定理:一个频带限制在),(H L f f 内的时间连续信号)(t x ,信号带宽L H f f B -=,令N B f M H -=/,这里N 为不大于B f H /的最大正整数。如果抽样频率f ,10-≤≤N m (3.1-9) )(t x 。 对信号)(t x 以频率s f 抽样后,得到的采样信号)(s nT x 的频谱是)(t x 的频谱经过周期延拓而成,延拓周期为s f ,如图3-3所示。为了能够由抽样序列无失真的重建原始信号)(t x ,必须选择合适的延拓周期(也就是选择采样频率),使得位于),(H L f f 和),(L H f f --的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。 由于正负频率分量的对称性,我们仅考虑),(H L f f 的频带分量不会出现混叠的条件。 在抽样信号的频谱中,在),(H L f f 频带的两边,有着两个延拓频谱分量:),(s L s H mf f mf f +-+-和))1(,)1((s L s H f m f f m f ++-++-。为了避免混叠,延 ) 3.1-11) 综合式( 3.1-12) 这里m m 取零,则上述条件化为 H s f f 2≥(3.1-13) 这时实际上是把带通信号看作低通信号进行采样。 m 取得越大,则符合式(3.1-12)的采样频率会越低。但是m 有一个上限,因为m f f L s 2≤ ,而为了避免混叠,延拓周期要大于两倍的信号带宽,即B f s 2≥。 因此

随机变量及其分布列与独立性检验练习题附答案

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,() P B A 分别是( ) A.6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .53 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 23,乙在每局中获胜的概率为13 ,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10奖券,82元的,25元的,某人从中随机无放回地抽取3奖券,则此人得奖金额的数学期望为( ) A .6 B .395 C .415 D .9 7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A .148 B .124 C .112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为 23,向右移动的概率为13,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A .4243 B .8243 C .40243 D .80243

抽样定理的理论证明与实际应用分析

信号与线性系统分析综合练习题目:抽样定理的理论证明与实际应用

一、抽样和抽样定理 数字信号处理技术的优势和快速发展使得数字设备和数字媒体广泛应用,如手机、MP3、CD 和DVD 等。抽样定理是通信理论中的一个重要定理,是模拟信号数字化的理论依据,包括时域抽样定理和频域抽样定理两部分,又称取样定理、采样定理,是由奈奎斯特(Nyquist)和香农(Shannon)分别于1928年和1949年提出的,故又称为奈奎斯特抽样定理或香农抽样定理。 “抽样”就是利用周期抽样脉冲p(t)从连续信号f(t)中抽取离散样值的过程,得到的离散信号为抽样信号,也称为抽样信号,以?s (t )表示。抽样过程的数学模型就是连续信号与抽样脉冲序列相乘。 抽样过程所应遵循的规律,称抽样定理。抽样定理说明抽样频率与信号频谱之间的关系,是连续信号离散化的基本依据。在进行模A/D 转换过程中,当抽样频率f s.max 大于信号中最高频率f max 的2倍时(f s.max >2f max ),抽样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证抽样频率为信号最高频率的5~10倍。 抽样定理描述了在一定条件下,一个连续的信号完全可以用该信号在等时间间隔上的瞬时样本值表示,这些样本值包含了该连续时间信号的全部信息,利用这些样本值可以恢复原来的连续信号。也就是说,抽样定理将连续信号与离散信号之间紧密的联系起来,为连续信号与离散信号的相互转换提供了依据。通过观察抽样信号的频谱,发现它只是原信号频谱的线性重复搬移,只要给它乘以一个门函数,就可以在频域恢复原信号的频谱,然后再利用频域时域的对称关系,就能在时域上恢复原信号。 二、时域抽样定理的理论证明 时域抽样定理的完整描述是这样:一个频谱在区间(-ωm ,ωm )以外为零的频带有限信号?(t),可唯一地由其在均匀间隔T s (T s<1/2?m )上的样点值?s (t )=?(nT s )确定。以下为理论证明过程: 根据傅里叶变换和离散傅里叶变换定义,有 ΩΩ=Ω∞∞-?d e j X t x t j a a )(21)(π (1) ωπωππ ωd e e X n x n j j ?-=)(21)( (2) 将抽样过程的时域关系x (n )=x a (nT )带入(1)式,有 ΩΩ=Ω∞∞ -?d e j X n x nt j a )(21)(π (3) 比较(2)(3)式,可以得到 ωωπ πωd e e X d e j X n j j nT j a ??-Ω∞ ∞-=ΩΩ)()( 将模拟角频率Ω和数字角频率ω的关系ω=ΩT 带入上式,得

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

取样定理的证明及其应用

取样定理及其应用 测控五班穆可汗 学号:3013-202-136 引言: 取样定理论述了在一定条件下,一个连续信号完全可以用离散样本值表示、这些样本值包含了该连续信号的全部信息,利用这些样本值可以恢复原信号、可以说,取样定理在连续信号与离散信号之间架起了一座桥梁、为其互为转换提供了理论依据。 所谓“取样”就是利用取样脉冲序列s(t)从连续信号f(t)中“抽取”一系列离散样本值的过程、这样得到的离散信号称为取样信号fs(t) 、它是对信号进行数字处理的第一个环节。 一、定理证明: 设的频谱为离散信号x(n)的频谱为,由连续信号傅立叶变换和序列傅立叶变换可知: 在(1)式中令t=nT (T为时域取样周期,取样频率fs=1/T),可得: 对(3)式作变量代换,令,可得:

令对(4)整理可得, 对比(2)式和(5)式可得 上式给出了连续信号频谱与离散信号频谱的关系式从中可以看出,由连续信号的频谱可以通过以下两步得到离散信号的频谱:第一步,对连续信号的频谱进行换元、水平轴上的尺度展缩,信号的最高角频率由变化到;第二步,对频谱图以2π的整数倍为间隔进行平移,然后进行叠加,其幅值变为原来的1/T。由以上过程可知,只要,即原连续信号的最高频率,则频谱平移叠加后不会发生频谱的混叠,可以无失真地换原出原连续信号,取样定理得证。 二、取样定理的应用:基于带通取样定理的高速数据采集系统的硬件电路设计 数据采集是获得信息的一种基本手段。随着信息科学技术的迅速发展,它已经成为信息领域中不可缺少的部分。随着科技的不断进步,人们对数据采集系统的要求也越来越高,不仅要求取样的精度高,数据转换速度快,还要求具有抗干扰能力。

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

带通采样定理

3.1.3 带通抽样定理 实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。若带通信号的上截止频率为,下截止频率为,这时并不需要抽样频率高于两倍上截止频率,可按照带通抽样定理确定抽样频率。 [定理3-2] 带通抽样定理:一个频带限制在内的时间连续信号,信号带宽,令,这里为不大于的最大正整数。如果抽样频率满足条件 , (3.1-9) 则可以由抽样序列无失真的重建原始信号。 对信号以频率抽样后,得到的采样信号的频谱是的频谱经过周期延拓而成,延拓周期为,如图3-3所示。为了能够由抽样序列无失真的重建原始信号,必须选择合适的延拓周期(也就是选择采样频率),使得位于和的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。 由于正负频率分量的对称性,我们仅考虑的频带分量不会出现混叠的条件。 在抽样信号的频谱中,在频带的两边,有着两个延拓频谱分量:和。为了避免混叠,延拓后的频带分量应满足 (3.1-10) (3.1-11) 综合式(3.1-10)和式(3.1-11)并整理得到 (3.1-12) 这里是大于等于零的一个正数。如果取零,则上述条件化为 (3.1-13) 这时实际上是把带通信号看作低通信号进行采样。 取得越大,则符合式(3.1-12)的采样频率会越低。但是有一个上限,因为,而为了避免混叠,延拓周期要大于两倍的信号带宽,即。 因此 (3.1-14) 由于为不大于的最大正整数,因此不大于的最大正整数为,故有 综上所述,要无失真的恢复原始信号,采样频率应满足 , (3.1-15)H f L f H f ),(H L f f )(t x L H f f B -=N B f M H -=/N B f H /s f m f f m f L s H 212≤≤+10-≤≤N m )(t x )(t x s f )(s nT x )(t x s f )(t x ),(H L f f ),(L H f f --),(H L f f ),(H L f f ),(s L s H mf f mf f +-+-))1(,)1((s L s H f m f f m f ++-++-L s L f mf f ≤+-H s H f f m f ≥++-)1(m f f m f L s H 212≤≤+m m H s f f 2≥m m m f f L s 2≤B f s 2≥B f B f f f m L L s L =≤≤222N B f H /B f L /1-N 10-≤≤N m )(t x s f m f f m f L s H 212≤≤+10-≤≤N m

二维随机变量及独立性--教学设计

概率论与数理统计教学设计 课程名称概率论与数理 统计 课时100分钟 任课教师刘涛专业与班级财务管理B1601---B1606课型新授课课题二维随机变量及其分布 教材分析 “二维随机变量及其分布”属于教材第三章内容,位于教材的第75页至第93页.是在前一章“一维随机变量及其分布”的概念提出的基础上,对两个及两个以上的随机变量进行描述。可以说,二维随机变量及其分布是对前一章一维随机变量内容的总结以及综合应用。 学习目标 知识与技能 了解二维随机变量的背景来源; 了解二维随机变量的基本思想; 掌握二维随机变量的适用范围、基本步骤及其具体运 用。 过程与方法 通过日常生活中常常出现的实例的引入,引导学生分 析、解决问题,培养学生将实际问题转化为数学问题的 能力,培养学生提出、分析、理解问题的能力,进而发 展整合所学知识解决实际问题的能力。 情感态度与价 值观 通过介绍概率论与数理统计在实际生活中的运用,激发 学生自主学习的兴趣,也培养了学生的创新意识和探索 精神。 教学分析教学内容1.二维随机变量及联合分布函数定义 2.二维离散型随机变量及联合概率函数 3.二维连续型随机变量及联合概率密度 4.二维随机变量的边缘分布

5.随机变量的相互独立性 教学重点二维离散型、连续随机变量及其分布,相互独立性教学难点二维连续型随机变量及其分布 教学方法与策略 板书设计 前50分: 1.引例 3.二维离散变量 2.联合分布函数定义 4.二维连续变量 后50分: 5.边缘分布 6.相互独立性 教学时间设计 1.引导课题…………2分钟 2.学生活动…………3分钟 3.二维随机变量及联合分布函数定义……15分钟 4.二维离散型随机变量及联合概率函数……10分钟 5.二维连续型随机变量及联合概率密度……20分钟 6.二维随机变量的边缘分布……20分钟 7.随机变量的相互独立性……25分钟 8.课堂小结…………5分钟 教学手段多媒体播放教学视频、PPT演示与板书演练书写相结合。 教学进程 教学意图教学内容教学理念

带通采样定理证明

带通信号的采样与重建 一、带通采样定理的理论基础 基带采样定理只讨论了其频谱分布在(0,H f )的基带信号的采样问题。作为接收机的模数转换来说:接收信号大多为已调制的射频信号。射频信号相应的频率上限远高于基带信号的频率上限。这时如果想采用基带采样就需要非常高的采样速率!这是现实中的A/D 难以实现的。这时,低通采样定理已经不能满足实际中的使用要求。 带通采样定理是适用于这样的带通信号的采样理论基础,下面给出定理。 带通采样定理:设一个频率带限信号()x t 其频带限制在(,)L H f f 内,如果其采样速率s f 满足式: s f = 2()21L H f f n ++ (2-1) 式中, n 取能满足2()s H L f f f ≥-的最大整数(0,1,2…),则用s f 进行等间隔采样所得到的信号采样值()s x nT 能准确的确定原信号()x t 。 带通采样定理使用的前提条件是:只允许在其中一个频带上存在信号,而不允许在不同的频带同时存在信号,否则将会引起信号混叠[1]。如图所示,为满足这一条件的一种方案,采用跟踪滤波器的办法来解决,即在采样前先进行滤波[1] ,也就是当需要对位于某一个中心频率的带通信号进行采样时,就先把跟踪滤波器调到与之对应的中心频率0n f 上,滤出所感兴趣的带通信号()n x t ,然后再进行采样,以防止信号混叠。这样的跟踪滤波器称之为抗混叠滤波器。 图 带通信号采样

式(2-1)用带通信号的中心频率0f 和频带宽度B 也可用式(2-2)表示: 0214s n f f += (2-2) 式中,()0L H f f f =+,n 取能满足2s f B ≥(B 为频带宽度)的最大正 整数。 当频带宽带B 一定时,为了能用最低采样速率即两倍频带宽度的采样速率(2s f B =),带通信号的中心频率必须满足0212 n f B +=。也即信号的最高或最低频率是信号的整数倍。 带通采样理论的应用大大降低了所需的射频采样频率,为后面的实时处理奠定了基础。但是从软件无线电的要求来看,带通采样的带宽应是越宽越好,这样对不同基带带宽的信号会有更好的适应性,在相同的工作频率范围内所需要的“盲区”采样频率数量减少,有利于简化系统设计。另外,当对于一个频率很高的射频信号采样时,如果采样频率设的太低,对提高采样量化的信噪比是不利的。所以在可能的情况下,带通采样频率应该尽可能选的高一些,使瞬时采样带宽尽可能宽。但是随着采样速率的提高带来的一个问题是采样后的数据流速率很高。因此一个实际的无线电通信带宽一般为几千赫兹到几百赫兹。实际对单信号采样时采样率是不高的。所以对这种窄带信号的采样数据流降速是完全可能的。多速率信号处理技术为这种降速处理实现提供了理论依据。 二、带通采样过程 待采样信号为中频是100MHz ,带宽为2MHz 的带通信号: fc0=100e6; //中频频率 fc1=99e6; //信号一的频率

随机变量独立同分布的概念

1、随机变量独立同分布的概念 随机变量X1和X2独立,是指X1的取值不影响X2的取值,X2的取值也不影响X1的取值。随机变量X1和X2同分布,意味着X1和X2具有相同的分布形状和相同的分布参数,对离散型随机变量具有相同的概率函数,对连续型随机变量具有相同的概率密度函数,有着相同的分布函数,相同的均值、方差与标准差。 反之,若随机变量X1和X2是同类型分布,且分布参数全相同,则X1和X2一定同分布。 一般来说,在相同条件下,进行两次独立试验,则这两次实验结果所对应的随机变量是独立同分布的。 比如,将一枚质地均匀的硬币抛掷两次,设X1为第一次抛掷硬币的结果,X2为第二次抛掷硬币的结果。显然,第一次抛掷硬币的结果对第二次的结果没有影响,反之亦然,故X1和X2相互独立。 同时,X1和X2都只有两种试验结果:正面朝上和背面朝上,以0代表正面朝上,1代表背面朝上,则 P(X1=0)=P(X2=0)=0.5, P(X1=1)=P(X2=1)=0.5, 故X1和X2是独立同分布的随机变量。 随机变量独立同分布的特性可以推广到三个或更多个随机变量。 2、独立同正态分布(定理1) 3、独立同分布(定理2——中心极限定理) 当的分布对称时,只要n 5,那么,近似效果就比较理想;当的分布非对称时,要求n 值较大,一般n 30近似效果较理想。 这个定理表明:无论随机变量服从何种分布,可能是离散分布,也可能是连续分布,连续分布可能是正态分布,也可能是非正态分布,只要独立同分布随机变量的个数n较大,那么,随机变量之和的分布、随机变量均值X-的分布都可以近似为正态分布。这一结论意义深远。 4、标准误 统计学中把均值X-的标准差称为均值的标准误,记为,无论是正态还是非正态,均值X-的标准误都有 SEM随着n的增加而减少。 常常对一个零件的质量特性只观测一次,就用该观测结果去估计过程输出的质量特性。这里建议一种简单有效的减少测量系统误差的方法。对同一个零件的质量特性作两次或更多次重复测量,用其观测结果的平均值去估计过程输出的质量特性,就可以减少标准差。当然,这不是回避使用更精确量具的理由,而是一种提高现有量具精度的简易方法,多次测量值的平均值要比单次测量值更精确。

随机变量独立性的性质

议随机变量独立性及其应用 作者:张利荣 指导老师:桂春燕 摘要 随机变量的独立性是概率论中的一个重要概念.本文首先介绍了随机变量独立性的定义, 随机变量独立性的性质,然后对离散型随机变量和连续型随机变量的独立性分别给出了不同的判别方法,从而针对不同的问题运用相应的判别方法进行判定,除此还通过随机变量独立性的性质及其判别方法得出了一些相关的推论,并对其应用进行了举例说明. 关键词 离散型随机变量 连续型随机变量 独立性 联合分布 1 引言 概率统计是研究随机现象中数量规律的一门数学学科,它是近代数学的重要分支,理论严谨、应用广泛,并且与其他学科互相渗透结合.概率论是对随机现象统计规律演绎的研究,由于随机现象的普遍性,使得其具有极其广泛的应用,特别是在科学技术、工农业生产等方面.独立性是概率统计中最基本的概念之一,无论在理论研究还是在实际应用中都具有特别重要的意义.概率论和数理统计已有的成果大部分都是在某种独立性的前提下才得到的.因而随机变量独立性的研究倍受重视. 随机变量独立性的研究一直经历着缓慢的发展过程.进入二十世纪九十年代后,随机变量独立性判定的研究进入了一个新的阶段.关于这方面的著作、文献逐渐多了起来,如文献[2]中毛纲源对随机变量独立性的判定进行了分析并举例说明;文献[7]中明杰秀等对二维随机变量独立性的判定及其应用等相关内容进行了论述.本文将在此基础上对随机变量独立性做一下详细、全面的论述,重点介绍离散型随机变量和连续型随机变量独立性的判定方法,并对随机变量的独立性的应用进行举例说明. 2 随机变量独立性的定义 定义]1[ 设),(Y X 为二维随机变量,若对于任意的实数y x ,,事件{}x X ≤与{}y Y ≤相互独立,即 ()()() y Y P x X P y Y x X P ≤?≤=≤≤, , )1( 则称X 与Y 相互独立. 若()y x F ,为X 与Y 的联合分布函数,()x F X 、()y F Y 分别是X 与Y 的边缘分布函数,则 )1(式等价于 ()()()y F x F y x F Y X ?=,. 3 随机变量独立性的性质及其判别方法

带通信号取样定理

带通信号取样定理 一个连续带通信号受限于[]H L f f ,,其信号带宽为L H f f B -=,且有 kB mB f H += (1) 其中,()[]k f f f m L H H --=,k 为不超过()L H H f f f -的最大正整数,由此可 知,必有10<≤m 。 则最低不失真取样频率min s f 为 ()??? ? ?+=+==k m B k kB mB k f f H s 1222min (2) 证明: 取样不失真的基本要求是样值序列的频谱各个谱块不重叠。这样就可以采用带通滤波器恢复原来的带通信号。可见从频域分析,证明直观、清晰。 以下,分两步来证明。 (1)先证明当0=m 时的情况。由公式(1)和(2),有 kB f H = B f s 2min = (3) 分析一个带通信号()t x ,其频谱为()f X ,如图1所示。

s f -s f 2-s f 5.2-s f 3-s f 4-s f s f 2s f 5.2s f 3s f 4() f X f L f H f L f -H f -I II s s s s s s s s f s f -s f 2-s f 3-s f 4-s f s f 2s f 3s f 4f () f X s s f 2-s f 20 f s f 5.2-s f 5.2() f H s f 2-s f 5.2-s f 2s f 5.2() f X 0 f I II (a ) (b ) (c ) (d ) (e ) 图1 带通信号kB f H =时的频谱图 其中图(a )表示()t x 的带通信号频谱,其特点是最高频率H f 为带宽的整数倍k ,这里5=k ,图(b )表示采用()t s T δ对带通信号()t x 取样,而取样频率 ()L H s f f B f -==22,其中()t s T δ的频谱为()f s f δ。图(c )表示

随机变量及其分布列与独立性检验练习题附答案

随机变量及其分布列与独 立性检验练习题附答案 It was last revised on January 2, 2021

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是( ) A. 6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .5 3 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 2 3 ,乙在每局中获胜的概率为1 3,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10张奖券,8张2元的,2张5元的,某人从中随机无放回地抽取3张奖券,则此人得奖金额的数学期望为( ) A .6 B . 395 C .41 5 D .9

7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A . 148 B . 124 C . 112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为23,向右移动的概率为1 3 ,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A . 4243 B .8243 C .40 243 D . 80 243 二、填空题 9.已知55104)1()1()1)(2(++???+++=-+x a x a a x x ,则=++531a a a ______. 10.乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_____________________. 11.设ξ是离散型随机变量, 21 (),()33P a P b ξξ==== ,且a b <,又42 ,39E D ξξ== ,则a b +的值为______ _. 12.某车站每天8:009:00,9:0010:00--都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为 到站的时刻 8:10 9:10 8:30 9:30 8:50 9:50 概率 一旅客8:20到站,则它候车时间的数学期望为_______。(精确到分) 三、解答题

第二章-随机变量的分布及数字特征

第二章 随机变量及其数字特征 一、教学要求 1. 理解随机变量的概念,掌握离散型和连续型随机变量的描述方法,理解概率分布列和概率密度函数的概念和性质; 2. 理解分布函数的概念和性质,会利用概率分布计算有关事件的概率; 3. 会利用分布函数计算离散和连续随机变量函数的数字特征; 4. 熟练掌握退化分布、两点分布、二项分布、几何分布、超几何分布、泊松分布和正态分布、指数分布、均匀分布等常用概率分布及其数字特征的计算和相关概率的求解; 5. 应用公式会求简单随机变量函数的概率分布及数字特征。 二、重点与难点 本章的重点是随机变量概率分布及其性质,常见的几种分布,随机变量函数的分布、数学期望和方差的计算;难点是随机变量函数的分布及数学期望的计算。 §2.1 随机变量及其分布 一、 随机变量 1.引入随机变量的必要性 1)在随机现象中,有很大一部分问题与数值发生关系。如:产品检验问题中,抽样中 出现的废品数;在车间供电问题中某时刻正在工作的车床数;在电讯中,某段时间的话务量等等。 2)有些初看起来与数值无关的随机现象,也常常能联系数值来描述。如: 掷硬币问题中,记出现正面时为“1”,出现反面时为“0”。 注:这些例子中,试验的 结果能用一个数字X 来表示,这个数X 是随着试验的结果的不同而变化的,也即它是样本点的一个函数,这种量以后称为随机变量。 2.引例 先看一个具体的例子: 例1 袋中有3只黑球,2只白球,从中任意取出3只球,观察取出的3只球中的黑球的个数. 我们将3只黑球分别记作1,2,3号,2只白球分别记作4,5号,则该试验的样本空间为 ()()()()()()()()()()123124125134135145234235245345?? ? ??? Ω=? ??? ??? ? ,,,,,,,,,,,,,,,,,,,, 我们记取出的黑球数为 X ,则 X 的可能取值为1,2,3.因此, X 是一个变量. 但是, X 取什么值依赖于试验结果,即 X 的取值带有随机性,所以,我们称 X 为随机变量.

低通与带通抽样定理验证

低通与带通抽样定理验证 【分析内容】按照低通抽样定理与带通抽样定理,分别对构造的低通型信号和带通型信号、两种抽样后的信号及滤波重建信号进行时域和频域观察,形象地给出低通抽样定理与带通抽样定理(带通部分选做)。 【分析目的】通过分析验证低通抽样定理与带通抽样定理。 【系统组成】抽样定理实质上研究的是随时间连续变化的模拟信号经抽样变成离散序列后,能否由此离散序列值重建原始模拟信号的问题。对于低通型和带通型模拟信号,分别对应不同的抽样定理,抽样定理是模拟信号数字化的理论基础。 对上限频率为f H 的低通型信号,低通抽样定理要求抽样频率应满足: 对下限频率为f L 、上限频率为f H 的带通型信号,带通抽样定理要求抽样频率满足: 其中, 为信号带宽,n 为正整数, 。 应该注意的是,当 时,无论带通型信号的f L 和f H 为何值,只需将抽样频率设定在2B ,理论上就不会发生抽样后的频谱重叠,而不像低通抽样定理要求的必须为上限频率的2倍以上。仿真分析系统将按照图1所示结构创建。 其中,对于恒定频谱的冲激函数,通过低通滤波产生低通型信号,再进行低通抽样;通过带通滤波产生带通型信号,再进行带通滤波产生带通抽样,最后分别滤波重建原始信号。仿真分析时,设低通滤波器的上限频率为10Hz ,带通滤波器下限频率为100Hz 、上限频率为120Hz ,低通抽样频率选为30Hz ;带通型信号上限频率f H = 6×20=120Hz (B=20Hz ,n=6),带通抽样频率至少应取40Hz ,现取60 Hz 的带通抽样频率。 【创建分析】 第1步:进入SystemView 系统视窗, 设置“时间窗”参数如下: ① 运行时间:Start Time: 0秒;Stop Time: 0.4秒; ② 采样频率:Sample Rate= 10000Hz 。 第2步:在SystemView 系统窗下,创 建的仿真分析系统如图2所示。仿真系统中 各图符块的参数设置情况见表1。 第3步:创建完仿真系统后,单击运行 按钮,首先观察时域波形,四个“Real Time ” 图符块显示框中的波形如图3所示。两个重 H s f f 2≥]1[2n k B f s +?≥L H f f B -=10<≤k nB f H = 图1 仿真分析系统结构 图2 SystemView 仿真分析系统

二维随机变量及独立性--教学设计

概率论与数理统计教学设计 课程名称 概率论与数理 统计 课时100分钟 任课教师课型 刘涛 新授课 专业与班级 课题 财务管理B1601---B1606 二维随机变量及其分布 “二维随机变量及其分布”属于教材第三章内容,位于教材的第75 教材分析 页至第93页.是在前一章“一维随机变量及其分布”的概念提出的基础上, 对两个及两个以上的随机变量进行描述。可以说,二维随机变量及其分布 是对前一章一维随机变量内容的总结以及综合应用。 学习目标 知识与技能 过程与方法 情感态度与价 值观 了解二维随机变量的背景来源; 了解二维随机变量的基本思想; 掌握二维随机变量的适用范围、基本步骤及其具体运 用。 通过日常生活中常常出现的实例的引入,引导学生分 析、解决问题,培养学生将实际问题转化为数学问题的 能力,培养学生提出、分析、理解问题的能力,进而发 展整合所学知识解决实际问题的能力。 通过介绍概率论与数理统计在实际生活中的运用,激发 学生自主学习的兴趣,也培养了学生的创新意识和探索 精神。 1.二维随机变量及联合分布函数定义 2.二维离散型随机变量及联合概率函数 教学分析教学内容 3.二维连续型随机变量及联合概率密度 4.二维随机变量的边缘分布

5.随机变量的相互独立性 教学重点教学难点二维离散型、连续随机变量及其分布,相互独立性二维连续型随机变量及其分布 教学方法与策略 前50分: 1.引例 3.二维离散变量 板书设计 2.联合分布函数定义 4.二维连续变量 后50分: 5.边缘分布 6.相互独立性 1.引导课题…………2分钟 2.学生活动…………3分钟 3.二维随机变量及联合分布函数定义……15分钟 4.二维离散型随机变量及联合概率函数……10分钟 教学时间设计 5.二维连续型随机变量及联合概率密度……20分钟 6.二维随机变量的边缘分布……20分钟 7.随机变量的相互独立性……25分钟 8.课堂小结…………5分钟 教学手段多媒体播放教学视频、PPT演示与板书演练书写相结合。 教学进程 教学意图教学内容教学理念

带通采样定理和低通采样定理

带通采样定理和低通采样定理 模拟信号经过采样转换成数字信号,时域分析为模拟信号与采样的周期冲击串相乘,根据傅里叶变换的时频对应关系可知,频域以采 样周期为周期的频谱搬移过程,低通采样定理要求采样频率大于信号最高上限频率的2倍,频谱搬移的过程不会导致频谱混叠,带通采样 频率小于这一条件,当满足一定的条件后频谱也不会混叠,但是此时频带发生传动,信号的重构和低通信号有很大差别。 一、低通采样周期性频谱搬移 低通采样的原理分析见数字信号处理(西电版)。 首先,低通采样实现的原理是进行周期性的频谱搬移,实际FFT 变换的结果只有(O:fs或者-fs/2:fs/2),周期频谱搬移就是每个周期的信号频谱相同,只是索引值不同带来的结果不同,可以保持一个周期频谱不变,改变对应的真实频率范围获得搬移的效果。 @——fftshift()函数对应的真实频谱范围:fs*(-N/2:N/2-1)/N @------fft()函数对应的真实频谱范围:fs*(0:N-1)/N 庚宙IB茸障站霆号的魚谒 E 64 2 Q 2 4 € B . :1. ■ U

的耳 IS r/ 电 £写抽Mil 保持原始信号的频谱不变,转换频谱搬移周期,刚好达到两倍采 样频率,谱结构如下: 结论: (1) 低通采样定理的周期性频谱搬移以采样频率为周期,采样频率 必须大于信号最高上限的二倍,否则就会导致频谱混叠。 (2) 低通采样后的信号重构只需要经过低通滤波器即可。 二、带通采样定理原理和重构分析 1、带通采样定理原理 带通采样定理: 一个频带限制在f L ,f H 内的连续时间信号X t ,信号带宽 B f H f L ,令 N 为不大于f H B 的最大正整数,当采样频率f s 满足一 下条件 -] I - 1 i r ■ q r n 1 1 I 1 : ! i i …-一. .... r 1 i i i i i : 1 1 1 1 i i J L J i L i * L 1 J i L ] J L €

相关主题