搜档网
当前位置:搜档网 › 镁质耐火材料.doc

镁质耐火材料.doc

镁质耐火材料.doc
镁质耐火材料.doc

第一讲镁质耐火材料的基本概念及选矿技术路线

一、镁质耐火材料定义及常识

以菱镁矿、海水镁砂和白云石等作原料,以方镁石为主晶相,MgO含量在80%以上的耐火材料。属于碱性耐火材料。

镁质耐火材料的耐火度高,对碱性渣和铁渣有很好的抵抗性,是一种重要的高级耐火材料。镁质耐火材料主要用于平炉、电炉、氧化转炉、水泥窑、有色金属冶炼炉和碱性耐火材料的煅烧窑等。

在我国菱镁矿主要产在辽宁南部,大石桥与海城一带,因此这一带的相关企业比较多。

方镁石熔点为2800℃。我国制造镁砖的主要原料是烧结镁砂,对其要求化学成分和烧结程度。一般以密度衡量烧结程度,也可用重烧收缩、水化性能、镁砂的外观颜色来衡量。随着近年来镁砂品质的下降,97高纯的密度要求下降,要求值大于3.22g/cm3。

纯菱镁矿煅烧后为白色,由于铁氧化物的影响,染成褐色、棕褐色,SiO

2

量高者趋近于白色,Fe

2O

3

含量高者趋近于深褐色,含CaO高的趋近于黑色。

二、MgO材料中各种杂质元素对耐火材料的影响。

备注:CA 铝酸钙C3MS2镁蔷薇辉石M2S 镁橄榄石C2S 硅酸二钙

CMS 钙镁橄榄石C3S 硅酸三钙

C4AF 铁铝酸四钙C5A3 三铝酸五钙

MK 镁铬尖晶石MA 镁铝尖晶石

MF 镁铁尖晶石

结论:

1、高MgO时(MgO>96%)

CaO/SiO2≥2(分子量比),除MgO物相外只有C2S高温相存在,如CaO/SiO2<.1.87(质量比)时,有低温相CMS存在,高温性能下降,CaO不是有害杂质,其次为Fe2O3与Al2O3。(分子比C/S=2与质量比C/S=1.87是同一概念)2、低MgO(Mg<96%)

不要求CaO/SiO比,SiO2不限,CaO为有害杂质。CaO全部形成C2MS2与CMS,使物系高温性能下降,其次Fe2O3、Al2O3也为有害杂质相。

在低CaO体系中SiO2全部形成M2S,系高温晶相,所以在低MgO体系中不限止SiO2绝对量。

镁质耐火材料的化学组成及C/S决定着材料的平衡矿物组成。这一规律性能使我们从已知的化学组成,较为精确在预计产品的平衡矿物组成,进而分析出产品的性能,反之也能精略地设计具有预期性能材料的化学组成和配料比。

Al2O3、Cr2O3、Fe2O3对MgO矿物的影响:这些R2O3的加入会降低最大强度值,且使达到最大强度的C/S的值降低。当C/S增加到超过最佳比值后,形成了低熔物,铁酸钙、铝酸盐和铬铁矿,会使强度下降。

从抗渣性考虑,对镁质材料来说,高的C/S也是需要的,因为在氧气转炉中使用时,C/S比高的镁砖对初期渣(氧化硅含量高)的抗侵蚀性更好,另外在热面上SiO氧化生成SiO2,进入含碳质耐火材料的工作层内,高的C/S比也可阻止靠工作层的硅酸盐的C/S比的降低。

抗渣性主要取决于制品的组织结构和化学组成,特别是结合物的组成。在一般情况下,以CMS为结合物的比以C2S和M2S为结合物的制品要致密,但CMS 始熔温度较后者低,而且C2S和M2S对碱性和铁渣的化学稳定性高,所以,以C2S和M2S为结合物的制品的抗渣性更好。

镁质耐火材料的主晶相为方镁石,结合相中则以所谓的第二固相的耐火矿物为主。若结合相以低熔点矿物为主,则性能低。主晶相决定镁质材料的高耐火、抗碱性渣、铁渣性能好的特点。而结合物的性质及分布往往成为制品的薄弱环节,决定制品优劣的关键。

三、对选矿路线的要求:

对选矿工艺最基本的要求是:

1、第一次反选最大比例选出特级矿粉(比如70%)

2、为充分利用尾矿粉,采用正选方法降低尾矿CaO含量,以保证下级粉高温性能。

3、选矿水最大程度的回用。

附件一.特种烧结镁砂选矿技术要求

附件二.预设计选矿技术路线A

附件三.预设计选矿技术路线B

四、中矿粉品种:

分选中矿粉可能有如下品种:

(一)按计划的选矿路线产生以下品种:

1、中档砂矿粉;

在一次尾矿正选后,再进行反选,所产生第一个品种是中档镁砂精矿粉,由于前次正选去除一部分CaO后,矿粉中MgO约达45%以上,焙烧后MgO能达94—95%,只要CaO较低(即可视为优质中档矿粉),MgO的高低和SiO2含量多少正对其高温性能影响不大。

2、橄榄石砂矿粉

中矿砂通过一次正选除CaO,二次反选后选出中档镁砂矿粉,尾矿中富集SiO2看橄榄石精矿粉,可焙烧成优质人工合成镁橄榄石砂。

用选矿选出的橄榄石矿粉,煅烧后的橄榄石砂,理化性能优于天然砂,能合成制造优质橄榄石砖系,性能优于普通烧镁砖与中档镁砖,其价格高于中档镁砂。

有关橄榄石产品简介见附件四。

(二)在系统选矿中可能产生二种最终尾矿

1、在预设计选矿技术路线情况下,最终尾矿为尾矿正选后产生的尾矿,其估计成分为MgO(34%),按10000吨/日处理量称有900吨/日,设计处理方案是用尾砂粉30%与二级菱镁石—150目矿粉70%(MgO:46%)相配,经轻烧后生产MgO:~85%的活性MgO粉,作为建材粉

该方案实现的条件是原矿CaO要尽可能低(如CaO<0.8%)。

2、在原矿CaO较高时,再一次反选产生70%精矿粉后,尾矿再进行二次反选,能产生3000×30%=900吨/日尾矿,其化学成分复杂且不可预见,只能暂作尾矿处理。二次反选选出的为熟料,其成分为MgO:80%粉,总量为2000吨/日。

附件一

特种烧结镁砂选矿技术要求

一、高纯砂成品化学成分设定

高纯特种镁砂

MgO+CaO≥98.5% CaO/MgO>2

CaO<1.8% SiO2<0.7%(max)

精矿粉成分设定

SiO2≤0.3% CaO≤0.8% CaO/SiO2>2

二、中档砂化学成分设定

CaO≤1.2% MgO≥94%

二次中矿选后成分

CaO≤0.5% SiO2≤1.2%

CaO≤0.4% SiO2≤1.5%

CaO≤0.3% SiO2不受限

为尽可能降低选矿成本,最大量回用选矿水,必须要采取以下原则:

1、重新明确主产品特种高纯镁砂化学成分的要求,要强调MgO+CaO含量及CaO/SiO2比,而不单一强调MgO含量。

2、明确尾矿副产品是中档镁砂与优质橄榄石砂,尾矿产品中强调低CaO为原则,所以尾矿一次正选除CaO是重中之重。

3、为保证主精矿粉在一次反选即达到精矿粉质量及选出率,必须慎重确认矿源的成分。

4、重新预设计的选矿线路,最终产品为:

(处理矿石300万吨/年前提)

A、特一级、特二级优质高纯砂105万吨/年

B、中档镁砂30万吨/年

C、优质镁橄榄砂10—15万吨/年

有中矿正选后尾矿,比例成分未知。

镁碳质耐火材料的生产工艺及常用原料详解

镁碳质耐火材料的生产工艺及常用原料详解 镁碳耐火材料是上世纪七十年代日本为电炉应用而开发的,于1970年首次在电炉上进行了应用性试验,经过了六年的应用性试验之后,镁碳耐火材料被正式推广应用在电炉上。与其它碳素材料相比,镁碳质耐火材料中添加的天然鳞片石墨及碳质结合剂,使其具有优良的导热系数,较小的热膨胀率,大大增强了镁碳砖的性能,特别是提高了其抗渣侵蚀性及热震稳定性。已广泛地应用于超高功率电弧炉炉墙、炉顶、蚀损严重的高温热点、渣线及出钢口部位,也用于转炉炉口、出钢侧、耳轴壁和熔池等处,以及钢包精炼炉的渣线处。 镁碳耐火材料的生产原料及工艺具体如下: 1 镁砂 生产镁碳质耐火材料的主要原料是镁砂。由于镁砂质量的优劣对镁碳质耐火材料的性能起着很大的影响作用,所以在生产中,选择合理的镁砂成为生产优质镁碳质耐火材料首要步骤。常用镁砂为电熔镁砂和烧结镁砂,它们具有不同的特点,其矿物组成主要是方镁石。在生产镁碳质耐火材料时,所考虑的镁砂性能参数主要有以下几项内容: ①镁砂纯度(MgO含量); ②杂质相及其含量; ③镁砂的体积密度、气孔率以及方镁石晶粒尺寸等。

镁砂的纯度对镁碳质耐火材料的抗渣侵蚀性起着重要的影响,这是因为当MgO含量很高时,其杂质相就相对减少,MgO晶体被作为杂质相的硅酸盐相分割程度降低,MgO晶体为直接结合,所以提高了镁碳质耐火材料的抗渣侵蚀性。 镁砂中的杂质相主要有SiO?、CaO、B?O?、Fe?O?等,如果镁砂中含有很高的杂质,特别是B?O?,将对镁碳质耐火材料的耐火度及高温性能带来不利的影响,杂质相将从以下几个方面产生作用: ①杂质相含量高,将降低MgO晶体的直接结合程度; ②SiO?、CaO等在高温下会与MgO形成共熔体; ③SiO?、Fe?O?等杂质在高温下会优先与C反应,使得镁碳砖中产生气孔,降低了镁碳质耐火材料的抗渣侵蚀性。 镁碳质耐火材料在使用过程中,溶渣会通过气孔与方镁石晶界渗入镁砂颗粒与方镁石晶体产生反应,导致其损毁,特别是当镁砂中还有很高的CaO、SiO?等杂质时,会加速其损毁速率,导致镁砂中的方镁石晶体被不断侵蚀,剥落进入溶渣中。因此,体积密度高的镁砂,相对杂质含量就少,可以降低被溶渣侵蚀的途径,提高镁碳质耐火材料的抗渣侵蚀性。同时,较大的方镁石晶粒能提高晶粒间的直接结合程度,减小晶界面积,降低溶渣向晶界处渗透的路径。电熔镁砂的晶粒尺寸较大且晶粒间的直接结合程度较高,在生产总一般选择电熔镁砂为原料以提高制品的抗渣侵蚀性。

碳化硅质耐火材料(总)

碳化硅质耐火材料 材料科学与工程学院 10材料2班李佳 摘要:本文介绍了碳化硅质耐火材料的性质,发展和应用 关键字:碳化硅质耐火材料,性质,发展,应用 碳化硅具有较高的耐火性能和化学稳定性, 因此被广泛应用于各种耐火材料中, 但目前我国尚无完整的不同含量碳化硅耐火材料的化学分析方法。碳化硅质耐火材料的分析项目一般有: 游离碳、二氧化硅、碳化硅、游离硅、三氧化二铁、三氧化铝。 1.游离碳 分析游离碳有3 种方法, 即燃烧重量法、气体容量法、气体重量法。燃烧重量法只适用于纯碳化硅试样, 含有机物、结晶水以及其它可挥发物性质的耐火材料不适用此法来测定; 气体容量法由于分析速度快, 精度高, 操作简便, 最为常用; 气体重量法由于测试时间长, 精度不高, 不常用, 但此法可以任意延长试样的分解时间, 同时, 二氧化碳吸收量较大, 故适用于测定碳化硅质耐火材料中含碳高的耐火材料。 2.碳化硅 分析碳化硅有直接法及间接法。间接法又分为以测定碳化硅中的碳来换算和以测定碳化硅中的硅来换算两大类。间接法测硅方法对仪器要求低, 换算系数小, 但测试时间长, 操作复杂, 不易掌握, 测碳方法快速, 简便,干扰小, 适用范围宽, 但对仪器精密度要求高, 换算系数大。常用气体容量法和气体重量法及红外吸收法测碳。直接

法快速简便, 但适用范围窄。 3.二氧化硅 分析二氧化硅有重量- 钼蓝光度法、挥散法、硅钼蓝比色法3 种。挥散法只适应于纯碳化硅试样, 采用硝酸、氢氟酸处理试样, 游离硅和二氧化硅发生反应, 生成四氟化硅逸出, 而碳化硅则不与氢氟酸反应, 从总量中扣除游离硅含量, 即可得二氧化硅含量。此方法理论上的准确度高, 但整个操作流程相对比较复杂, 测定周期长, 所以主要用于测碳化硅质制品中的总硅量。然后通过计算, 得出二氧化硅量。 4.游离硅 分析游离硅采用硅钼蓝比色法测定, 可分为直接法和间接法两种。直接法是采用游离硅能溶于热的氢氧化钠溶液的性质, 将其与二氧化硅及碳化硅分离, 然后采用硅钼蓝比色, 从而得其含量。间接法将游离硅及二氧化硅溶于硝酸钠、硝酸、氢氟酸混合液中, 用硅钼蓝吸光光度法测得其含量减去二氧化硅的含量换算而得。 5.三氧化二铁 采用邻二氮杂菲光度法、磺基水杨酸光度法、EDTA 容量法测定。邻二氮杂菲灵敏度高, 准确度好, 测定酸度允许范围宽。磺基水杨酸灵敏度低,对低含量铁的试样测定准确度不够。EDTA 容量法操作简便, 快速, 但对试液酸度、温度、滴定速度有严格要求, 容易偏高。 6.三氧化二铝 对于常量三氧化二铝的测定有强碱分离法、氟化物置换及铁铝连

水泥窑用的镁质耐火材料综合分析

水泥窑用的镁质耐火材料综合分析 以氧化镁为主成分和以方镁石为主晶相的耐火材料统称为镁质耐火材料。目前,镁质耐火材料的主要品种有镁砖、镁硅砖、镁铝砖、镁铬砖、镁钙砖、镁炭砖等。 天然的镁质原料通常以菱镁矿的形式存在,菱镁矿是由碳酸镁(MgCO3)组成的,经过加工处理后称为菱镁石。该料在竖窑、回转窑或电炉中烧结或熔融后,才可使用。其反应式如下: MgCO3——?MgO+CO2 MgO(小晶粒)——?MgO(大晶粒) 菱镁石在800?1000℃的温度下烧结的产物,称为轻烧镁石。轻烧镁石是镁质耐火制品的结合剂,是合成尖晶石、制造镁质水泥、二步煅烧镁砂、电熔镁砂的原料,也是陶瓷、建材和化工等部门的一种重要原料。 烧结镁砂是在1600?1900℃的温度下充分烧结的产物。烧结镁砂是水化活性很低、密度很高的再结晶矿物,其结品矿物形态为方镁石。其晶体发育比较完整,结构致密,密度高。其主要理化性能见表5-24。 表5-24方镁石的主要理化性能指标 1、镁铝尖晶石砖 镁铝尖晶石砖是以高纯镁砂和预合成镁铝尖晶石为主要原料,经合理级配、高压成型、高温烧成后制得的制品。其特点是纯度高、强度高、抗侵蚀、线膨胀系数低,抗热震性好,是水泥回转窑过渡带的理想耐火材料。

镁铝尖晶石砖生产配料中镁铝尖晶石的加入量并非越多越好,随着尖晶石量增加抗热震性变好,但由于不匹配膨胀会使强度(尤其抗折强度)下降,以Al2O3为标准,制品中Al2O3不应大于15%?20%,以10%?18%为佳,这与镁铝砖的实验数据一致。 镁铝尖晶石砖中主要杂质是SiO2,不应大于1.5%。 在过去的三十多年的时间里,人们一直在追求替代镁铬砖消除六价铬公害的技术,首先寄望于方镁石尖晶石砖。当尖晶石砖随着引进六条新型干法窑以每吨1000多美元的身价进入中国后,中国出现了尖晶石砖热。最初的报告是乐观的,但渐渐地从水泥厂那里传出了不同的消息:“挂不住窑皮。”原来尖晶石砖和水泥的共熔温度接近(稍低)水泥的烧成温度(参见图5-2),这是致命的,于是尖晶石砖在我国水泥窑窑衬中向后退了15?20m,到达上过渡带,占据了原本高铝砖或普通镁铬砖的位置。 图5-2MgO-2CaO·SiO2-MgO·Al2O3系(放大部分) 不管M-A系还是M-K系产品,学术界一致认为Fe2O3影响产品对气氛变化的抵抗能力,尖晶石砖在上过渡带使用之所以优于镁铬砖,其解释之一就是Fe2O3含量低于M-K系产品,然而,日本土屋芳树向尖晶石砖中加入4%Fe2O3改善了砖的脆性。1000℃时膨胀率仅1.13%,抗折强度12MPa,在φ5.0SP窑38?40m的区域使用8个月磨损30mm,而常用尖晶石砖磨损量为80?120mm,并称这种高铁砖用于烧成带能够挂住窑皮。 尖晶石砖抗热震性能、抗R+碱侵蚀性、抗酸性气体伎蚀性、抗气氛变化能力都优于普通镁铬砖,但就水泥窑上过渡料带和卸料带用耐火砖,还应具备热导率小、耐磨性好、抗剪切断裂能力大的性能,它决定了尖晶石砖的可用性。我国使用尖晶石砖大约二十多年了,暴露出来的最基本问题是筒体温度高,200?220mm厚的窑衬运行不出百天筒体温度就会升到350℃,甚至接近400℃,耐磨性差,在2500t窑上能稳定运行8个月以上者风毛麟角。

镁质耐火材料技术汇编

镁耐火发明专利(109 )条 序号专利号名称 1 03139724.7 绿色生态集成耐火装饰建材 2 200410046075.X 方镁石-镁铝尖晶石-锆酸镧(钙)复合耐火材料 3 200410009723. 4 一种氮氧化铝镁/氮化硼复相耐火材料及其制备工艺 4 200310118503.0 一种耐火材料及其制备方法 5 200310123457.3 镁铝尖晶石耐火球 6 200510018154.4 一种镁铝尖晶石耐火原料及其生产方法 7 200510018155.9 一种不定形方镁石—碳化硅复合耐火材料及其生产方法 8 200510055648.X 一种烧结镁质复相耐火材料 9 200410017481.3 一种大型钢包包底耐火材料 10 02130040.2 一种镁铝钒耐火材料及其生产方法 11 02135298.4 熔铜炉吹风管保护层用耐火材料 12 02157614.9 一种直流电弧炉炉底耐火材料 13 03157041.0 一种含碳耐火材料的胶态成型制备方法 14 03111153.X 轻质耐火砖及其制备方法 15 02813745.0 未成形耐火材料混合物 16 200310117374.3 细晶粒铝锆复合耐火原料 17 200410030245.5 覆有氧化物表层的耐火金属板和用其制造的烧结用的耐火架 18 02829866.7 用于水泥窑的含石墨未烧耐火砖及其应用 19 200410013257.7 一种镁—铝轻质保温耐火材料及其制备方法 20 200410013258.1 一种方镁石—橄榄石轻质保温耐火材料及其生产方法 21 200410025637.2 一种RH真空炉衬用无铬耐火材料 22 200510081095.5 不定型耐火材料 23 200510018955.0 一种提高镁质耐火材料性能的方法和用该方法生产的产品 24 03826071.9 耐火砌体和用于制造该砌体的耐火砖 25 200510107273.7 一种用泥浆结合耐火砖的成型方法 26 200610018950.2 一种电熔复合耐火材料及其生产方法 27 200610086890.8 一种铝电解槽废耐火材料的处理方法 28 200510040960.1 一种尖晶石质低水泥功能耐火材料浇注料

镁质耐火材料

第一讲镁质耐火材料的基本概念及选矿技术路线 一、镁质耐火材料定义及常识 以菱镁矿、海水镁砂和白云石等作原料,以方镁石为主晶相,MgO含量在80%以上的耐火材料。属于碱性耐火材料。 镁质耐火材料的耐火度高,对碱性渣和铁渣有很好的抵抗性,是一种重要的高级耐火材料。镁质耐火材料主要用于平炉、电炉、氧化转炉、水泥窑、有色金属冶炼炉和碱性耐火材料的煅烧窑等。 在我国菱镁矿主要产在辽宁南部,大石桥与海城一带,因此这一带的相关企业比较多。 方镁石熔点为2800℃。我国制造镁砖的主要原料是烧结镁砂,对其要求化学成分和烧结程度。一般以密度衡量烧结程度,也可用重烧收缩、水化性能、镁砂的外观颜色来衡量。随着近年来镁砂品质的下降,97高纯的密度要求下降,要求值大于3.22g/cm3。 纯菱镁矿煅烧后为白色,由于铁氧化物的影响,染成褐色、棕褐色,SiO 2 含 量高者趋近于白色,Fe 2O 3 含量高者趋近于深褐色,含CaO高的趋近于黑色。 二、MgO材料中各种杂质元素对耐火材料的影响。 表5—5 与方镁石处于平衡的13个矿物的熔点 矿物MF CMS MA M2S C3MS2C2S C4AF CA C5A3C3A C3S CaO C2F 熔点℃ 1750 不一致 1498 不一致 2130 1890 1575 2130 1415 1600 1485 1545 不一致 1900 分解 2570 1435 C/S 分 子 量 比 0 0—1 1 1—1.5 1.5 1.5—2 2 2—3 3 C/S 质 量 量 比 0 0---0.93 0.93 0.93---1.4 1.4 1.4---1.87 1.87 1.87—2.8 2.8 相 组 合 MgO M2S MgO M2S CMS MgO CMS MgO CMS C3MS2 MgO C3MS2 MgO C3MS2 C2S MgO C2S MgO C2S C3S MgO C3S 固 化 温 度 1860 1502 1490 1490 1575 1575 1790 1790 1850 备注:CA 铝酸钙C3MS2镁蔷薇辉石 M2S 镁橄榄石C2S 硅酸二钙 CMS 钙镁橄榄石C3S 硅酸三钙

新型镁质耐火材料的生产技术

本技术是有关于新型镁质耐火材料,其组分及各组分的质量份数为镁砂粉2030份、硅微粉510份、氧化铬15份、氧化钛13份、氧化锆25份、碳化硅0.51份。借由上述技术方案,本技术一种新型镁质耐火材料在碱性环境下耐火度高、使用寿命长,采用该材料制备而成的镁砖能耐2000℃以上的高温。 权利要求书 1.新型镁质耐火材料,其特征在于:其组分及各组分的质量份数为镁砂粉20-30份、硅微粉5-10份、氧化铬1-5份、氧化钛1-3份、氧化锆2-5份、碳化硅0.5-1份。 2.根据权利要求1所述的新型镁质耐火材料,其特征在于:其组分及各组分的质量份数为镁砂粉20份、硅微粉5份、氧化铬1份、氧化钛1份、氧化锆2份、碳化硅0.5份。 3.根据权利要求1所述的新型镁质耐火材料,其特征在于:其组分及各组分的质量份数为镁砂粉30份、硅微粉10份、氧化铬5份、氧化钛3份、氧化锆5份、碳化硅1份。 技术说明书 新型镁质耐火材料 技术领域 本技术属于耐火材料技术领域,特别是涉及一种新型镁质耐火材料。 背景技术

耐火材料是指耐火度不低于1580℃的一类无机非金属材料。耐火度是指耐火材料锥形体试样在没有荷重情况下,抵抗高温作用而不软化熔倒的摄氏温度。但仅以耐火度来定义已不能全面描述耐火材料了,1580℃并不是绝对的。现定义为凡物理化学性质允许其在高温环境下使用的材料称为耐火材料。耐火材料广泛用于冶金、化工、石油、机械制造、硅酸盐、动力等工业领域,在冶金工业中用量最大,占总产量的50%~60%。 耐火材料应用于钢铁、有色金属、玻璃、水泥、陶瓷、石化、机械、锅炉、轻工、电力、军工等国民经济的各个领域,是保证上述产业生产运行和技术发展必不可少的基本材料,在高温工业生产发展中起着不可替代的重要作用。其中镁质耐火材料是一种优质碱性耐火材料,具有多种优良的使用性能,因此备受消费者青睐。但现有的镁质耐火材料能够承载的温度有限且使用寿命短,亟待改进。 技术内容 本技术的目的在于,提出一种能够适用于碱性环境且使用寿命长的高温新型镁质耐火材料,从而更加适于实用。 本技术的目的及解决其技术问题是采用以下技术方案来实现。依据本技术提出的一种新型镁质耐火材料,其组分及各组分的质量份数为镁砂粉20-30份、硅微粉5-10份、氧化铬1-5份、氧化钛1-3份、氧化锆2-5份、碳化硅0.5-1份。 本技术的目的及解决其技术问题还采用以下技术方案来进一步实现。 前述的新型镁质耐火材料,其组分及各组分的质量份数为镁砂粉20份、硅微粉5份、氧化铬1份、氧化钛1份、氧化锆2份、碳化硅0.5份。 前述的新型镁质耐火材料,其组分及各组分的质量份数为镁砂粉25份、硅微粉13份、氧化铬3份、氧化钛2份、氧化锆3份、碳化硅0.8份。 前述的新型镁质耐火材料,其组分及各组分的质量份数为镁砂粉30份、硅微粉10份、氧化铬

钢包用耐火材料

钢包用耐火材料 1 镁碳砖 2 镁碳砖 3 镁铝碳砖 4 镁钙碳砖 5 铝镁无碳砖 6 自流浇注料 7 永久层整体浇注料 8 工作层浇注料 9 上下水口 10 水口座砖 11 高温烧成滑板 12 耐火泥浆 镁碳砖系列 我公司的镁碳砖系列产品采用高纯、高致密镁砂或大结晶电熔镁砂和鳞片石墨为主要原料,添加适量的抗氧化剂,以酚醛树脂为结合剂,经高压成型和低温热处理制成。该系列产品具有耐火度高、强度高、抗渣性好、热震稳定性好等优点,主要用于钢包包壁、包 底、渣线部位,并可根据具体生产情况选择不同 牌号的产品。 镁碳砖主要理化指标

牌号 Hger-MT-10A/B/C Hger-MT-12A/B/C Hger-MT-14A/B/C A B C A B C A B C MgO% ≥ 80 78 76 78 76 74 76 74 72 C% ≥ 10 10 10 12 12 12 14 14 14 显气孔率% ≤ 4 5 6 4 5 6 4 5 6 体积密度 /g.cm-3 ≥ 3.0 2.95 2.95 2.98 2.96 2.95 2.95 2.93 2.90 耐压强度 /MPa≥ 40 35 30 40 35 30 40 35 30 高温抗折强 度/MPa≥ 8 7 6 8 7 6 12 10 8 1450℃,30min 应用 钢包包壁、包底、渣线 镁铝碳砖系列 我公司的镁铝碳砖系列产品采用电熔镁砂、 电熔刚玉和大鳞片石墨为主要原料,以酚醛树脂 为结合剂,经高压成型制 成,具有强度高、抗侵蚀、抗冲刷等优点,主要 用于钢包包壁、包底部位。 镁铝碳砖主要理化指标 牌号Hger-MLT 50Hger-MLT 60 Hger-MLT 65 Hger-MLT 70 Hger-MLT 75 Hger-MLT 80 MgO% ≥ 50 60 65 70 75 80 AL 2O 3% ≥ 30 20 15 10 8 4

镁质耐火材料毕业设计说明书.

摘要 本设计主要阐述了年产3.5万吨镁质耐火材料厂在设计中的重大问题以及方案的选择。 首先,根据设计要求,设计原则,产品的种类(镁砖,镁铝砖,镁铬砖)及工厂的规模和生产方法,确定出生产的工艺过程,原料配比和颗粒的组成,各个车间的工作制度等。 其次,进行物料平衡计算,主机平衡计算,根据计算结果进行设备选型。再根据设备在工厂中的安装要求及检修要求进行车间房布置。 再次根据主机设备的需要对辅助设备进行选择。选择出合理的辅助设备并且确保主机设备正常高效运行。 接着,对初步设计完成后的每个车间视其自身的特点进行合理的技术经济编制。 最后,对设计中遗留的的问题进行了讨论。另外本设计中穿插有设备的外形尺寸图和工艺布置图,便于阅读和理解。 关键词:工艺设计,镁砖,镁铝砖,镁铬砖

Abstract This design describes the major issues of an annual 35,000 tons output of magnesia refractories plant in the design mainly and explained choices of the program. First, according to design requirements, design principles, product type (brick, magnesia brick, magnesia-chrome brick), the plant size and production methods,it is to determine the production process, the proportion and composition of particles, each workshop work system and so on. Second, it is to work out the material balance, and the host balance. And then, according to the result, it is matching the equipment type and it is arranging the factory according to installation of requirement and examination in the factories. After that, it is to draw up the reasonable technology and economy due to the each workshop's self character after finishing the first design. Finally, it is to discuss the missing issues of design. Moreover, there are papers of equipment's appearance and arrangement in the design. It is convenient to read and understand. Key words: process design, Magnesia brick,Magnesium aluminum brick,Magnesia chrome brick

镁质耐火材料行业污染物及产生节点、污染源分类

镁质耐火材料行业污染物及产生节点 镁质耐火材料行业生产过程中原料和燃料的贮存、输送、破粉碎、筛分、配料、混合、成型、干燥、烧成、成品贮存、成品加工、包装等多个工序均存在不同程度有组织或无组织的颗粒物排放,其中大部分颗粒物有组织排放和SO2、NO x、CO等气态污染物的排放主要发生在炉窑内进行的干燥、煅烧及烧成工序。此外,耐火材料生产时干燥、煅烧和烧成工序均会排放一些微量元素(包括铝、铍、铅、汞、锰、镍、钛、钒和锌)和碳质组分(有机碳和黑炭)。图1 中给出了镁质耐火材料行业生产工序大气污染物的产污节点。 图1 镁质耐火材料工业生产工序大气污染物产污节点

镁质耐火材料行业污染源分类 根据镁质耐火材料行业的特点,第一级分类为非金属矿物制品业;第二级分类按产品类型划分,分为镁质耐火原料和镁质耐火产品,其中,镁质耐火原料分为电熔镁砂、轻烧镁砂和烧结镁砂(重烧镁砂、中档镁砂和高纯镁砂),镁质耐火产品分为定型产品(烧成砖和不烧成砖,烧成镁砖分为硅酸盐结合镁砖、直接结合镁砖和再结合镁砖等;不烧镁砖又分为化学结合镁砖、沥青结合镁砖)和不定形产品(浇注料、喷涂料、喷补料、捣打料、可塑料、耐火泥浆等)等;第三级分类按工艺技术使用到的生产设备类型划分,分为电熔炉、反射炉、多层炉、悬浮窑、沸腾炉、回转窑、竖窑(轻烧竖窑、重烧竖窑、中档竖窑、高纯竖窑)、隧道窑、干燥窑、破碎机。对于不定型耐火制品,包括耐火浇注料、耐火可塑料、耐火捣打料、耐火喷补料、耐火泥等,其加工过程无废气、废水直接排放,可视为在直接生产过程无污染物排放。根据镁质耐火材料行业的三级分级体系制定了相应的源编码,每一级使用4位数字表示(表1)。 表 1 镁质耐火材料行业污染源分类分级及编码

耐火材料工艺学(冶金工业第二版)复习要点2

第3章Al2O3-SiO2系耐火材料-3高铝质、硅线石及莫来石质 10、高铝砖中,减轻二次莫来石化有些什么措施? 减轻二次莫来石化反应措施:(1)熟料的严格拣选分级(2)合理选择结合剂的种类和数量结合粘土尽可能少加(5~10%)用生矾土细粉代替结合粘土用高铝矾土和结合粘土粉按比例配合(3)熟料的邻级混配和氧化铝含量高的熟料以细粉形式加入(4)合适的颗粒组成适当增加细粉数量(45~50%)适当增大粗颗粒的尺寸和数量部分熟料和结合粘土共同细磨共磨时熟料和粘土混合料中的A12O3/SiO2重量比应略大于2.55。(5)适当提高烧成温度(Ⅱ级矾土熟料) 11、什么是“三石”?性质如何? 定义:部分硅线石族矿物原料—硅线石砖、红柱石砖或蓝晶石砖。 结构特征及基本性质不同的晶体结构:蓝晶石- 三斜晶系硅线石和红柱石- 斜方晶系同一化学式:Al2O3?SiO2Al2O362.92 SiO237.08% 12、影响“三石”分解或膨胀性的因素有哪些? 影响分解或膨胀性的因素:矿物本身结构;矿物纯度;矿物粒度大小——蓝晶石粒度<0.2mm,膨胀小且无明显差异;粒度>0.2mm,膨胀大且差异大。——硅线石粒度<0.088mm,1400℃开始分解,1700℃完全莫来石化;粒度>0.088mm,分解温度提高100℃,1700℃尚有残余硅线石。——红柱石<0.15mm,1500℃均莫来石化。 13、硅线石质制品生产工艺要点? 制砖工艺与高铝砖的基本相同◇原料为精料◇硅线石和红柱石精矿料可直接制砖,蓝晶石不宜直接用来制砖。但通过对其粒度的调整,也可直接制砖。◇天然硅线石族精料通常以颗粒状或粉状料引入。◇硅线石一般要求小于0.5mm,红柱石可适当放宽至小于2mm,蓝晶石一般为0.147~0.074mm。◇一般制品的烧成温度为1350~1500℃(莫来石化转变温度+体积效应)。 14、向铝硅系耐火材料中添加硅线石质矿物可提高其性能,原理是什么? 将硅线石族矿物添加到铝硅系耐火材料中,可从下列三个方面提高后者的性能:(1)硅线石族矿物莫来石化产生的膨胀来弥补不定形耐火材料、不烧砖在加热过程中的收缩以保证耐火材料砌体的体积稳定性。(2)利用硅线石族矿物的莫来石化与二次莫来石过程来形

镁制耐火材料

镁砂及镁质耐火原材料将实施行业准入 发布人:中国镁质材料网发布时间:2011-12-26【字体:大中小】 为促进行业的健康发展,工信部原材料司日前在北京召开促进耐火粘土、镁砂等耐火原材料行业发展座谈会。会议传出消息,工信部将制定《镁砂及镁质耐火原材料行业准入条件》。 镁质耐火材料是高温工业的重要基础材料和支撑材料,广泛应用于钢铁、有色、建材、石油、化工、环保等高温行业。其中,钢铁行业是其最大的下游市场,占据整个需求的60%以上。近年来,耐火原材料行业取得了长足发展,中国已成为耐火原材料最大的生产国、消费国和贸易国。但是在行业高速发展的同时,矿山开采无序、产能过剩、产业集中度低、结构不合理等问题也越来越突出。 以镁质耐火材料产业大省辽宁为例,现有菱镁矿开采企业近百家,其中多数为小矿山企业。业内人士表示,小矿山企业不合理开采导致生态环境遭到破坏,造成严重的粉尘污染。同时矿粉堆积如山,形成生态隐患。伴随高品位菱镁矿开采,低品位矿和产生的矿粉没有合理利用,造成资源浪费,矿山的洞内开采容易出现安全事故,同时大量的粉尘也威胁矿工的身心健康。 会议提出,今后将强化耐火粘土生产指令性计划管理,建立覆盖计划编制下达和监督检查全过程的管理制度,加强指令性计划生产与上游开采、下游加工以及贸易环节的协调。 与此同时,主管部门还将严格准入管理,及时公布符合耐火粘土准入标准的生产企业名单,加快制订《镁砂及镁质耐火原材料行业准入条件》。会议鼓励骨干企业加强横向联合壮大产业规模,开展纵向重组延伸完善上下游产业链,加大自主创新,支持骨干企业建立研发中心,以市场需求为导向,通过产学研用相结合,提升自主开发能力,增强核心竞争力。 关于促进耐火材料产业健康发展的若干意见(征求意见稿) 发布人:中国镁质材料网发布时间:2013-03-03【字体:大中小】 耐火材料是钢铁、建材、有色、电力、化工、机械等高温工业发展不可或缺的基础材料,耐火粘土、镁砂、棕刚玉等是生产耐火材料的关键原料。为深入贯彻执行《国务院办公厅关于采取综合措施对耐火粘土萤石的开采和生产进行控制的通知》(国办发〔2010〕1 号),加强耐火材料行业管理,引导产业发展,现提出以下意见:

高炉用耐火材料

工业炉与保温技术 课题名称:高炉用耐火材料 学生姓名:李亮 学号:1141102072 专业:热能与动力工程 老师:曾东和 2014年10 月31日

耐火材料是一种耐火度不低于1580℃,有较好的抗热冲击和化学侵蚀的能力、导热系数低和膨胀系数低的无机非金属材料。耐火材料的质量对炉子寿命、产品品质、生产成本等都有直接影响。耐火材料的质量取决于其物理性质和工作性能的好坏。其广泛应用于水泥、钢铁、玻璃等重要的工业生产行业中。 耐火材料行业是为高温技术服务的重要基础行业,与钢铁工业的关系尤为密切。高温工业尤其是钢铁冶炼技术的新发展,促进了耐火材料工业的技术进步。耐火材料工业的技术进步又保证了高温工业新技术的实施。钢铁工业中各种窑炉的稳产、高产、长寿都离不开耐火材料,各种窑炉因用途和使用条件不同,对构成其主体的耐火材料的要求也不同,而不同种类的耐火材料也由于化学物质组成、显微结构的差异和生产工艺的不同,表现出不同的基本特性。因此,了解研究工业窑炉用耐火材料,就有必要了解耐火材料的基本性能。 3.1耐火材料的基本性能 耐火材料的性能表现在诸多方面,其中它的物理性能包括结构性能、热学性能、力学性能、使用性能和作业性能。结构性能包括气孔率、体积密度、吸水率、透气度、气孔孔径分布等。热学性能包括热导率、热膨胀系数、比热、热容、导温系数、热发射率等。力学性能包括耐压强度、抗拉强度、抗折强度、抗扭强度、剪切强度、冲击强度、耐磨性、蠕变性、粘结强度、弹性模量等。使用性能包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗渣性、抗酸性、抗碱性、抗水化性、抗CO侵蚀性、导电性、抗氧化性等。作业性包括稠度、塌落度、流动度、可塑性、粘结性、回弹性、凝结性、硬化性等。其中耐火度是耐火材料的最主要的性能技术指标,耐火度越高,其质量也好。耐火材料的重要性体现在:影响炉子生产率,影响产品质量,影响炉子寿命,以及影响产品成本。 3.2高炉炉体用耐火材料 高炉是炼铁的主要设备,它具有产量大、生产率高和成本低的优点,这是其它炼铁方法所无法比拟的。我国某高炉炉体内衬用耐火材料示意图如图3-3所示。 随着世界各国钢铁工业的进步,高炉朝着大型化、高效化和长寿化发展,逐步采用富氧喷煤、高风温操作、高压炉顶等新的冶炼技术。高炉炉衬工作条件随之发生了重大变化,其使用寿命降低较多,一般只有5~6年。特别是高炉炉身下部及炉腰、炉腹部位,其使用寿命就更短。为适应这一发展,高炉用耐火材料也有了较大的变化,长寿命新型、高效耐火材料逐渐被应用,高炉寿命逐步提高。 根据高炉炉衬的操作条件和蚀损的特征,要求耐火材料具有: ⑴良好的高温使用性能,在长期高温下热稳定性好。 ⑵常温和高温下的强度要高,耐磨性能要好。

耐火材料标准

现行有效耐火材料标准目录 2010-08-17 09:54 来源:我的钢铁试用手机平台 一、基础标准 1GB/T2992-1998(2004)通用耐火砖形状尺寸 2GB/T4513-2000(2004)不定形耐火材料分类 3GB/T10325-2001(2004)定形耐火制品抽样验收规则 4GB/T10326-2001(2004)定形耐火制品尺寸外观及断面的检查方法5GB/T13794-2008标准测温锥 6GB/T15545-1995(2004)不定形耐火材料包装、标志、运输和储存7GB/T16546-1996(2004)定形耐火制品包装、标志、运输和储存8GB/T16763-1997(2004)定形隔热耐火制品的分类 9GB/T17105-2008铝硅系致密定形耐火制品分类 10GB/T17617-1998(2004)耐火原料和不定形耐火材料取样 11GB/T17912-1999(2004)回转窑用耐火砖形状尺寸 12GB/T18257-2000(2004)回转窑用耐火砖热面标记 13GB/T18930-2002(2004)耐火材料术语 14GB/T18931-2008残碳量小于7%的碱性致密定形耐火制品分类 15GB/T20511-2006耐火制品分型规则 16YB/T060-2007炼钢转炉用耐火砖形状尺寸 17YB/T2217-1999(2009)电炉用球顶砖形状尺寸 18YB/T4014-1991(2006)玻璃窑用致密定形耐火制品分类 19YB/T4016-1991(2006)玻璃窑用耐火制品抽样和验收方法 20YB/T4017-1991(2006)玻璃窑用耐火制品形状尺寸硅砖 21YB/T5012-2009高炉及热风炉用砖形状尺寸 22YB/T5018-1993(2006)炼钢电炉顶用砖形状尺寸 23YB/T5110-1993(2006)浇铸用耐火砖形状尺寸 24YB/T5113-1993(2009)盛钢桶内铸钢用耐火砖形状尺寸 二、原料标准 25GB201-2000铝酸盐水泥

相关主题