搜档网
当前位置:搜档网 › ansys 接触应力计算例子

ansys 接触应力计算例子

ansys 接触应力计算例子
ansys 接触应力计算例子

过盈配合的应力分析

概述

接触问题分为两种基本类型:刚体——柔体的接触、柔体——柔体的接触。在刚体——柔体的接触问题中,接触面的一个活多个被当做刚体(与它接触的变形体相比,有大的多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被鉴定为刚体——柔体的接触,许多金属成形问题归为此类接触。另一类,柔体——柔体接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。

在涉及到两个边界的接触问题中,很自然把一个边界作为“目标”面,而把另一个作为“接触”面。对刚体——柔体的接触,“目标”面总是刚性的,“接触”面总是柔性的,这两个面合起来叫做“接触对”。

问题描述

当轴与孔有过盈配合时,因为轴比孔稍大,这样它们之间由于接触就会产生应力应变。

材料性质:EX=30e6(杨氏弹性模量)

NUXY=0.25(泊松比)

f=0.2 (摩擦系数)

几何尺寸:轴半径R1=0.5 长L1=3

孔模型外圆R2=1.5

内圆R3=0.45 长L2=2

问题分析

由于对称性,可以只取模型的四分之一来进行分析,并分成两个载荷步来求解。

第一个载荷步是观察轴接触面的应力;

第二个载荷步是观察轴拔出孔的过程中的应力、接触压力和反力等。

一、建立模型并划分网格

1.定义单元类型

2.定义材料性质

3.生成模型

4.体分解操作

5.划分网格

二、定义接触对

1.创建目标面及接触面

2.设置接触面

3.接触面的生成

三、施加载荷并求解

1.施加对称位移约束

2.施加面约束条件

3.设定第一个载荷步并进行求解

4.设定第二个载荷步并进行求解

四、后处理

1.设置扩展模式

2.读入第一个载荷步的计算结果并显示应力云图

3.读入某时刻计算结果

4.选择单元

5.接触面压力云图

6.读入第二个载荷步的计算结果并显示应力云图

机械设计手册-销轴-接触应力计算全面讨论

传递动力的高副机构,如摩擦轮、凸轮齿轮、链轮传动、滚动轴承、滚动螺旋等,都有接触强度问题,自然也涉及到接触应力。在此对接触应力计算作较为全面的讨论。 两曲面的弹性体在压力作用下,相互接触时,都会产生接触应力,传递动力的高副机构在工作中往往出现的是交变应力,受交变接触应力的机器零件在一定的条件下会出现疲劳点蚀的现象,点蚀扩散到一定程度,零件就不能再用了,也就是说失效了,这样失效的形式称之为疲劳点蚀破坏,在ISO 标准中是以赫兹应力公式为基础的。本文较为集中地讨论了几种常见曲面的赫兹应力公式及常用机械零件的接触应力计算方法,便于此类零件的设计及强度验算。 1 任意两曲面体的接触应力 1.1 坐标系 图1所示为一曲面体的一部分,它在E点与另外一曲面体相接触,E点称为初始接触点。取 曲面在E点的法线为z轴,包括z轴可以有无限多个剖切平面,每个剖切平面与曲面相交,其交线为一条平面曲线,每条平面曲线在E点有一个曲率半径。不同的剖切平面上的平面曲线在E 点的曲率半径一般是不相等的。这些曲率半径中,有一个最大和最小的曲率半径,称之为主曲率半径,分别用R 和R表示,这两个曲率半径所在的方向,数学上可以证明是相互垂直的。平面曲线AEB所在的平面为y平面,由此得岀坐标轴x和y的位置。任何相接触的曲面都可以用这种方法来确定坐标系。由于z轴是法线方向,所以两曲面在E点接触时,z轴是相互重合的,而x i和X2之间、y和y之间的夹角用①表示(图2所示)

(1) 1.2 接触应力 两曲面接触并压紧,压力 P 沿z 轴作用,在初始接触点的附近,材料发生局部的变形, 靠接 触点形成一个小的椭圆形平面, 椭圆的长半轴 a 在x 轴上,短半轴b 在y 轴上。椭圆形接触面上 各点的单位压力大小与材料的变形量有关, z 轴上的变形量大,沿 z 轴将产生最大单位压力 P o o 其余各点的单位压力 P 是按椭圆球规律分布的。 / dF 从几何意义上讲等于半椭球的体积,故 二 2血珂 总一 3 接触面上的最大单位压力 P o 称为接触应力(T H a 、 b 的大小与二接触面的材料和几何形状有关。 2两球体的接触应力 图1曲面体的坐标 图2坐标关系及接触椭圆 其方程为 单位压力 总压力

等效应力计算公式(习题教学)

stress intensity (应力强度),是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。Ansys后处理中"Von Mises Stress"我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。 一般脆性材料,如铸铁、石料、混凝土,多用第一强度理论。考察绝对值最大的主应力。 一般材料在外力作用下产生塑性变形,以流动形式破坏时,应该采用第三或第四强度理论。压力容器上用第三强度理论(安全第一),其它多用第四强度理论。 von mises stress的确是一种等效应力,它用应力等值线来表示模型内部的应力分布情况,它可以清晰描述出一种结果在整个模型中的变化,从而使分析人员可以快速的确定模型中的最危险区域。 一.屈服准则的概念 1 .屈服准则 A.受力物体内质点处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。 B.受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件,这种力学条件一般可表示为 f(σij)= C 又称为屈服函数,式中 C 是与材料性质有关而与应力状态无关的常数,可通过试验求得。 屈服准则是求解塑性成形问题必要的补充方程。 屈雷斯加( H.Tresca )屈服准则 当受力物体(质点)中的最大切应力达到某一定值时,该物体就发生屈服。或者说,材料处于塑性状态时,其最大切应力是一不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。所以又称最大切应力不变条件。 屈雷斯加屈服准则的数学表达式:

荷载计算公式

荷载计算公式

100mm钢筋混凝土板0.1x25=2.5KN/m2 板底20mm石灰砂浆0.02x17=0.34KN/m2 考虑装修面层0.7KN/m2 总计3.94KN/m2取4.1KN/m2 活载:住宅楼面活载取2.0KN/m2 90mm厚板:

恒载:20mm水泥砂浆面层0.02x20=0.4KN/m2 90mm钢筋混凝土板0.09x25=2.25KN/m2 板底20mm石灰砂浆0.02x17=0.34KN/m2 考虑装修面层0.7KN/m2 总计3.69KN/m2取3.9KN/m2 活载:住宅楼面活载取2.0KN/m2 2屋面荷载 =9.84x0.6=5.91取5.91KN/m q 2 q =9.84x0.7=6.89取6.89KN/m 3 墙高(3.0-0.5)=2.5m取层高3000mm, =2.5x4.1=10.25取10.25KN/m 无窗时:q 1 有窗时: =10.25x0.9=9.23取9.23KN/m q 2

q =10.25x0.7=7.18取7.18KN/m 3 q =10.25x0.6=6.15取6.15KN/m 4 墙高(3.00-0.4)=2.6m取层高3000mm, =2.7x4.1=10.66取10.66KN/m 无窗时:q 1 =10.66x0.9=9.6取9.6KN/m 有窗时:q 2 =10.66x0.7=7.47取7.47KN/m q 3 =10.66x0.6=6.34取6.34KN/m q 4 (3)方式1.1×3.1×15×2.5=128Kg 铝单板重量=面积×厚度×密度2.7 =1.2×1.1×2.5×2.7=9Kg 玻璃的重量比铝单板要大,故载荷计算以较重的玻璃为例; 荷载计算:内部荷载=玻璃重量+工人体重+工具重量 =216Kg+75Kg×2+20Kg=386Kg<体重按平均75Kg一人>

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

生活中的材料力学实例分析

生活中的材料力学实例分析 一意义 材料力学主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。 二对象 材料力学的研究通常包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆受弯曲(有时还应考虑剪切)的粱和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为线弹性问题、几何非线性问题、物理非线性问题三类。 材料力学不仅在复杂机械工程中有重要的作用,在生活中也很常见。比如随处可见的桥梁,桥是一种用来跨越障碍的大型构造物。确切的说是用来将交通路线 (如道路、铁路、水道等)或者

其他设施 (如管道、电缆等)跨越天然障碍 (如

河流、海峡、峡谷等)或人工障碍 (高速公路、铁路线)的构造物。桥的目的是允许人、车辆、火车或船舶穿过障碍。桥可以打横搭着谷河或者海峡两边,又或者起在地上升高,槛过下面的河或者路,让下面交通畅通无阻。 三分析

如果在安全的前提下,将原来的四个桥墩和三个拱形拉索变为三个桥墩和两个拱形拉索。不仅可以节约大量的材料,降低成本,而且有美观。 四总结 因此,材料力学是一门很有用的学科,能够处理各种各样复杂的问题。只要注意观察,生活中处处有材料力学的踪影。利用材料力学的知识对我们身边的事物进行分析并加以改进,对我们的生活和社会的发展能起到积极的促进作用。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

应力分析及疲劳分析报告

预处理塔应力分析及疲劳分析报告 编制: 校对: 审核: 全国压力容器标准化技术委员会 一九九八年九月

一、载荷分析 1.用户数据 根据XX设计院所提供的设计图,计算基础数据如下: 预处理塔容器的结构参数见附图1: 2.计算条件 (1) 强度计算条件: 材料在计算温度下的常数: 材料在常温(20℃)下的常数: 注[1]:设计应力强度及弹性模量按JB4732-95

(2) 疲劳计算条件: 载荷与时间的关系示意如下: 时间

二、结构分析 根据预处理塔的结构特点,应进行上封头、下封头及筒体开 孔三部分的应力分析,分别建立力学模型如下: 1.上封头部分: (1)力学模型 根据上封头的结构特点和载荷特性,采用了轴对称的力学模型。 图1:预处理塔上封头力学模型 (2)边界条件 预处理塔上封头边界条件的位置和方向如图1所示。 位移边界条件:

与筒体相连且在Y=0处: Y=0 力边界条件: 壳体内压P=0.85MPa。 中心接管处的边界等效压力P=8.877MPa。 (3) 单元选择 采用ANSYS 5.4有限元分析软件提供的轴对称8节点等参元(82)进行网格划分(如图1)。 2. 下封头部分: (1)力学模型 根据下封头的结构特点和载荷特性,采用了轴对称的力学模型。

图2:预处理塔下封头力学模型 (2)边界条件 预处理塔下封头边界条件的位置和方向如图2所示。 位移边界条件: 裙座根部:?Y=0 力边界条件: 壳体内压P=0.85MPa。 中心接管处的边界等效压力P=8.93MPa, 托架处(壳内物料重)的边界等效压力P=1.54MPa, 筒体直边端处的边界等效压力P=2.72MPa, (3) 单元选择 采用ANSYS 5.4有限元分析软件提供的轴对称8节点等参元(82)进行网格划分(如图2)。 3.筒体开孔部分: (1)力学模型 根据筒体的结构特性和载荷特性,力学模型关于XOZ平面近似对称(无开孔部分为应力均匀区),关于YOZ平面对称,只需计算结构的四分之一。 (2) 边界条件 柱壳开孔边界条件的位置和方向如图3所示。 位移边界条件:轴对称约束;Z=0时,?Z=0 力边界条件:壳体内压P=0.85MPa;筒体端的边界等效应力为:52.91MPa, 筒体端的边界等效应力为:3.94 (3) 单元选择

Solidworks应力分析实例

基于Solidworks 软件的应力分析 Solidworks 中有限元分析插件CosMos/Works 分析零件的静力学性能,得出载荷分布情况,定性的分析极限载荷(这里指的是最大扭矩)下的应力,应变分布及其安全性能。 其分析流程如下: 1、建立一个简化的分析模型; 2、指定材料、元素和截面; 3、加约束和载荷; 4、设定网格; 5、执行分析; 6、结果显示; 7、生成研究报告。 分析对象 电机轴及啮合处的变速器输入轴,离合器花键轴及啮合处的离合器从动盘,电机轴和离合器花键轴之间的联接螺栓(M12x40,10.9级)。 材料 目前公司所用的变速器输入轴材料为20CrMnTi ,考虑其受力情况,材料不一致,其强度就会不一样,容易导致强度差的失效,因此根据目前情况,电机轴和离合器花键轴均选用20CrMnTi 。 20CrMnTi 用于制作渗碳零件,渗碳淬火后有良好的耐磨性和抗弯强度,有较高的低温冲击韧性,切削加工性能良好,承受高速、中载或重载以及冲击和摩擦的主要零件。 对于截面为15的样件,经过第一次淬火880℃,第二次淬火870℃,油冷;在经过回火200℃,水冷和空冷。得到的力学性能:抗拉强度MPa b 1080=σ,屈服强度MPa s 835=σ,伸长率(式样的标距等于5倍直径时的伸长率)%105=δ,断面收缩率%45=ψ,冲击韧度2/55cm J A kU =,硬度217HB 。

对于截面尺寸小于等于100的样件,经过调质处理,力学性能:抗拉强度 MPa b 615=σ,屈服强度MPa s 395=σ,伸长率%175=δ,断面收缩率%45=ψ, 冲击韧度2/47cm J A kU =。本分析还要使用到的参数:泊松比25.0=μ,抗剪模量G=7.938GPa ,弹性模量E=207GPa ,密度23/108.7m N ?=ρ。 螺栓联接受力分析 螺纹联接根据载荷性质不同,其失效形式也不同。受静载荷螺栓的失效形式多为螺纹部分的塑性变形或螺栓被拉断;受变向载荷螺栓的失效形式多为螺栓的疲劳断裂;对于受横向载荷的绞制孔用螺栓联接,其失效形式主要为螺栓杆被剪断,螺栓杆或连接孔接触面被挤压破坏。 对于10.9级M12的普通螺栓,屈服强度MPa s 900=σ,拧紧力矩T=120N.m 。 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T 用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2,装配时可用力矩扳手法控制力矩。 公式: d * F *K =T2+T1=T 0 拧紧扳手力矩T=120N.m ,其中K 为拧紧力矩系数,0 F 为预紧力N ,d 为螺 纹公称直径12mm 。 摩擦表面状态 K 值 有润滑 无润滑 精加工表面 0.1 0.12 一般工表面 0.13-0.15 0.18-0.21 表面氧化 0.2 0.24 镀锌 0.18 0.22 粗加工表面 - 0.26-0.3

计算斜齿圆柱齿轮传动的接触应力

计算斜齿圆柱齿轮传动的接触应力时,推导计算公式的出发点和直齿圆柱齿轮相似,但要考虑其以下特点:啮合的接触线是倾斜的,有利于提高接触强度 ;重合度大,传动平稳。 齿轮的计算载荷 为了便于分析计算,通常取沿齿面接触线单位长度上所受的载荷进行计算。沿齿面接触线单位长度上的平均载荷P (单位为N/mm )为 P= L F n Fn ——作用在齿面接触线上的法向载荷 L ——沿齿面的接触线长,单位mm 法向载荷Fn 为公称载荷,在实际传动中,由于齿轮的制造误差,特别是基节误差和齿形误差的影响,会使法面载荷增大。此外,在同时啮合的齿对间,载荷的分配不是均匀的,即使在一对齿上, 载荷也不可能沿接触线均匀分布。因此在计算载荷的强度时,应按接触线单位长度上的最大载荷,即计算P ca 位N/mm )进行计算。即 Pca = KP =K L F n K ——载荷系数 载荷系数K 包括 :使用系数AK ,动载系数VK ,齿间载荷分配系数αK 及齿向载荷分布数βK ,即 K =K A K V K αK β 使用系数K A 是考虑齿轮啮合时外部领接装置引起的附加动载荷影响的系数。 查表的K A =1.35 动载系数K V 齿轮传动制造和装配误差是不可避免的,齿轮受载后还要发生弹性变形,因此引入了动载系数 取K V =1.05 齿间载荷系数K α 齿轮的制造精度8精度 K α= 1.1 齿向荷分配系数K β 载荷系数 1.7152A V K K K K K αβ==齿轮: 齿轮: d 1=m n z/cos β=15.2 齿轮齿顶高:h a1= (h *a1+X n )*m n =2.5

机械零件的强度计算.

第三章 机械零件的强度计算 第0节 强度计算中的基本定义 一. 载荷 1. 按载荷性质分类: 1) 静载荷:大小方向不随时间变化或变化缓 慢的载荷。 2) 变载荷:大小和(或)方向随时间变化的 载荷。 2. 按使用情况分: 1) 公称载荷(名义载荷): 按原动机或工作机的额定功率计算出的载荷。 2) 计算载荷:设计零件时所用到的载荷。 计算载荷与公称载荷的关系: F ca =kF n M ca =kM n T ca =kT n 3) 载荷系数:设计计算时,将额定载荷放大 的系数。 由原动机、工作机等条件确定。 二. 应力 2.按强度计算使用分 1) 工作应力:由计算载荷按力学公式求得的应力。 2) 计算应力:由强度理论求得的应力。 3) 极限应力:根据强度准则 、材料性质和 应力种类所选择的机械性能极限值σlim 。 4) 许用应力:等效应力允许达到的最大值。[σ]= σlim /[s σ] 稳定变应力 非稳定变应力 对称循环变应力 脉动应力 规律性非稳定变应力 随机性非稳定变应力 静应力 对称循环变应力 脉动应力 σ周期变应力

第1节 材料的疲劳特性 一. 疲劳曲线 1. 疲劳曲线 给定循环特征γ=σlim /σmax ,表示应力循 环次数N 与疲劳极限σγ的关系曲线称为疲 劳曲线(或σ-N )。 2. 疲劳曲线方程 1) 方程中参数说明 a) 低硬度≤350HB ,N 0=107 高硬度>350HB ,N 0=25×107 b) 指数m : c) 不同γ,σ-N 不同;γ越大,σ也越大。… 二、 限应力线图 1) 定义:同一材料,对于不同的循环特征进行试验, 求得疲劳极限,并将其绘在σm -σa 坐标系上,所得的曲线称为极限应力线图。 C N N m m N ==0γγσσr N N k m N N σσσγγ==0 m N N k N 0=整理: 即: 其中: N 0--循环基数 σγ--N 0时的疲劳极限 k N --寿命系数 用线性坐标表示的 疲劳曲线 N D

钢筋的等效应力计算

在荷载效应的标准组合下,钢筋混凝土构件受拉区纵向钢筋的应力或预应力混凝土构件受拉区纵向钢筋的等效应力可按下列公式计算: 1钢筋混凝土构件受拉区纵向钢筋的应力 1)轴心受拉构件 σsk=N k/A s 2)偏心受拉构件 σsk=N k e'/A s(h0-a's) 3)受弯构件 σsk=M k/0.87h0A s 4)偏心受压构件 σsk=N k(e-z)/A s z z=[0.87-0.12(1-r'f)(h0/e)2]h0 e=ηs e0+y s γ'f=(b'f-b)h'f/bh0 ηs=1+1/4000e0/h0(l0/h)2 式中 A s--受拉区纵向钢筋截面面积:对轴心受拉构件,取全部纵向钢筋截面面积;对偏心受拉构件,取受拉较大边的纵向钢筋截面面积;对受弯、偏心受压构件,取受拉区纵向钢筋截面面积; e'--轴向拉力作用点至受压区或受拉较小边纵向钢筋合力点的距离; e--轴向压力作用点至纵向受拉钢筋合力点的距离; z--纵向受拉钢筋合力点至截面受压区合力点的距离,且不大于0.87h0; ηs--使用阶段的轴向压力偏心距增大系数,当l0/h≤14时,取ηs=1.0; y s--截面重心至纵向受拉钢筋合力点的距离; γ'f--受压翼缘截面面积与腹板有效截面面积的比值; b'f、h'f--受压区翼缘的宽度、高度;在公式(8.1.3-7)中,当h'f>0.2h0时,取h'f=0.2h0; N k、M k--按荷载效应的标准组合计算的轴向力值、弯矩值。 2预应力混凝土构件受拉区纵向钢筋的等效应力 1)轴心受拉构件 σsk=N k-N p0/A p+A s 2)受弯构件 σsk=M k±M2-N p0(z-e p)/(A p+A s)z ,e=e p+M k±M2/N p0 式中 A p--受拉区纵向预应力钢筋截面面积:对轴心受拉构件,取全部纵向预应力钢筋截面面积;对受弯构件,取受拉区纵向预应力钢筋截面面积; z--受拉区纵向非预应力钢筋和预应力钢筋合力点至截面受压区合力点的距

机械零件的接触应力计算

机械零件的接触应力计算 摘要:传递动力的高副机构,如摩擦轮、凸轮齿轮、链轮传动、滚动轴承、滚动螺旋等,都有接触强度问题,自然也涉及到接触应力。在此对接触应力计算作较为全面的讨论。 关键词:接触应力 赫兹应力公式 高副 两曲面的弹性体在压力作用下,相互接触时,都会产生接触应力,传递动力的高副机构在工作中往往出现的是交变应力,受交变接触应力的机器零件在一定的条件下会出现疲劳点蚀的现象,点蚀扩散到一定程度,零件就不能再用了,也就是说失效了,这样失效的形式称之为疲劳点蚀破坏,在ISO 标准中是以赫兹应力公式为基础的。本文较为集中地讨论了几种常见曲面的赫兹应力公式及常用机械零件的接触应力计算方法,便于此类零件的设计及强度验算。 1 任意两曲面体的接触应力 1.1 坐标系 图1所示为一曲面体的一部分,它在E 点与另外一曲面体相接触,E 点称为初始接触点。取曲面在E 点的法线为z 轴,包括z 轴可以有无限多个剖切平面,每个剖切平面与曲面相交,其交线为一条平面曲线,每条平面曲线在E 点有一个曲率半径。不同的剖切平面上的平面曲线在E 点的曲率半径一般是不相等的。这些曲率半径中,有一个最大和最小的曲率半径,称之为主曲率半径,分别用R′和R 表示,这两个曲率半径所在的方向,数学上可以证明是相互垂直的。平面曲线AEB 所在的平面为yz 平面,由此得出坐标轴x 和y 的位置。任何相接触的曲面都可以用这种方法来确定坐标系。由于z 轴是法线方向,所以两曲面在E 点接触时,z 轴是相互重合的,而x 1和x 2之间、y 1和y 2之间的夹角用Φ表示(图2所示)。 图1 曲面体的坐标 图2 坐标关系及接触椭圆 1.2 接触应力 两曲面接触并压紧,压力P 沿z 轴作用,在初始接触点的附近,材料发生局部的变形,靠接触点形成一个小的椭圆形平面,椭圆的长半轴a 在x 轴上,短半轴b 在y 轴上。椭圆形接触面上各点的单位压力大小与材料的变形量有关,z 轴上的变形量大,沿z 轴将产生最大单位压力P 0。其余各点的单位压力P 是按椭圆球规律分布的。

疲劳分析计算的流程

疲劳分析,从零开始 1 测量应变、应力谱图 (1)衡量应力集中的区域,布置应变片 可以通过模拟(有限元)或试验(原型上涂上一层油漆,待油漆干后施加载荷,油漆剥落的地方应力集中),确定应力集中的区域,然后按左下图在应力集中区域布置三个应变片: 因为材料是各向同性,所以x,y方向并不一定是水平和竖直方向,但两者一定要垂直,中间一个一定要和x,y方向成45°角。三个应变片也可以重叠在一起(见右上图)。 (2)根据测的应变和材料性能,计算应力 测得的三个应变,分别记为ε x , ε y , ε xy 。两个主应力(假设只有弹性变 形):

其中,E 为材料的杨氏模量,μ为泊松比。根据这两个主应力,可以计算出有些方法可能需要的等效应力(主要目的是将多分量的应力状态转化为一个数值,以方便应用材料的疲劳数据),如米塞斯等效应力: ()() 222122121σσσσσ++-= m 或最大剪应力: ()212 1σσστ-= 实际测量的是应变-时间谱图,应力(或等效应力)-时间谱图可由上述公式计算。 (3)分解谱图 就是对上面测得的应力(应变)-时间谱图进行分解统计,计算出不同应力(包括幅度和平均值)循环下的次数,以便计算累积的损伤。最常用的是雨流法(rainflow counting method )。 2 获取材料数据 如果载荷频率不高,可以做一组简单的疲劳测试(正弦应力,拉压或弯曲均可,有国家标准): 得到一条应力-寿命(即循环次数)曲线,即所谓的S-N 曲线:

如果载荷频率较高或温度变化较大,还要测量不同平均应力和不同温度下的S-N 载荷,以便进行插值计算,因为此时平均应力对寿命有影响。也可以根据不同的经验公式(如Goodman准则,Gerber准则等),以及其他材料性能(如拉伸强度,破坏强度等),由普通的S-N曲线(即平均应力为0)来计算平均应力不为零时对应的疲劳寿命。 如果材料数据极为有限,或者公司很穷很懒不愿做疲劳试验,也可以由材料的强度估算疲劳性能。 如果出现塑性应变,累计损伤一般基于应变-寿命曲线(即E-N曲线),所以需要施加应变载荷。 3 损伤计算 到目前为止,疲劳分析基本上是基于经验公式,还没有完全统一的理论。损伤累积的计算方法有很多种,最常用的是线性累计损伤(即Miner准则),但其结果不保守,计算得到的寿命偏高。 准确度比较高的累计准则是双线性准则,并且计算比“破坏曲线法”要容易,所以,是一个很好的折衷选择。 4软件开发 很适合使用面向对象语言(如C++)来设计疲劳分析软件或专家系统。材料,载荷和损伤累计各一个模块,便于扩充。

压力容器接管应力分析ansys命令流

! ***************环境设置************************ finish /clear /filn, E42 /title, FEA of connecting zone of nozzle to cylinder /units,si !采用国际单位制 ! ********* 参数设定********* Rci=1000 ! 筒体内半径 tc=30 ! 筒体厚度 Rco=Rci+tc ! 筒体外半径 Lc=4000 ! 筒体长度 Rno=530 ! 接管外半径 tn=15 ! 接管厚度 Rni=Rno-tn ! 接管内半径 Li=193 ! 接管内伸长度 Ln=500 ! 接管外伸长度 rr1=30 ! 焊缝外侧过渡圆角半径 rr2=15 ! 焊缝内侧过渡圆角半径 pi=1.2 ! 内压 pc=pi*Rci**2/(Rco**2-Rci**2) ! 筒体端部轴向平衡面载荷 !****************前处理*************************** /prep7 et,1,95 ! 定义单元类型 mp,ex,1,2e5 ! 定义材料的弹性模量 mp,nuxy,1,0.3 ! 定义材料的泊松比 !****************建立模型*************************** cylind,Rco,Rci,0,-Lc/2,90,270, ! 生成筒体 wpoff,0,0,-Lc/2 ! 将工作面沿-Z向移动Lc/2 wprot,0,90, ! 将工作面沿yz旋转90度 cylind,Rno,Rni,-Ln-Rci-tc,-Rci+Li,90,180, ! 生成接管 vovlap,all ! 体overlap布尔运算 vsel,s,,,7 ! 选择筒体 *afun,deg ! 设定角度函数中单位为角度 ang1=2*nint(asin(Rno/Rci)) ! 计算接管区切割角度 wprot,0,0,-90+ang1 ! 旋转坐标系 vsbw,all ! 切割筒体 afillt,21,12,rr1 ! 筒体与接管外表面圆角 afillt,23,35,rr2 ! 筒体内表面与接管外表面圆角 afillt,14,25,rr2 ! 生成下辅助过渡圆角 afillt,13,19,rr1 ! 生成上辅助过渡圆角 alls askin,91,64 ! 根据接管外过渡圆角在接管内外表面上的交线蒙面vsba,4,13 ! 切割外伸接管 askin,83,72 ! 根据接管内过渡圆角在接管内外表面上的交线蒙面

等效应力计算公式

" stress intensity (应力强度),是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。Ansys后处理中"Von Mises Stress"我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。 一般脆性材料,如铸铁、石料、混凝土,多用第一强度理论。考察绝对值最大的主应力。 一般材料在外力作用下产生塑性变形,以流动形式破坏时,应该采用第三或第四强度理论。压力容器上用第三强度理论(安全第一),其它多用第四强度理论。 von mises stress的确是一种等效应力,它用应力等值线来表示模型内部的应力分布情况,它可以清晰描述出一种结果在整个模型中的变化,从而使分析人员可以快速的确定模型中的最危险区域。 一.屈服准则的概念 1 .屈服准则 A.受力物体内质点处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。 B.受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件,这种力学条件一般可表示为 — f(σij)= C 又称为屈服函数,式中 C 是与材料性质有关而与应力状态无关的常数,可通过试验求得。 屈服准则是求解塑性成形问题必要的补充方程。 屈雷斯加()屈服准则 当受力物体(质点)中的最大切应力达到某一定值时,该物体就发生屈服。或者说,材料处于塑性状态时,其最大切应力是一不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。所以又称最大切应力不变条件。

接触应力计算全面讨论

接触应力计算全面讨论

图1 曲面体的坐标 图2 坐标关系及接触椭圆 1.2 接触应力 两曲面接触并压紧,压力P 沿z 轴作用,在初始接触点的附近,材料发生局部的变形,靠接触点形成一个小的椭圆形平面,椭圆的长半轴a 在x 轴上,短半轴b 在y 轴上。椭圆形接触面上各点的单位压力大小与材料的变形量有关,z 轴上的变形量大,沿z 轴将产生最大单位压力P 0。其余各点的单位压力P 是按椭圆球规律分布的。 其方程为 单位压力 总压力 P 总=∫PdF ∫dF 从几何意义上讲等于半椭球的体积,故 接触面上的最大单位压力P 0称为接触应力σH (1) a 、 b 的大小与二接触面的材料和几何形状有关。 2 两球体的接触应力

半径为R1、R2的两球体相互接触时,在压力P的作用下,形成一个半径为a的圆形接触面积即a=b(图4),由赫兹公式得 式中:E1、E2为两球体材料的弹性模量;μ1、μ2为两球体材料的泊松。 图4 两球体外接触 取综合曲率半径为R,则 若两球体的材料均为钢时,E1=E2=E,μ1=μ2=μ=0.3,则 (2) 如果是两球体内接触(图5),综合曲率半径为,代入式(2)计算即可求出接触应力σH。如果是球体与平面接触,即R2=∞,则R=R1代入式(2)计算即可。

图5 两球体内接触 3 轴线平行的两圆柱体相接触时的接触应力 轴线平行的两圆柱体接触时,变形前二者沿一条直线接触,压受力P 后,接触处发生了弹性变形,接触线变成宽度为2b 的矩形面(图6),接触面上的单位压力按椭圆柱规律分布。变形最大的x 轴上压力最大,以P 0表示,接触面上其余各点的压力按半椭圆规律分布,如图7 , 半椭圆柱的体积等于总压力P ,故 图6 两圆柱体接触 图7 轴线平行的两圆柱体相接触的压力分布 最大单位压力 (3)

机械结构分析中的等效载荷与等效结构反求方法

机械结构分析中的等效载荷与等效结构反求方法 摘 要:本文研究分析了机械结构等效载荷反求法与等效结构反求法两种原始参数反求的方法。等效载荷反求法通过应用有限元刚度方程进行解析求解,反求出未知结构对已知结构的作用载荷,获得结构分析所需的原始参数,该方法计算简单可靠。而等效结构法是对原始结构还原的一种方法,结合有限元与优化技术进行迭代求解,该方法能够反求出更多的信息,适用范围更广。 关键词:反求;有限元;优化;等效我荷;等效结构 机械结构分析是机械设计过程中重要的一环。无论在新产品开发还是原产品的改进中,尤其是在模仿设计时,容易存在技术资料缺失的情况,要保证设计的可靠进行,如何获取结构分析所需的原始参数是一个有待研究的问题。原始参数还原是再设计进行的基础,只有通过参数还原才能提炼出再设计需要的基本参考数据。原始设计参数还原受到诸多随机因素的影响,也许无法找到原始值,但可以使反求参数在满足工程需要的精度内接近于原始参数。 目前参数反求集中在材料参数反求与结构参数反求。其反求方法大都采用有限元软件与优化算法相结合,即用优化方法不断调整参数值,最终使一定参数下有限元的计算结果与试验测量值之差在最小二乘意义下最小。对简单问题一般采用基于梯度的优化算法,对复杂而局部最优点多的问题采用遗传算法。文中结合桥吊扩轨改造的工程实际问题,根据结构分析的特点,得出原始参数反求的两种方法:等效载荷反求法和等效结构反求法。等效载荷反求法是通过反求出未知结构对已知结构的等效载荷,从而获得设计所需的原始载荷数据资料。等效结构反求法则是反求出结构的未知几何尺寸,还原结构,为进一步结构分析作准备。文中叙述了这两种反求方法的思路及其特点。 1 等效载荷反求法 该方法实际上反求的是未知结构作用于已知结构上的等效载荷,即未知结构与已知结构间的相互作用力和力偶。把未知的结构力学参数用等效载荷来代替,而未知结构与已知结构问的相互作用载荷可以应用有限元建立刚度方程进行求解。把已知结构的位移分为3类:位移边界条件的节点位移0u 、内部的节点位移e u 与未知结构连接的界面位移j u ;,它们对应的节点荷载分别是0F 、e F 、j F 。将

计算公式

4.3.2 单筋矩形截面承载能力计算 矩形截面通常分为单筋矩形截面和双筋矩截面两种形式。只在截面的受拉区配有纵向受力钢筋的矩形截面,称为单筋矩形截面(图4-10)。不但在截面的受拉区,而且在截面的受压区同时配有纵向受力钢筋的矩形截面,称为双筋矩形截面。需要说明的是,为了构造上的原因(例如为了形成钢筋骨架),受压区通常也需要配置纵向钢筋。这种纵向钢筋称为架立钢筋。架立钢筋与受力钢筋的区别是:架立钢筋是根据构造要求设置,通常直径较细、根数较少;而受力钢筋则是根据受力要求按计算设置,通常直径较粗、根数较多。受压区配有架立钢筋的截面,不是双筋截面。 图4-10 单筋矩形截面 根据4.3.1的基本假定,单筋矩形截面的计算简图如图4-11所示。

图4-11 单筋矩形截面计算简图 为了简化计算,受压区混凝土的应力图形可进一步用一个等效的矩形应力图代替。矩形应力图的应力取为α1f c(图4-12),f c为混凝土轴心抗压强度设计值。所谓“等效”,是指这两个图不但压应力合力的大小相等,而且合力的作用位置完全相同。 图4-12 受压区混凝土等效矩形应力图 按等效矩形应力计算的受压区高度x与按平截面假定确定的受压区高度x o之间的关系为: (4-7) 系数α1和β1的取值见表4-2。 系数α1和β1的取值表表4-2

◆基本计算公式 由于截面在破坏前的一瞬间处于静力平衡状态,所以,对于图4-12 的受力状态可建立两个平衡方程:一个是所有各力的水平轴方向上的合力为零,即 (4-8) 式中b——矩形截面宽度; A s——受拉区纵向受力钢筋的截面面积。 另一个是所有各力对截面上任何一点的合力矩为零,当对受拉区纵向受力钢筋的合力作用点取矩时,有: (4-9a) 当对受压区混凝土压应力合力的作用点取矩时,有: (4-9b) 式中M——荷载在该截面上产生的弯矩设计值; h o——截面的有效高度,按下计算h o=h-a s。 h为截面高度,a s为受拉区边缘到受拉钢筋合力作用点的距离。 按构造要求,对于处于室内正常使用环境的梁和板,当混凝土的强度等级不低于C20时,梁内钢筋的混凝土保护层最小厚度(指从构件边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝土保护层不得小于15mm(当混凝土的强度等级小于和等于C20时,梁和板的混凝保护层最小厚度分别为30mm和 20mm)。因此,截面的有效高度在构件设计时一般可按下面方法估算(图4-13)。

管道应力分析

管道应力分析 应力分析 1. 进行应力分析的目的是 1) 使管道应力在规范的许用范围内; 2) 使设备管口载荷符合制造商的要求或公认的标准; 3) 计算出作用在管道支吊架上的荷载; 4) 解决管道动力学问题; 5) 帮助配管优化设计。 2. 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 1) 静力分析包括: (l)压力荷载和持续荷载作用下的一次应力计算――防止塑性变形破坏; (2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算――防止疲劳破坏; (3)管道对设备作用力的计算――防止作用力太大,保证设备正常运行; (4)管道支吊架的受力计算――为支吊架设计提供依据; (5)管道上法兰的受力计算――防止法兰泄漏;

(6)管系位移计算――防止管道碰撞和支吊点位移过大。 2) 动力分析包括: (l)管道自振频率分析――防止管道系统共振; (2)管道强迫振动响应分析――控制管道振动及应力; (3)往复压缩机气柱频率分析――防止气柱共振; (4)往复压缩机压力脉动分析――控制压力脉动值。 3. 管道应力分析的方法 管道应力分析的方法有:目测法、图表法、公式法、和计算机分析方法。选用什么分析方法,应根据管道输送的介质、管道操作温度、操作压力、公称直径和所连接的设备类型等设计条件确定。 4. 对管系进行分析计算 1) 建立计算模型(编节点号),进行计算机应力分析时,管道轴测图上需要提供给计算机软件数据的部位和需要计算机软件输出数据的部位称作节点: (1) 管道端点 (2) 管道约束点、支撑点、给定位移点 (3) 管道方向改变点、分支点 (4) 管径、壁厚改变点 (5) 存在条件变化点(温度、压力变化处)

ansys接触应力

一般的接触分类 (2) ANSYS接触能力 (2) 点─点接触单元 (2) 点─面接触单元 (2) 面─面的接触单元 (3) 执行接触分析 (4) 面─面的接触分析 (4) 接触分析的步骤: (4) 步骤1:建立模型,并划分网格 (4) 步骤二:识别接触对 (4) 步骤三:定义刚性目标面 (5) 步骤4:定义柔性体的接触面 (8) 步骤5:设置实常数和单元关键字 (10) 步骤六: (21) 步骤7:给变形体单元加必要的边界条件 (21) 步骤8:定义求解和载步选项 (22) 第十步:检查结果 (23) 点─面接触分析 (25) 点─面接触分析的步骤 (26) 点-点的接触 (35) 接触分析实例(GUI方法) (38) 非线性静态实例分析(命令流方式) (42) 接触分析 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

压力容器ansys有限元分析设计实例

ANSYS 应力分析报告 Stress Analysis Report # 学生姓名 学号 任课教师 导师

目录 一. 设计分析依据 (2) 设计参数 (2) 计算及评定条件 (2) 二. 结构壁厚计算 (3) 三. 结构有限元分析 (4) 有限元模型 (5) 单元选择 (5) 边界条件 (6) 四. 应力分析及评定 (7) 应力分析 (7) 应力强度校核 (8) 疲劳分析校核 (11) 五. 分析结论 (11) 附录1设计载荷作用下结构应力沿路径线性化结果 (A) (11) 附录2设计载荷作用下结构应力沿路径线性化结果 (B) (13) 附录3设计载荷作用下结构应力沿路径线性化结果 (C) (14) 附录4设计载荷作用下结构应力沿路径线性化结果 (D) (15) 附录5设计载荷作用下结构应力沿路径线性化结果 (E) (17) 附录6设计载荷作用下结构应力沿路径线性化结果 (F) (18) 附录7设计载荷作用下结构应力沿路径线性化结果 (G) (19) 附录8设计载荷作用下结构应力沿路径线性化结果 (H) (21)

一. 设计分析依据 (1)《压力容器安全技术监察规程》 (2)JB4732-1995《钢制压力容器——分析设计标准》(2005确认版) 设计参数 表1 设备基本设计参数 计算及评定条件 (1) 静强度计算条件 表2 设备载荷参数

注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行进行计算,故采用设计载荷进行强度分析结果是偏安全的。 (2) 材料性能参数 材料性能参数见表3,其中弹性模量取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2和表6-6确定。 表3 材料性能参数性能 (3) 疲劳计算条件 此设备接管a 、c 上存在弯矩,接管载荷数据如表4所示。 表4 接管载荷数据表 二. 结构壁厚计算 按照静载荷条件,根据JB4732-95第七章(公式与图号均为标准中的编号)确定设备各元件壁厚,因介质密度较小,不考虑介质静压,同时忽略设备自重。 1.筒体厚度 因P c =<=×1×=,故选用JB4732-95公式(7-1)计算筒体厚度: 计算厚度: c m i c P KS D P -= 2δ=97 .28.134********.2-???= 设计厚度: 12C C d ++=δδ=++=

相关主题