搜档网
当前位置:搜档网 › 2009年俄罗斯数学奥林匹克决赛试题(英文版)

2009年俄罗斯数学奥林匹克决赛试题(英文版)

2009年俄罗斯数学奥林匹克决赛试题(英文版)
2009年俄罗斯数学奥林匹克决赛试题(英文版)

2009

Grade 91The denominators of two irreducible fractions are 600and 700.Find the minimum value of the denominator of their sum (written as an irreducible fraction).2Let be given a triangle ABC and its internal angle bisector BD (D ∈BC ).The line BD intersects the circumcircle ?of triangle ABC at B and E .Circle ωwith diameter DE cuts ?again at F .Prove that BF is the symmedian line of triangle ABC .3Given are positive integers n >1and a so that a >n 2,and among the integers a +1,a +2,...,a +n one can ?nd a multiple of each of the numbers n 2+1,n 2+2,...,n 2+n .Prove that a >n 4?n 3.4There are n cups arranged on the circle.Under one of cups is hiden a coin.For every move,it is allowed to choose 4cups and verify if the coin lies under these cups.After that,the cups are returned into its former places and the coin moves to one of two neigbor cups.What is the minimal number of moves we need in order to eventually ?nd where the coin is?Really nice problem and I dont know how to solve it.5Let a ,b ,c be three real numbers satisfying that

(a +b )(

b +

c )(c +

a )=abc a 3+

b 3 b 3+

c 3 c 3+a 3 =

a 3

b 3

c 3

Prove that abc =0.6Can be colored the positive integers with 2009colors if we know that each color paints in?nitive integers and that we can not ?nd three numbers colored by three di?erent colors for which the product of two numbers equal to the third one?7We call any eight squares in a diagonal of a chessboard as a fence.The rook is moved on the chessboard in such way that he stands neither on each square over one time nor on the squares of the fences (the squares which the rook passes is not considered ones it has stood on).Then what is the maximum number of times which the rook jumped over the fence?8Triangles ABC and A 1B 1C 1have the same https://www.sodocs.net/doc/e212532265.html,ing compass and ruler,can we always construct triangle A 2B 2C 2equal to triangle A 1B 1C 1so that the lines AA 2,BB 2,and CC 2are parallel?This ?le was downloaded from the AoPS Math Olympiad Resources Page

Page 1

2009

Grade10

1Find all value of n for which there are nonzero real numbers a,b,c,d such that after expanding and collecting similar terms,the polynomial(ax+b)100?(cx+d)100has exactly n nonzero coe?cients.

2Let be given a triangle ABC and its internal angle bisector BD(D∈BC).The line BD intersects the circumcircle?of triangle ABC at B and E.Circleωwith diameter DE cuts ?again at F.Prove that BF is the symmedian line of triangle ABC.

3How many times changes the sign of the function

f(x)=cos x cos x

2

cos

x

3

···cos

x

2009

at the interval

0,2009π

2

?

4On a circle there are2009nonnegative integers not greater than100.If two numbers sit next to each other,we can increase both of them by1.We can do this at most k times.What is the minimum k so that we can make all the numbers on the circle equal?

5Given strictly increasing sequence a1

a k is divisible either by1005or1006,but neither term is divisible by97.Find the least

possible value of maximal di?erence of consecutive terms a i+1?a i.

6Given a?nite tree T and isomorphism f:T→T.Prove that either there exist a vertex a such that f(a)=a or there exist two neighbor vertices a,b such that f(a)=b,f(b)=a.

7The incircle(I)of a given scalene triangle ABC touches its sides BC,CA,AB at A1,B1,C1, respectively.DenoteωB,ωC the incircles of quadrilaterals BA1IC1and CA1IB1,respectively.

Prove that the internal common tangent ofωB andωC di?erent from IA1passes through A. 8Let x,y be two integers with2≤x,y≤100.Prove that x2n+y2n is not a prime for some positive integer n.

2009

Grade11

1In a country,there are some cities linked together by roads.The roads just meet each other inside the cities.In each city,there is a board which showing the shortest length of the road originating in that city and going through all other cities(the way can go through some cities more than one times and is not necessary to turn back to the originated city).Prove that2 random numbers in the boards can’t be greater or lesser than1.5times than each other.

2Consider the sequence of numbers(a n)(n=1,2,...)de?ned as follows:a1∈(1,2),a k+1=

a k+k

a k (k=1,2,...).Prove that there is at most two terms of this sequence whose sum is

an integer.

3Let ABCD be a triangular pyramid such that no face of the pyramid is a right triangle and the orthocenters of triangles ABC,ABD,and ACD are collinear.Prove that the center of the sphere circumscribed to the pyramid lies on the plane passing through the midpoints of AB,AC and AD.

4Given a set M of points(x,y)with integral coordinates satisfying x2+y2≤1010.Two players play a game,making rather sophisticated moves in turn.One of them marks a point on his ?rst move.After this,on each move the moving player marks a point,which is not yet marked and joins it with the previous marked point.So,they draw a broken line.The requirement is that lengths of edges of this broken line must strictly increase.The player,which can not make a move,loses.Who have a winning strategy?

Moderator Edit:There seems to have been a prolem with the Russian→Vietnamese→English translation.The condition also says It is not allowed to mark a point symmetrical to the one just chosen with respect to the origin of the coordinate system.

5Prove that

log a b+log b c+log c a≤log b a+log c b+log a c

for all1

6There are k rooks on a10×10chessboard.We mark all the squares that at least one rook can capture(we consider the square where the rook stands as captured by the rook).What is the maximum value of k so that the following holds for some arrangement of k rooks:after removing any rook from the chessboard,there is at least one square not captured by any of the remaining rooks.

Edit:this is not the correct statement of the problem.Corrected version(Thanks to [url=http://www.mathlinks.ro/pro?le.php?mode=viewpro?leu=15641]hsiljak[/url]):

2009

7Let be given a parallelogram ABCD and two points A1,C1on its sides AB,BC,respectively.

Lines AC1and CA1meet at P.Assume that the circumcircles of triangles AA1P and CC1P intersect at the second point Q inside triangle ACD.Prove that∠P DA=∠QBA.

8Let x,y be two integers with2≤x,y≤100.Prove that x2n+y2n is not a prime for some positive integer n.

2007年中国西部数学奥林匹克试题及答案

2007年中国西部数学奥林匹克 第一天 11月10日 上午8:00-12:00 每题15分 一、已知{}1,2,3,4,5,6,7,8T =,对于,定义为A 中所有元素之和,问:T 有多少个非空子集A ,使得为3的倍数,但不是5的倍数? ,A T A ?≠?()S A ()S A 二、如图,⊙与⊙相交于点C ,D ,过点D 的一条直线分别与⊙,⊙相交于点A ,B ,点P 在⊙的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在 ⊙的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证: 的充要条件为P ,Q ,M ,N 四点共圆. 1O 2O 1O 2O 1O 2O OD MN ⊥ 三、设实数a ,b ,c 满足3a b c ++=.求证: 2221115411541154114 a a b b c c ++?+?+?+1≤. 四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得 12007 p OA q OB r OC ?+?+?

广西 南宁 第二天 11月11日 上午8:00-12:00 每题15分 五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍? 六、求所有的正整数n ,使得存在非零整数12,,,n x x x y ,L 2,n ,满足 ???=++=++. ,022211ny x x x x n n L L 七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC ,求证:P 是△ABC 的重心. 八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时针方向依次将白子标以1,.再从某个黑子起,按逆时针方向依次将黑子标以1,. 证明:存在连续个棋子(不计黑白), 它们的标号所成的集合为{,L 2,,n L n }1,2,,n L .

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N . 〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; 〔2〕假设 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解〔1〕设Q ,R 分不是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,那么 11 ,22EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,因此 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,因此 ABD ACD ∠=∠, 因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ?=?. 〔2〕答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么 11 ,22 NS OD EQ OB ==, C B

因此 NS OD EQ OB =.①又 11 , 22 ES OA MQ OC ==,因此 ES OA MQ OC =.② 而AD∥BC,因此 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 因此NSE ?~EQM ?, 故 EN SE OA EM QM OC ==〔由②〕.同理可得, FN OA FM OC =, 因此EN FN EM FM =, 从而EM FN EN FM ?=?. C B

最新第36届国际数学奥林匹克试题合集

第36届国际数学奥林匹克试题 1.(保加利亚) 设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC 、BD 为直径的圆相交于X 和Y ,直线XY 交BC 于Z 。若P 为XY 上异于Z 的一点,直线CP 与以AC 为直径的圆相交于C 和M ,直线BP 与以BD 为直径的圆相交于B 和N 。试证:AM 、DN 和XY 三线共点。 证法一:*设AM 交直线XY 于点Q ,而DN 交直线XY 于点Q ′(如图95-1,注意:这里只画出了点P 在线段XY 上的情形,其他情况可类似证明)。须证:Q 与Q ′重合。 由于XY 为两圆的根轴,故XY ⊥AD ,而AC 为直径,所以 ∠QMC=∠PZC=90° 进而,Q ,M ,Z ,B 四点共圆。 同理Q ′,N ,Z ,B 四点共圆。 这样,利用圆幂定理,可知 QP ·PZ=MP ·PC=XP ·PY , Q ′P ·PZ=NP ·PB=XP ·PY 。 所以,QP= Q ′P 。而Q 与Q ′都在直线XY 上且在直线AD 同侧,从而,Q 与Q ′重合。命题获证。 分析二* 如图95-2,以XY 为弦的任意圆O , 只需证明当P 确定时,S 也确定。 证法二:设X (0,m ),P (0,y 0), ∠PCA=α, m 、y 0是定值。有2 0.yx x x ctg y x C A c =?-=但α, 则.0 2 αtg y m x A -= 因此,AM 的方程为 ).(0 2 ααtg y m x ctg y ?+=

令0 2,0y m y x s ==得,即点S 的位置取决于点P 的位置,与⊙O 无关,所以AM 、DN 和ZY 三条直线共点。 2.(俄罗斯)设a 、b 、c 为正实数且满足abc=1。试证: .2 3)(1)(1)(1333≥+++++b a c a c b c b a 证法一:**设γβα++=++=++=---------1111111112,2,2b a c a c b c b a , 有.0=++γβα于是, ) (4)(4)(4333b a c a c b c b a +++++ )(4)(4)(4333b a c a b c a c b a b c c b a a b c +++++= 112 111121111211)()()(------------+++++++++++=b a b a c c b c b c b γαβα 21112 1112111111)()()()(2)(2γβαγβα------------+++++++++++=b a a c c b c b a .6132)111(23=?≥++≥abc c b a ∴原不等式成立。 背景资料:陕西省永寿县中学安振平老师在《证明不等式的若干代换技巧》一文中运用“增量代换”给出证法一,还用增量代换法给出第 6届IMO 试题的证明。什么是增量代换法?—— 由α≤+=≥0,,其中令a b a b a 称为增量。运用这种方法来论证问题,我们称为增量代换法。 题1 设c b a ,,是某一三角形三边长。求证: .3)()()(222abc c b a c b a c b a c b a ≤-++-++-+ (第6届IMO 试题) 证明 不失一般性,设.,0,0,0,,,y x z y x z y x c y x b x a >≥≥>++=+==且 abc c b a c b a c b a c b a 3)()()(222--++-++-+则 + ++++-+++++-++++=x z y x y x x z y x y x x z y x y x x [)()]()[()(])()[(222

高中数学奥林匹克竞赛试题

高中数学奥林匹克竞赛试题 (9月7日上午9:00-11:00) 注意事项:本试卷共18题,满分150分 一、选择题(本大题共6个小题,每小题6分,满分36分) 1.定义在实数集R 上的函数y =f(-x)的反函数是y =f -1(-x),则 (A)y =f(x)是奇函数 (B)y =f(x)是偶函数 (C)y =f(x)既是奇函数,也是偶函数 (D)y =f(x)既不是奇函数,也不是偶函数 2.二次函数y =ax 2+bx +c 的图象如右图所示。记N =|a +b +c|+|2a -b|,M =|a -b +c| +|2a +b|,则 (A)M >N (B)M =N (C)M <N (D)M 、N 的大小关系不能确定 3.在正方体的一个面所在的平面内,任意画一条直线,则与它异 面的正方体的棱的条数是 (A) 4或5或6或7 (B) 4或6或7或8 (C) 6或7或8 (D) 4或5或6 4.ΔABC 中,若(sinA +sinB)(cosA +cosB)=2sinC ,则 (A)ΔABC 是等腰三角形但不一定是直角三角形 (B)ΔABC 是直角三角形但不一定是等腰三角形 (C)ΔABC 既不是等腰三角形也不是直角三角形 (D)ΔABC 既是等腰三角形也是直角三角形 5.ΔABC 中,∠C =90°。若sinA 、sinB 是一元二次方程x 2+px +q =0的两个根,则下列关 系中正确的是 (A)p =q 21+±且q >21- (B)p =q 21+且q >2 1- (C)p =-q 21+且q >21- (D)p =-q 21+且0<q ≤2 1 6.已知A (-7,0)、B (7,0)、C (2,-12)三点,若椭圆的一个焦点为C ,且过A 、B 两点,此椭圆的另一个焦点的轨迹为 (A)双曲线 (B)椭圆 (C)椭圆的一部分 (D)双曲线的一部分 二、填空题(本大题共6个小题,每小题6分,满分36分) 7. 满足条件{1,2,3}? X ?{1,2,3,4,5,6}的集合X 的个数为____。 8. 函数a |a x |x a )x (f 22-+-=为奇函数的充要条件是____。 9. 在如图所示的六块土地上,种上甲或乙两种蔬菜(可只种其中一种,也可两种都种),要求相邻两块土地上不都种甲种蔬菜,则种蔬菜的方案数共有____种。 10. 定义在R 上的函数y =f(x),它具有下述性质: (i)对任何x ∈R ,都有f(x 3)=f 3(x), (ii)对任何x 1、x 2∈R ,x 1≠x 2,都有f(x 1)≠f(x 2),

奥数简介

奥数简介 “奥数”是奥林匹克数学竞赛的简称。1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。 国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。有关专家认为,只有5%的智力超常儿童适合学奥林匹克数学,而能一路过关斩将冲到国际数学奥林匹克顶峰的人更是凤毛麟角。 1934年和1935年苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称。1959年罗马尼亚数学物理学会邀请东欧国家中学生参加,在布加勒斯特举办了第一届国际数学奥林匹克竞赛,从此每年举办一次,至今已举办了43届。 近年来中国代表在数学奥林匹克上的成绩就像中国健儿在奥运会的成绩一样,突飞猛进,从40届到第43届,中国代表队连续四年总分第一。 奥数分类为:浓度问题、分数比大小问题、行程问题、分数巧算、逻辑推理、工程问题、牛顿问题、数字的巧算问题。 奥数与一般数学有一定的区别:奥数相对比较深. 小学数学奥林匹克活动的蓬勃发展,极大地激发了广大少年儿童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的一项有益活动. 国际奥林匹克数学竞赛 奖项名称: 国际奥林匹克数学竞赛 其他名称: International Mathematics Olympiad 创办时间: 1959年 主办单位: 由参赛国轮流主办 奖项介绍:国际奥林匹克数学竞赛是国际中学生数学大赛,在世界上影响非常之大。国际奥林匹克竞赛的目的是:发现鼓励世界上具有数学天份的青少年,为各国进行科学教育交流创造条件,增进各国师生间的友好关系。这一竞赛1959年由东欧国家发起,得到联合国教科文组织的资助。第一届竞赛由罗马尼亚主办,1959年7月22日至30日在布加勒斯特举行,保加利亚、捷克斯洛伐克、匈牙利、波兰、罗马尼亚和苏联共7个国家参加竞赛。以后国际奥林匹克数学竞赛都是每年7月举行(中间只在1980年断过一次),参赛国从1967年开始逐渐从东欧扩展到西欧、亚洲、美洲,最后扩大到全世界。目前参加这项赛事的代表队有80余支。美国1974年参加竞赛,中国1985年参加竞赛。经过40多年的发展,国际数学奥林匹克的运转逐步制度化、规范化,有了一整套约定俗成的常规,并为历届东道主所遵循。 国际奥林匹克数学竞赛由参赛国轮流主办,经费由东道国提供,但旅费由参赛国自理。参赛选手必须是不超过20岁的中学生,每支代表队有学生6人,另派2名数学家为领队。试题由各参赛国提供,然后由东道国精选后提交给主试委员会表决,产生6道试题。东道国不提供试题。试题确定之后,写成英、法、德、俄文等工作语言,由领队译成本国文字。主试委员会由各国的领队及主办国指定的主席组成。这个主席通常是该国的数学权威。主试委员会的职责有7条:1)、选定试题;2)、确定评分标准;3)、用工作语言准确表达试题,并翻译、核准译成各参加国文字的试题;4)、

2017中国西部数学邀请赛试题及解析

2017中国西部数学邀请赛 1.设素数p 、正整数n 满足()2 2 1 1n k p k =+∏.证明:2p n <. 1.按照 ()2 1 1n k k =+∏中的因子所含p 的幂次分情形讨论. (1)若存在()1k k n ≤≤,使得()2 2 1p k +,则221p n ≤+. 于是,2p n ≤ <. (2)若对任意的()1k k n ≤≤,( ) 2 2 1p k +?,由条件,知存在1j k n ≤≠≤,使得()21p j +且() 2 1p k +. 则( )22 p k j -. 于是,|()()p k j k j -+. 当|()p k j -,则12p k j n n ≤-≤-<;当|()p k j +,则1212p k j n n n n ≤+≤+-=-<, 综上,2p n <. 2、已知n 为正整数,使得存在正整数12,,,n x x x 满足:()12 12100n n x x x x x x n +++=,求n 的最 大可能值. 2、n 的最大可能值为9702, 显然:由已知等式得 1n i i x n =≥∑,所以:1 100n i i x =≤∏ 又等号无法成立,则 1 99n i i x =≤∏ 而 ()()()1 1 1111111n n n n i i i i i i i i x x x x n =====-+≥-+=-+∑∑∏∏ 则 1 1 198n n i i i i x x n n ==≤+-≤+∑∏99(98)10099989702n n n ?+?≤?=… 取123970299,1x x x x =====,可使上式等号成立

历届东南数学奥林匹克试题

目录 2004年东南数学奥林匹克 (2) 2005年东南数学奥林匹克 (4) 2006年东南数学奥林匹克 (6) 2007年东南数学奥林匹克 (9) 2008年东南数学奥林匹克 (11) 2009年东南数学奥林匹克 (14) 2010年东南数学奥林匹克 (16) 2011年东南数学奥林匹克 (18) 2012年东南数学奥林匹克 (20)

2004年东南数学奥林匹克 1.设实数a、b、c满足a2+2b2+3c2=32,求证:3?a+9?b+27?c≥1. 2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作 一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN. 3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. (2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. 4.给定大于2004的正整数n,将1,2,3,?,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值. 5.已知不等式√2(2a+3)ccc(θ?π4)+6ssnθ+ccsθ?2csn2θ<3a+ 6对于θ∈?0,π2?恒成立,求a的取值范围. 6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的 圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD?EE+DE?AE=AD?AE. 7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有 一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进

国际数学奥林匹克IMO试题(官方版)2000_eng

41st IMO2000 Problem1.AB is tangent to the circles CAMN and NMBD.M lies between C and D on the line CD,and CD is parallel to AB.The chords NA and CM meet at P;the chords NB and MD meet at Q.The rays CA and DB meet at E.Prove that P E=QE. Problem2.A,B,C are positive reals with product1.Prove that(A?1+ 1 B )(B?1+1 C )(C?1+1 A )≤1. Problem3.k is a positive real.N is an integer greater than1.N points are placed on a line,not all coincident.A move is carried out as follows. Pick any two points A and B which are not coincident.Suppose that A lies to the right of B.Replace B by another point B to the right of A such that AB =kBA.For what values of k can we move the points arbitrarily far to the right by repeated moves? Problem4.100cards are numbered1to100(each card di?erent)and placed in3boxes(at least one card in each box).How many ways can this be done so that if two boxes are selected and a card is taken from each,then the knowledge of their sum alone is always su?cient to identify the third box? Problem5.Can we?nd N divisible by just2000di?erent primes,so that N divides2N+1?[N may be divisible by a prime power.] Problem6.A1A2A3is an acute-angled triangle.The foot of the altitude from A i is K i and the incircle touches the side opposite A i at L i.The line K1K2is re?ected in the line L1L2.Similarly,the line K2K3is re?ected in L2L3and K3K1is re?ected in L3L1.Show that the three new lines form a triangle with vertices on the incircle. 1

第41届国际数学奥林匹克解答

第41届国际数学奥林匹克解答 问题 1.圆Γ1和圆Γ2 相交于点M和N.设L是圆Γ 1 和圆Γ2的两条公切线中距离 M较近的那条公切线.L与圆 Γ1相切于点A,与圆Γ2相切 于点 B.设经过点M且与L平 行的直线与圆Γ1还相交于点 C,与圆Γ2还相交于点 D.直 线C A和D B相交于点E;直线 A N和C D相交于点P;直线 B N 和C D相交于点Q. 证明:E P=E Q. 解答:令K为M N和A B的交点.根据圆幂定理,,换言之K是A B的中点.因为P Q∥A B,所以M是P Q的中点.故只需证明E M⊥P Q.因为C D∥A B,所以点A是Γ1的弧C M的中点,点B是Γ2的弧D M的中点.于是三角形A C M与B D M都是等腰三角形.从而有 , . 这意味着E M⊥A B.再由P Q∥A B即证E M⊥P Q. 问题 2.设a,b,c是正实数,且满足a b c=1.证明: . 解答:令,,,其中x,y,z为正实数,则原不等式变为(x-y+z)(y-z+x)(z-x+y)≤x y z.记u=x-y+z,v=y-z+x,w=z-x+y.因为这三个数中的任意两个之和都是正数,所以它们中间最多只有一个是负数.如果恰有一个是负数,则u v w≤0

高中数学竞赛考试大纲及必备辅导书汇总,尖子生请收好

高中数学竞赛考试大纲及必备辅导书汇总,尖子生请收好! 首先,强调一点:不是所有学生都可以学数学竞赛,要想学习数学竞赛必须同时具备以下条件: ?高考数学可以轻松应对; ?对数学竞赛有兴趣,自发选择学习数学竞赛; ?具备自主学习能力; ?高考涉及的其他学科不存在太大问题,或个人的竞赛前景远优于高考前景。 数学竞赛需要的时间和精力都是很大的,并且如果因为学习竞赛受挫而导致对数学产生负情绪是得不偿失的,因此,我从不提倡“全民竞赛”。当然,如果你恰好符合以上的四个条件,那么你一定要学习竞赛。为什么?因为学习数学竞赛的好处很多。 与其他学科竞赛一样,学习数学竞赛除了能在升入高校方面获得保送或降分的优惠外,还能培养学生的自主学习能力,这对学生的整个大学学习乃至今后的学术研究或是社会工作是尤为重要的。

当然,对于大部分学生来说,高校的吸引力是最大的。而2016年新发布的高校自主招生政策中,其中的变化值得深思: ?取消“校荐”,考生需自己报名; ?“年级排名”不再是报名条件; ?门槛抬高,审核更为严格; ?报考专业一定要与特长匹配; ?试点高校自主招生考核统一安排在高考结束之后、高考成绩公布前进行。 我们最需要关注的点有三个: ① 由于校荐被取消,年级排名也被废除,原本校内成绩突出的学生很难走自招,而自招的报名人数会上升,竞争更加激烈; ② 据了解,985高校自招的初审底线是竞赛拿到省二以上,而北清更是要求拿到省一,门槛的提高导致了28万申请自招的学生只有4万余人通过初审,8千余人获得资格,初审和复审的通过率均低于20%;

③ 现在的自招考试要求不超过两科,考试的科目和专业是相匹配的,而绝大多数专业的考试科目都有数学,因此数学竞赛的比重是很高的。 总的来说,新的政策直接导致的是各高中年级排名较高的学生更难上清北(难以进入博雅领军,难以获得自招资格,裸考进清北的人更少),而间接导致的是更多的学生走上了竞赛这条道路。因此,若你有足够的实力,精力和时间,那么竞赛将是你们的不二之选。 此外,数学竞赛学到一定深度后就会发现,数学竞赛不再是由知识结构和解题方法组成,而是对思维能力的培养和运用,而思维能力的价值是远超过数学本身的,这将会对学生以后对问题的思考与对事物的判断等产生不可估量的影响。当然,这是后话。 说归说,高中数学竞赛指的究竟是什么?我想说的是,绝不仅仅是高联(全国高中数学联赛)这么简单。下面,我就带着大家理一理高中阶段可能会遇到的竞赛。

第50届国际数学奥林匹克竞赛试题(中文版)与参考答案

2009年第50届IMO 解答 2009年7月15日 1、是一个正整数,是n 12,,...,(2)k a a a k ≥{}1,2,...,n 中的不同整数,并且1(1i i n a a +?)?)对于所有都成立,证明:1,2,...,1i k =1(1k a a ?不能被n 整除。 证明1:由于12(1n a a ?),令1(,)n a p =,n q p = 也是整数,则n pq =,并且1p a ,21q a ?。因此,由于2(,)1q a =23(1n pq a a )=?,故31q a ?;同理可得41q a ?,。。。, 因此对于任意都有2i ≥1i q a ?,特别的有1k q a ?,由于1p a ,故1(1k n pq a a )=?(*)。 若结论不成立,则1(1k n pq a a =)?,与(*)相减可得1(k n a a ?),矛盾。 综上所述,结论成立。 此题平均得分:4.804分

2、外接圆的圆心为O ,分别在线段上,ABC ?,P Q ,CA AB ,,K L M 分别是,,BP CQ PQ 的中点,圆过Γ,,K L M 并且与相切。证明:OP PQ OQ =。 证明:由已知MLK KMQ AQP ∠=∠=∠,MKL PML APQ ∠=∠=∠,因此 APQ MKL ??~。所以 AP MK BQ AQ ML CP == ,故AP CP AQ BQ ?=?(*)。 设圆O 的半径为R ,则由(*)有2 2 2 2 R OP R OQ ?=?,因此OP OQ =。 不难发现OP 也是圆Γ与相切的充分条件。 OQ =PQ 此题平均得分:3.710分

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题 1987第二届年中国数学奥林匹克 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整 除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将 这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 3.放置最大数的点积放置最小数的点之间的最短距离。 4.所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确 定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可 以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们 两两相切。如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m 与n,问3m+4的最大值是多少?请证明你的结论。

漫话数学竞赛史-

漫话数学竞赛史 一. 口吃者的挑战 这位口吃者名叫丰坦那(Nicolo Fontana), 1500年出生于意大利北部的布里西亚(Brescia). 不幸的他, 幼年时正值法军入侵, 小小的丰坦那也难逃此劫, 父亲被杀, 他自己颚部被刀砍伤, 从此说话结结巴巴, 被称为塔塔利亚(Tartaglia), 即口吃的人. 在母亲的抚养下, 丰坦那自学成才, 他教过学、写过书, 但人们知道他的名字更多的是因为他在几次数学竞赛中所赢得的胜利. 1530年, 在他的家乡, 一位名叫科拉(Colla)的教师向他提出挑战, 解答形如x3+3x3=5之类的三次方程. 丰坦那获胜了, 一时间, 被传为佳话. 他的名字随着这次有记载的第一次数学竞赛, 被传扬开来, 并且被记入史册. 1535年2月22日, 神圣的米兰大教堂. 丰坦那在此公开迎战的是菲奥(Autonimo Fior). 菲奥早已从恩师著名数学家费罗(Scipione del Ferro)那里学到关于三次方程的一些解题技巧. 而丰坦那通过自己的努力, 也终于在比赛前10天掌握了三次方程的解法, 使他得以从容迎战. 比赛一开始, 两人各给对方出30道题. 时间在一分一秒的流逝, 一个小时过去了, 两人都在继续埋头解题……当第二个小时还未结束时, 丰坦那已完成了全部解题工作, 他再次大获全胜! 后来, 天才怪人卡丹(Girolamo Cardano)在做出决不泄密的承诺后, 丰坦那把三次方程的解法告诉了他. 不料, 卡丹在他1545年出版的著作《大法》 (Ars Magna)第11章中公开了三次方程的求根公式(被称为卡丹公式). 丰坦那闻讯非常气愤, 认为:“卡丹盗走了我准备放到自己著作中的珍珠. ”一怒之下, 他再赴米兰, 挑战卡丹. 卡丹却极力回避, 他派自己的学生费拉里(Lodovico Ferreri)迎战, 此人是四次方程解法的发现者. 但是, 丰坦那在7天内解出了对方给的大部分题目, 而费拉里用了5个月的时间只解对了1道题. 丰坦那再展雄风, 令世人惊叹不已. 没想到, 费拉里不但不认输, 反而诬陷丰坦那剽窃了费罗的研究成果, 气得这位口吃的人竟然说不出话来. 心乱如麻的丰坦那又得到一个可怕的消息:卡丹要杀死他!丰坦那不得不连夜逃离米兰. 1557年, 丰坦那离开了这个充满了成功和恐慌的

中国数学奥林匹克试题及解答

一、 实数12,,,n a a a L 满足120n a a a +++=L ,求证: () 1 2 2 111 max ()3 n k i i k n i n a a a -+≤≤=≤-∑. 证明 只需对任意1k n ≤≤,证明不等式成立即可. 记1,1,2,,1k k k d a a k n +=-=-L ,则 k k a a =, 1k k k a a d +=-,2111,,k k k k n k k k n a a d d a a d d d +++-=--=----L L , 112121121,,,k k k k k k k k k k a a d a a d d a a d d d -------=+=++=++++L L , 把上面这n 个等式相加,并利用120n a a a +++=L 可得 11121()(1)(1)(2)0k k k n k k na n k d n k d d k d k d d +----------+-+-++=L L . 由Cauchy 不等式可得 ()2 211121()()(1)(1)(2)k k k n k k na n k d n k d d k d k d d +---=-+--++------L L 11222111k n k n i i i i i i d ---===???? ≤+ ??????? ∑∑∑ 111222111(1)(21)6n n n i i i i i n n n i d d ---===--?????? ≤= ??? ???????∑∑∑ 31213n i i n d -=??≤ ??? ∑, 所以 ()1 2 211 3 n k i i i n a a a -+=≤-∑. 二、正整数122006,,,a a a L (可以有相同的)使得20051223 2006 ,,,a a a a a a L 两

第二十四届奥林匹克运动会

第二十四届奥林匹克运动会 THE OL YMPIC GAMES OF 1988 业余体育时代的终结 约翰逊事件--奥运会有史以来最大的丑闻 第24届奥运会1988年9月17日在韩国的汉城举行.共有160个国家和地区的9581名运动员(其中女运动员2476人)参加了23个大项237个单项的比赛.首次参赛的国家和地区有文莱、马尔代夫、美属萨摩亚、圣文森特和格林纳达、阿鲁巴、瓦努阿图、关岛、库克群岛。 参赛运动员最多的国家和地区是:美国612人、苏联524人和韩国467人。中国奥委会派出299名运动员参赛,居参赛国的第11位。 1981年在联邦德国巴登-巴登市举行的第84届国际奥委会会议上,投票通过汉城为第24届奥运会的承办城市。是继东京之后第二个主办奥运会的亚洲城市。 本届奥运会新列入乒乓球比赛,恢复了已中断64年的网球比赛项目。并允许网球和足球职业运动员参赛,但足球职业运动员年龄限制在23岁以下,羽毛球和女子柔道被列为本届奥运会的表演项目。第24届奥运会的开幕式于9月17日10时30分在可容纳10万观众的蚕室奥林匹克体育场举行。韩国总统卢泰遇和国际奥委会主席J.A.萨马兰奇出席了大会。汉城奥运会组委会委员长朴世植致开幕词,国际奥委会主席萨马兰奇致欢迎词。本届奥林匹克圣火于8月23日在奥林匹亚引燃,8月25日由韩国专机从雅典运抵济洲岛,途经釜山、大丘、仁川等29个城镇的火炬接力,历时22天,行程4186公里。曾获第11届奥运会马拉松冠军的76岁的孙基祯手持火炬进入会场,由第10届亚运会3枚金牌获得者林春爱接过火炬绕场一周,由象征体育、科技和艺术的二男一女接过火炬点燃奥林匹克火焰。 在本届奥运会上美国女子短跑运动员F.格里菲斯.乔伊纳勇夺100米和200米桂冠,在200米赛中接连刷新世界纪录。还获得4×100米接力金牌和4×400米接力银牌,成为本届奥运会获奖牌最多的田径运动员。 在游泳比赛中,来自莱比锡的姑娘奥托连夺6枚金牌(50米、100米自由泳,100米仰泳、蝶泳和4×100米混合泳、自由泳接力),获金牌数为本届参赛运动员之冠。美国游泳名称M.比昂迪获得5枚金牌(50米、100米自由泳,4×100米混合泳、自由泳接力,4×200米自由泳接力)、1枚银牌(100米蝶泳)和1枚铜牌(200米自由泳)。其中50米自由泳和3项接力均打破世界纪录。 苏联运动员V.阿尔捷莫夫在男子体操比赛中独得个人全能、双杠、单杠3枚金牌和团体金牌。罗马尼亚女子体操运动员D.希莉瓦斯获高低杠、自由体操和平衡木3枚金牌和个人全能银牌、跳马铜牌,成为本届奥运会女子体操明星。加拿大短跑名将B.约翰逊在100米赛中以9"79的成绩震惊田坛,但被查出服用兴奋剂,终被取消纪录,追回金牌,成为本届奥运会最为轰动的丑闻。在举重比赛中也有运动员服用兴奋剂。 "约翰逊事件"使奥林匹克运动和世界体育界把兴奋剂问题提高到严重损害体育道德和违反奥林匹克精神的高度来对待。 中国运动员在本届奥运会上获得5枚金牌、11枚银牌和12枚铜牌。总分数居第8位。女子跳水运动员高敏和许艳梅,分别获跳板跳水和跳台跳水冠军。楼云在男子体操比赛中夺得跳马金牌和自由体操铜牌。乒乓球运动员陈静夺得女子单打冠军。第2、3名由李惠芬、焦志敏获得。陈龙灿与韦晴光获男子双打冠军。本届奥运会共破64项奥运会纪录,其中有22项世界纪录。田径破奥运会纪录30项,其中世界纪录5项;游泳破奥运会纪录23项,其中世界纪录11项;举重总成绩破奥运会纪录3项,其中世界纪录3项;射击和射箭破奥运会纪录与世界纪录各2项和1项。

第五届中国女子数学奥林匹克试题

第五届中国女子数学奥林匹克试题 第一天 2006年8月8日 下午15:30——19:30 乌鲁木齐 中国在国际数学奥林匹克竞赛中,连续多年取得很好的成绩,这项竞赛是高中程度,不 包括微积分,但题目需要思考,我相信我是考不过这些小孩子的,因此有人觉得,好的数学家未必长于这种考试,竞赛胜利者也未必是将来的数学家,这个意见似是而非。数学竞赛大约是百年前在匈牙利开始的;匈牙利产生了同它人口不成比例的许多大数学家。 ——陈省身 一、设a >0,函数 f : (0,+∞) → R 满足f (a )=1.如果对任意正实数x ,y 有 ()()()2a a f x f y f f f xy x y ?? ??+= ? ????? ,①求证: f (x )为常数. 证明: 在①中令x =y =1,得 f 2(1)+f 2(a )=2 f (1), (f (1)-1)2 =0, ∴ f (1)=1。 在①中令y =1,得 f (x )f (1)+f (a x )f (a )=2 f (x ), f (x )=f ( a x ),x >0。 ② 在①中取y =a x ,得 f (x )f (a x )+f (a x )f (x )=2 f (a ), f (x )f ( a x )=1。 ③ 由②,③得:f 2(x )=1,x >0。 在①中取x =y ,得 f 2 )+f 2 )=2 f (t ), ∴ f (t )>0。 故f (x )=1,x >0。 二、设凸四边形ABCD 对角线交于O 点.△OAD ,△OBC 的外接圆交于O ,M 两点,直线 OM 分别交△OAB ,△OCD 的外接圆于T ,S 两点.求证:M 是线段TS 的中点. 证法1: 如图,连接BT ,CS ,MA ,MB ,MC ,MD 。 ∵ ∠BTO =∠BAO ,∠BCO =∠BMO ,

历届西部数学奥林匹克试题

目录 2001年西部数学奥林匹克 (2) 2002年西部数学奥林匹克 (4) 2003年西部数学奥林匹克 (6) 2004年西部数学奥林匹克 (7) 2005年西部数学奥林匹克 (8) 2006年西部数学奥林匹克 (10) 2007年西部数学奥林匹克 (12) 2008年西部数学奥林匹克 (14) 2009年西部数学奥林匹克 (16) 2010年西部数学奥林匹克 (18) 2011年西部数学奥林匹克 (21) 2012年西部数学奥林匹克 (23)

2001年西部数学奥林匹克 1.设数列{x n}满足x1=12,x n+1=x n+x n2n 2.证明:x2001<1001. (李伟固供题) 2.设ABCD是面积为2的长方形,P为边CD上的一点,Q为△P AB 的内切圆与边AB的切点.乘积PP?PP的值随着长方形ABCD及点P 的变化而变化,当PP?PP取最小值时, (1)证明:PP≥2PB; (2)求PQ?PQ的值. (罗增儒供题) 3.设n、m是具有不同奇偶性的正整数,且n>m.求所有的整数x,使得x2n?1x m?1是一个完全平方数. (潘曾彪供题) 4.设x、y、z为正实数,且x+y+z≥xyz.求x2+y2+z2xyz的最小值. (冯志刚供题) 5.求所有的实数x,使得[x3]=4x+3.这里[y]表示不超过实数y的最大整数. (杨文鹏供题) 6.P为⊙O外一点,过P作⊙O的两条切线,切点分别为A、B.设Q 为PO与AB的交点,过Q作⊙O的任意一条弦CD.证明:△PAB与 △PCD有相同的内心. (刘康宁供题) 7.求所有的实数x∈?0,π2?,使得(2?sss2x)sss?x+π4?=1,并证

2014年第55届国际数学奥林匹克(IMO)试题

岳志鹏(河北)整理 2014年第55届国际数学奥林匹克届国际数学奥林匹克(IMO)(IMO)(IMO)试题 试题第一天 2014年7月8日,星期二 第1题设01a a <<×××为一个无穷正整数列,证明:存在唯一的整数使得:n ≥1使得: n a ≤01n a a a n ++×××+≤1n a +.第2题设n ≥2为一个正整数,考虑由2n 个单位正方格构成的n n ′的正方形棋盘,一种放置n 个棋子“车”的方案被称为和平的,如果每一行每一列上正好有一个“车”.求最大的正整数k 使得对于任何一种和平放置n 个棋子“车”的方案,都存在一个k k ′的棋盘使得它的2k 个单位正方格中都没有“车”. 第3题在凸四边形ABCD 中90ABC CDA D=D=°,点H 是A 向BD 引的垂线的垂足,点S 和点T 分别在边AB 和AD 上,使得H 在△SCT 内部,且90CHS CSB D-D=°,90THC DTC D-D=°.证明:直线BD 和△TSH 外接圆相切.

岳志鹏(河北)整理 2014年第55届国际数学奥林匹克届国际数学奥林匹克(IMO)(IMO)(IMO)试题 试题第二天 2014年7月9日,星期三 第4题锐角△ABC 中,点P 和点Q 是在边BC 上满足 PAB BCA D=D和CAQ ABC D=D的两点。点M 和点N 分 别在直线,AP AQ 上满足:P 是AM 中点,Q 是AN 中点. 证明:,BM CN 的交点在△ABC 的外接圆上. 第5题对于任意正整数n ,开普敦银行提供面值为1n 的硬币,对于给定有限枚硬币他们面值的和不超过1992 +.证明:可以把这些硬币分成100组使得每组面值和至多为1.(空集也可以视为一组硬币) 第6题一个平面上的直线集被称为一般的,如果不存在两两平行或者三线共点.一组一般的直线集把平面切割成若干区域.若一个区域的面积是有限的则称为有限区间.证明:对所有 充分大的正整数n ,任意的有n 条直线构成的一般的直线集可以把至少条直线染为蓝色使得没有一个有限区间被蓝线包围. 说明:如果把题中的可以获得更多分值.

相关主题