搜档网
当前位置:搜档网 › 谐振逆变器三相电路原理

谐振逆变器三相电路原理

谐振逆变器三相电路原理
谐振逆变器三相电路原理

谐振逆变器三相电路原理

谐振逆变器三相电路原理为避免滤波电抗Ld上产生大的感生电势,电流必须连续。也就是说,必须保证逆变器上、下桥臂晶闸管在换流时,是先开通后关断,也即在换流期间(tγ)内所有晶闸管都处于导通状态。这时,虽然逆变桥臂直通,由于Ld足够大,也不会造成直流电源短路,但换流时间长,会使系统效率降低,因而需缩短tγ,即减小Lk值。

逆变器必须采用三相全控整流器作为直流电源,其主电路原理如图1 所示。而串联逆变器原则上3 种整流器均可为其供电,但为了控制方便和节能,一般采用三相不可控整流器或三相半控整流器作为直流电源,如图2 ~3 所示。其中:a、b、c 代表三相,SCR1 ~SCR10 为可控硅,LD为滤波电抗器,L 为振荡线圈,C 为振荡电容器,D1~D8 为整流二极管,Cd1、Cd2 为滤波电容器,Cn1、Cn2 为谐振电容器。

图1 三相全控整流器并联谐振式主电路

图2 三相不可控整流器串联谐振式主电路

采用三相半控整流器提供直流电源,但不用来调压,只用来在软启动和出现故障时作为电子开关,快速切断电源。正常工作时,可控硅总是处于全导通状态,其工作特性与三相不可控整流器串联谐振电路完全相同。一般100 kW 以上的中频电源多采用此种整流方式。串联谐振逆变器的工作频率必须低于负载电路的固有振荡频率,即应确保有合适的t时间,否则会因逆变器上、下桥臂直通而导致换流的失败。并联逆变器的工作频率必须略高于负载电路的固有振荡频率,以确保有合适的反压时间t,否则会导致晶闸管间换流失败;但若高得太多,则在换流时晶闸管承受的反向电压会太高,这是不允许的。功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率,即改变负载功率因数cosφ。并联逆变器的功率调节方式,一般只能是改变直流电源电压Ud。改变cosφ虽然也能使逆变输出电压升高和功率增大,但所允许调节范围小。

它由三相晶闸管全控整流桥、平波电感dL、滤波电容dC、单相全控桥式逆变电路、续流二极管、串联谐振逆变器负载构成。三相晶闸管全控整流桥将正弦的工频交流电整流成脉动的直流电dU,可通过调节直流电压dU来调节负载电流。平波电感dL在此起切断直流通路的作用。由于要求恒压源供电,所以需要一

个很大的滤波电容dC,当dC足够大时,可以认为输入电压是恒压dU。在电路还没开始工作前,电容dC就通过电网储能,以便于启动逆变电路。

由四只晶闸管构成的单相全控桥式逆变电路将直流电压dU逆变为中频方波电压,并将它加到负载电路。负载电路是由感应线圈和补偿电容组成的串联振荡电路,对工件进行感应加热。通过电感的电流接近正弦波形。

串联补偿逆变电路是通过自然换流来实现工作晶闸管之间转换的,其工作原理如下:

第一阶段:首先触发晶闸管SCR1、SCR4,电流通过正端流入,经过SCR1、串联振荡负载、SCR4,再由负端流出,此时补偿电容C充上了左正右负的电压。

第二阶段:由于电流波形为正弦波,当电流变为负的时候,电流就通过与SCR1、SCR4 同桥臂的续流二极管D1、D4续流,同时给SCR1、SCR4 加上了反压,使SCR1、SCR4关断。

第三阶段:经过一段时间,当SCR1、SCR4 完全关断后,我们同时触发晶闸管SCR2和SCR3。此时由于晶闸管SCR2、SCR3两端均加有正压,因此马上就能导通。电容C通过续流二极管D1、晶闸管SCR2回路和续流二极管D4、晶闸管SCR3回路放电。当电容C放电完成后,续流二极管D1、D4中不再通过电流,整个回路电流走向为:正端流入,经过SCR2、串联振荡负载、SCR3,负端流出。电容C开始反充电,充上左负右正的电压。

var cpro_psid = "u2787156";

var cpro_pswidth = "966";

var cpro_psheight = "120";

当电流再一次变为负时,电流将通过续流二极管D2、D3续流,同时给SCR2、SCR3加上反压,使晶闸管SCR2、SCR3关断。

当SCR2、SCR3 关断后,我们触发SCR1、SCR4,电容C通过D2、SCR1回路和D3、SCR4回路放电。当电容C放电完成后,续流二极管D2、D3中不再通过电流,整个回路电流走向为:正端流入,经过SCR1、串联振荡负载、SCR4,负端流出。电容C开始充电,充上左正右负的电压

调幅控制方法是通过调节直流电压源输出(逆变器输入)电压Ud(可以用移相调压电路,也可以用斩波调压电路加电感和电容组成的滤波电路,来实现调节输出功率的目的。即逆变器的输出功率通过输入电压调节,由锁相环(PLL)完成电流和电压之间的相位控制,以保证较大的功率因数输出。

电源逆变器工作原理

电源逆变器工作原理直流至直流切换式转换器典型直流至直流转换器系统的构造如图1所示,其输入通常为由线电压整流而得到非调节直流电压,然后再利用切换式直流至直流转换器将此变动的直流电压转换成一调节的直流电压。图1 直流至直流切换式转换器典型直流至直流转换器系统的构造1.降压式(step-downbuck)转换器。2.升压式(step-upboost)转换器。3.升降压式(step-down/step-u 电源逆变器工作原理 直流至直流切换式转换器典型直流至直流转换器系统的构造如图1所示,其输入通常为由线电压整流而得到非调节直流电压,然后再利用切换式直流至直流转换器将此变动的直流电压转换成一调节的直流电压。 图1 直流至直流切换式转换器典型直流至直流转换器系统的构造 1.降压式(step-downbuck)转换器。 2.升压式(step-upboost)转换器。 3.升降压式(step-down/step-upbuck-boost)转换器。 4.全桥式转换器。 上述四种转换器中,只有降压式及升压式是最基本的转换器电路结构,升降压式转换器是此二基本转换器的结合,而全桥式转换器则是由降压式转换器衍生而来。

直流至直流转换器的控制直流至直流转换器的作用即是在输入电压与输出负载变动的情况下能够调节输出电压为所设定的位准。电压位准转换之原理可以图2(a)所示之简单电路来说明,由开关导通与截止可得图2(b)之波形,其中输出电压Vo平均值大小Vo与开关之导通及截止时间(ton及toff)有关。平均输出电压大小调整之最典型的方式是采用脉波宽度调变法(Pulse-WidthModulation,PWM),其切换周期Ts(=ton+toff)为固定,由调整导通时间之大小来改变平均输出电压之大小Vo。 A B 图2 脉波宽度调变切换控制的方块图如图3(a)所示,开关之切换控制信号由控制讯号Vcontrol与周期为Ts之锯齿波Vst比较而得,控制信号则由Vo之实际值与设定值之误差放大而得。Vcontrol与Vst比较所得之切换控制信号的波形如图3(b)所示。当控制讯号Vst 较大时,则为高准位信号,即使开关导通,反之为低准位信号即使开关截止,故开关之切换周期亦为Ts,由以上的原理可知,开关切换之责任周期(DutyRatio)为

自制逆变器电路及工作原理及相关部件说明

自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。图2中,R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2*2.2*103*2.2x10-6=93.9Hz,最小频率为fmin=1/2.2*4.2*103*2.2*10-6=49.2Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N 沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

逆变器电路DIY(图文详解)

逆变器电路DIY(图文详解) 电子发烧友网:本文的主要介绍了逆变器电路DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。本文制作的的逆变器(见图1)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。 1.逆变器电路图 2.逆变器工作原理 这里我们将详细介绍这个逆变器的工作原理。 2.1.方波信号发生器(见图2)

图2 方波信号发生器 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率 fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 #p#场效应管驱动电路#e# 2.2场效应管驱动电路 图3 场效应管驱动电路 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。 4. 逆变器的性能测试 测试电路见图4.这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。

(完整版)三电平逆变器的主电路结构及其工作原理

三电平逆变器的主电路结构及其工作原理 所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+V dc/2; 若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开 关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-V dc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-V dc/2。通常标识为“-1”状态,如图所示。

逆变电焊机的工作原理

逆变电焊机的基本工作原理: 逆变电焊机主要是逆变器产生的逆变式弧焊电源, 又称弧焊逆变器, 是一种新型的焊接电源。 是将工频(50Hz)交流电, 先经整流器整流和滤波变成直流, 再通过大功率开关电子元件(晶闸管SCR、晶体管GTR、场效应管MOSFET或IGBT),逆变成几kHz~几十kHz的中频交流电, 同时经变压器降至适合于焊接的几十V电压, 再次整流并经电抗滤波输出相当平稳的直流焊接电流。 其变换顺序可简单地表示为: 工频交流(经整流滤波)→直流(经逆变)→中频交流(降压、整流、滤波)→直流。即为:AC→DC→AC→DC 因为逆变降压后的交流电, 由于其频率高, 则感抗大, 在焊接回路中有功功率就会大大降低。 所以需再次进行整流。 这就是目前所常用的逆变电焊机的机制。 逆变电源的特点: 弧焊逆变器的基本特点是工作频率高, 由此而带来很多优点。 因为变压器无论是原绕组还是副绕组, 其电势E与电流的频率f、磁通密度B、铁芯截面积S及绕组的匝数W有如下关系:E=4.44fBSW 而绕组的端电压U近似地等于E,即: U≈E=4.44fBSW 当U、B确定后,若提高f,则S减小,W减少, 因此, 变压器的重量和体积就可以大大减小。 就能使整机的重量和体积显著减小。 还有频率的提高及其他因素而带来了许多优点, 与传统弧焊电源比较, 其主要特点如下: 1.体积小、重量轻,节省材料,携带、移动方便。 2.高效节能,效率可达到80%~90%,比传统焊机节电1/3以上。 3.动特性好,引弧容易,电弧稳定,焊缝成形美观,飞溅小。 4.适合于与机器人结合,组成自动焊接生产系统。 5.可一机多用,完成多种焊接和切割过程。

自制逆变器电路及工作原理

自制逆变器电路及工作原理 作者:本站来源:本站整理发布时间:2009-11-20 11:54:11 [收藏] [评论] 自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于M OS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍 该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2x103x2.2x10—6=62.6Hz,最小频率为fmin=1/2.2x4.3x103x2.2x10—6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2 将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入 阻抗,同时这也是我们称之为场效应管的原因。

太阳能光伏并网控制逆变器工作原理及控制方法

2015年6月15日 22:28 太阳能光伏并网控制逆变器工作原理及控制方 摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为"光热"和"光伏"两种,其中光热式热水器在我国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的"光生伏打现象"。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。 本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分: 其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

车载电源逆变器电路原理图及维修

车载电源逆变器电路原理图及维修 一市场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL4 94或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。

1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS 功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/5 0kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。

逆变器原理及电路图

逆变器原理及电路图 2009-09-10 21:52 场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 [img]https://www.sodocs.net/doc/e28499045.html,/UploadFiles/200942618167800.jpg[/img] 1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。TL494芯片的内部电路如图2所示。 [img]https://www.sodocs.net/doc/e28499045.html,/UploadFiles/2009426181249965.jpg[/img] 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。

谐振型逆变器原理分析

谐振型逆变器原理分析 【摘要】本文以固态高频感应加热电源中的谐振型逆变器为主要研究对象,分析了经典H桥型串联谐振逆变电路和并联逆变电路的结构特点及工作状态。 【关键词】功率MOSFET;串联谐振;并联谐振 所谓“逆变”是相对整流而言的,把直流电能转变为所需频率的交流电能,就是逆变。逆变器的电路型式繁多,分类方法不一。如按照输出相数,可分为单相、三相和多相;按电路结构,可分为全桥、半桥和非桥式等。 下面将具体介绍串联谐振式电压型逆变器和并联谐振式电流型逆变器的拓扑结构、工作原理、谐振槽路等特征。 1.串联谐振式电压型逆变器结构 1.1串联谐振式电压型逆变器的拓扑 串联谐振式电压型逆变器的基本电路如图1-1所示,以负载线圈(L和R)和功率因数补偿电容器C串联后作为逆变桥的负载,这种利用负载电路串联谐振的原理工作的逆变器,称为串联谐振式电压型逆变器。此种逆变器负载电流波形为近似正弦波。 1.2串联谐振式电压型逆变器的工作原理 串联谐振逆变器的负载为串联谐振负载,通常需电压源供电。交替开通和关断逆变器上的全控器件就可以在逆变器的输出端获得交变的方波电压,其电压幅值取决于逆变器的输入端电压值,频率取决于器件的开关频率。 逆变桥包括由4个功率MOSFET和与其反并联的快速二极管组成的四个桥臂,其工作时,轮流触发V1,3和V2,4,使负载得到高频电流。 1.3串联谐振式电压型逆变器的谐振槽路分析 串联逆变器的负载电路即为串联谐振电路,它由电容器C、电感L和电阻R 串联组成。谐振时,串联电路各参数关系如下: 谐振频率f= 谐振时等效阻抗R=Z=R 串联电路电流I=I= 电感L上电压U=jωLI=jωL=jQU 电容器C上电压U=×=-jQU 特征阻抗X=X=X=ωL=L=或X=QR 负载有效功率P=I R= 电容器的无功功率Q=IU=Q=QP<br>电感的无功功率Q=IU=QP<br>1.4串联谐振式电压型逆变器的特征 串联谐振式电压型逆变器具有如下特征: ①容易投入负载电力。它的这一特性表明,采用低压开关器件并联,就可构成这种系统,因而实用性强。 ②负载匹配容易。在设计时,只要把匹配变压器的漏感简单地加进负载电感就可达到目的,设计的自由度大。 2.并联谐振式电流型逆变器 2.1并联谐振式电流型逆变器的拓扑结构 并联谐振式电流型逆变器的拓扑结构如下图2-1所示,把功率因数补偿电

(完整word版)最常见的车载逆变器电路原理图

最常见的车载逆变器电路原理图见图1。车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz 工频交流电的转换电路,最后通过XAC插座输出220V /50Hz交流电供各种便携式电器使

用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA 的驱动能力。 TL494芯片的内部电路 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。 IC1的15脚外围电路的R1、Rt、R2组成过热保护电路,Rt为正温度系数热敏电阻,常温阻值可在150 Ω~300Ω范围内任选,适当选大些可提高过热保护电路启动的灵敏度。热敏电阻Rt安装时要紧贴于MOS功率开关管VT2或VT4的金属散热片上,这样才能保证电路的过热保护功能有效。 IC1的15脚的对地电压值U是一个比较重要的参数,图1电路中U≈Vcc×R2÷

逆变器电路图

逆变器电路图 这是一种性能优良的家用逆变电源电路图,材料易取,输出功率150W。本电路设计频率为300Hz左右,目的是缩小逆变变压器的体积、重量。输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。 电容器 C1、C2用涤纶电容,三极管 BG1-BG5可以用9013:40V 0.1A 0.5W,BG6-BG7可以用场效应管IRF150:100V 40A 150W 0.055 欧姆。变压器B的绕制请参考逆变器的设计计算方法,业余条件下的调试;先不接功率管,测 A点、B点对地的电压,调整R1或R2使A、B两个点的电压要相同,这样才能输出的方波对称,静态电流也最少。安装时要注意下列事项:BG6、BG7的焊接,必须用接地良好的电烙铁或切断电源后再焊接。大电流要用直径2.5MM以上的粗导线连接,并且连线尽量短,电瓶电压12V、容量12AH以上。功率管要加适当的散热片,例如用100*100*3MM铝板散热。如果你要增加功率,增加同型号的功率管并联使用,相应地增加变压器的功率。 晶体管的选择:考虑到安全因素,要具有一定的安全系素。经验资料如下: 直流电源电压:晶体管集射极耐压BV CEO 6~8V≥20~30V 12~14V≥60~80V 24~28V≥80~100V 计算晶体管集电极电流:I CM(A)=输出功率P(W)÷ 输入电压V(V)× 效率。

式中输入电压即电源电压。效率与选择的电路有关,一般在百分之60~80之间。 铁芯截面积:S(平方厘米)=k×变压器额定功率的平方根,k的选择见下表 P(VA) 5-10 10-50 50-100 100-500 500-1000 k 2-1.75 1.75-1.5 1.5-1.35 1.35-1.25 1.25-1 变压器铁芯的选择:业余制作对变压器铁心要求并不严格。不过硅钢片最好选用薄而质地脆的,或者采用铁氧体磁心。漆包线用高强度的,绕线需用绕线机紧密平绕。 安插硅钢片时要严格平整。初级绕组两端电压与铁心截面积和工作频率等参数的 关系可以用公式表示如下:V=4.44×10-8SKFBN 式中 S --- 铁心截面积(平方厘米); K --- 硅钢片间隙系数(0.9~0.95); F --- 逆变器工作频率(赫兹); B --- 饱和磁通密度(T); N --- 线圈的匝数(圈); V --- 初级绕组的电压(伏特)。 K的数值与硅钢片的厚度及片与片之间的间隙有关,铁心层迭越紧,K值越高 一般K取0.9即可。逆变器的工作频率,主要由所选择的铁心决定。采用硅钢片铁心,逆变器工作频率低于2KH Z。采用不同的铁氧体磁心,工作频率在2KH Z~40KH Z之 间。如果工作频率超出了磁心的固有频率,则高频损耗十分严重。饱和磁通密度

逆变器的工作原理

逆变器的工作原理: 1.直流电可以通过震荡电路变为交流电 2.得到的交流电再通过线圈升压(这时得到的是方形波的交流电) 3.对得到的交流电进行整流得到正弦波 AC-DC就比较简单了我们知道二极管有单向导电性 可以用二极管的这一特性连成一个电桥 让一端始终是流入的另一端始终是流出的这就得到了电压正弦变化的直流电如果需要平滑的直流电还需要进行整流简单的方法就是连接一个电容 Inverter是一种DC to AC的变压器,它其实与Adapter是一种电压逆变的过程。Adapter是将市电电网的交流电压转变为稳定的12V直流输出,而Inverter是将Adapter输出的12V直流电压转变为高频的高压交流电;两个部分同样都采用了目前用得比较多的脉宽调制(PWM)技术。其核心部分都是一个PWM集成控制器,Adapter用的是UC3842,I nverter则采用TL5001芯片。TL5001的工作电压范围3.6~40V,其内部设有一个误差放大器,一个调节器、振荡器、有死区控制的PWM发生器、低压保护回路及短路保护回路等。 以下将对Inverter的工作原理进行简要介绍: 输入接口部分: 输入部分有3个信号,12V直流输入VIN、工作使能电压ENB及Panel电流控制信号DIM。VIN由Adapter提供,ENB电压由主板上的MCU提供,其值为0或3V,当ENB=0时,Inverter不工作,而ENB=3V 时,Inverter处于正常工作状态;而DIM电压由主板提供,其变化范围在0~5V之间,将不同的DIM值反馈给PWM控制器反馈端,Inverter向负载提供的电流也将不同,DIM值越小,Inverter输出的电流就越大。 电压启动回路: ENB为高电平时,输出高压去点亮Panel的背光灯灯管。 PWM控制器: 有以下几个功能组成:内部参考电压、误差放大器、振荡器和PWM、过压保护、欠压保护、短路保

串联谐振逆变器分析

https://www.sodocs.net/doc/e28499045.html, 串联谐振逆变器分析 串联谐振逆变器如图2一1所示,补偿电感和负载等效参数和串联后作为逆变桥的负载,图中为补偿电感或变压器漏感,、为包含负载在内的负载等效电阻和电容。串联谐振逆变器通常由电压源供电,电压源由整流器加一个大电容构成。由于电容值较大,可以近似认为逆变器输入端电压固定不变。交替开通和关断逆变器上的可控器件就可以在逆变器的输出端得到交变的方波电压,其电压幅值取决于逆变器的输入端电压值,频率取决于器件的开关频率。 根据负载电压和电流的相位关系,串联逆变器可以工作在三种工作状态感性、容性和串联谐振。在串联逆变器中,为了避免开关器件因短路电流而损坏,在开关器件换流过程中,上下桥臂的开关管应留有死区时间,防止发生直通。 并联谐振逆变器分析 并联谐振逆变器如图2一2所示,补偿电感和负载等效参数和并联作为逆变器的负载,电路中串联的大电感场保证负载电流是恒定的,不受负载阻抗变化的影响。当负载功率因数不是时,负载的无功电压分量便会加在开关器件上,为了避免开关器件承受反向电压而损坏,必须串联快速二极管。根据负载电压和电流的相位关系,并联逆变器可能工作在三种工作状态感性、容性和谐振状态。

https://www.sodocs.net/doc/e28499045.html, 串并联谐振逆变器比较 串联谐振逆变器和并联谐振逆变器的差别源于它们所用的振荡电路的不同,前者使用、、串联,后者是、和并联,由两种逆变器拓扑、电路特性及波形上分析,两种电路具有对偶的性质,相比于并联谐振逆变器,串联谐振逆变器具有以下特点和优点。 串联谐振逆变器的特点 直流侧为电压源,或并联大电容,相当于电压源。直流侧电压基本无脉动。由于直流电压源的钳位作用,交流侧输出电压为矩形波,并且与负载阻抗角无关而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。对串联谐振负载而言,其输出电流波形为正弦波。 当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。 电压型逆变器与电流型逆变器比较,优点如下 电路结构简单,启动容易电压型逆变器可以采用移相控制,通过调节移相角的大小来调节输出电压,就可以达到调节输出功率的目的。由于电流型逆变器要保证滤波电感上的直流输入电流不能断流,如果采用移相调功,当负载输出电流为时,这个直流电流无法从逆变器流过,要外加电路来解决电流的续流问题。电压型逆变器是真正的电压源,不管逆变电路时开通还是关断,滤波电容两端都能够保持恒定的电压。因 此在逆变器的启动、工作以及关闭等各种状态下,都能始终提供稳定的直流输入电压。电流型逆变器不是真正的电流源,每次逆变电路关机后重新开机,直流输入电流都必须重新建立直流输入电流的过程中,整个系统的工作不稳定,容易导致电路失控,并且从逆变器开启到直流输入电流稳定所需时间也较长。

逆变器的工作原理

逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。 通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成. 利用TL494组成的400W大功率稳压逆变器电路。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。如需提高输出功率,每路可采用3~4 只开关管并联应用,电路不变。TL494在该逆变器中的应用方法如下:第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。第4脚外接R6、R4、C2设定死区时间。正常电压值为0.01V。第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。正常时5脚电压值为1.75V,6脚电压值为3.73V。第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。S1接通时,此三脚电压值为蓄电池的正极电压。第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。第13、14、

车载逆变器的原理及其选用技巧,车载逆变器使用注意事项

车载逆变器的原理及其选用技巧,车载逆变器使用注意事项 车载逆变器(电源转换器、Power Inverter)是一种能够将DC12V直流电转换为和市电相同的AC220V交流电,供一般电器使用,是一种方便的车用电源转换器。车载电源逆变器在国外市场受到普遍欢迎。在国外因汽车的普及率较高,外出工作或外出旅游即可用逆变器连接蓄电池带动电器及各种工具工作。中国进入WTO 后,国内市场私人交通工具越来越多,因此,车载逆变器电源作为在移动中使用的直流变交流的转换器,会给你的生活带来很多的方便,是一种常备的车用汽车电子装具用品。 近年来,随着国内汽车保有量的不断增加和自驾出游方式的风行,一种新颖的车载电器车载逆变器开始迅速走红,但由于国内车载逆变器市场还属于起步阶段,市场产品良莠不齐,车主们对此也还比较陌生,如何选择一台质量可靠而又使用安全的车载逆变器就成为了广大车主关心的问题。那么,车载逆变器到底是怎样的一种电器,选择时应该注意哪些问题呢? 通俗的说,车载逆变器就是一种能把汽车上的12V(柴油车为24V)直流电转换为家庭里通常使用的220V/50Hz交流电的电子装置,有了它就可以在汽车上使用通常在家庭里才能使用的电器,比如电视机、DVD、冰箱、笔记本电脑、打印机、传真机、游戏机、摄像机、数码相机等设备或对其机内电池进行充电,大功率的逆变器,还可以带动电钻、电热水器、微波炉等大功率电器,在交通发达的欧美国家,车载逆变器早已成为每辆汽车的必备工具。 车载逆变器电路原理图 从输出波形来分,车载逆变器可以分为正弦波输出和方波输出两种。前者输出的是同我们日常使用的电网一样的正弦波交流电,可以适应各种负载,但电路结构比较复杂,体积也较大;后者电路简单,但对负载比较挑剔,不能驱动感性负载。结合两者的优点,目前市售的车载逆变器无一例外都采取了输出模拟正弦波的方案,与方波相比使用效果有所改善,不仅能驱动感性负载,并且具有体积小、重量轻、转换效率高、输出电压稳定、可靠

常用逆变电源电路图

常用逆变电源电路图 收藏此信息打印该信息添加:用户发布来源:未知 双端工作的方波逆变变压器的铁心面积乘积公式为 AeAc=Po(1+η)/(ηDKjfKeKcBm)(1) 式中:Ae(m2)为铁心横截面积; Ac(m2)为铁心的窗口面积; Po为变压器的输出功率; η为转换效率; δ为占空比; K是波形系数; j(A/m2)为导线的平均电流密度; f为逆变频率; Ke为铁心截面的有效系数; Kc为铁心的窗口利用系数; Bm为最大磁通量。 图3 变压器原边的开关管S1和S2各采用IRF32055只并联,之所以并联,主要是因为在逆变电源接入负载时,变压器原边的电流相对较大,并联可以分流,可有效地减少开关管的功耗,不至于造成损坏。

PWM控制电路芯片SG3524,是一种电压型开关电源集成控制器,具有输出限流,开关频率可调,误差放大,脉宽调制比较器和关断电路,其产生PWM方波所需的外围线路很简单。当脚11与脚14并联使用时,输出脉冲的占空比为0~95%,脉冲频率等于振荡器频率的1/ 2。当脚10(关断端)加高电平时,可实现对输出脉冲的封锁,与外电路适当连接,则可以实现欠压、过流保护功能。利用SG3524内部自带的运算放大器调节其输出的驱动波形的占空比D,使D>50%,然后经过CD4011反向后,得到对管的驱动波形的D<50%,这样可以保证两组开关管驱动时,有共同的死区时间。 3DC/AC变换 如图3所示,DC/AC变换采用单相输出,全桥逆变形式,为减小逆变电源的体积,降低成本,输出使用工频LC滤波。由4个IRF740构成桥式逆变电路,IRF740最高耐压4 00V,电流10A,功耗125W,利用半桥驱动器IR2110提供驱动信号,其输入波形由SG3

一文看懂光伏逆变器工作原理!

一文看懂光伏逆变器工作原理! 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原

理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

逆变器学习资料-常识 工作原理范文

一、概述(工作原理) 逆变器是一种把直流电能(电池、蓄电瓶、DC电源)转变成交流电的设备,它是一种DC to AC的变压器,它其实是一种电压逆变的过程。广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、抽油烟机、冰箱,录像机、按摩器、风扇、照明等。在国外因汽车的普及率较高外出工作或外出旅游即可用逆变器连接蓄电池带动电器及各种工具工作。通过点烟器输出的车载逆变是20W 、40W 、80W 、120W 到150W 功率规格。再大一些功率逆变电源要通过连接线接到电瓶上。把家用电器连接到电源转换器的输出端就能在汽车内使用各种电器。可使用的电器有:手机、笔记本电脑、数码摄像机、照像机、照明灯、电动剃须刀、CD 机、游戏机、掌上电脑、电动工具、车载冰箱及各种旅游、野营、医疗急救电器等。 二、主要分类 主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。针对上述缺点,出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。 逆变器根据发电源的不同,分为煤电逆变器,太阳能逆变器,风能逆变器,核能逆变器。根据用途不同,分为离网逆变器,并网逆变器。世界上太阳能逆变器,欧美效率较高,欧洲标准是97.2%,但价格较为昂贵,国内其他的逆变器效率都在90%以下,但价格比进口要便宜很多。除了功率,波形以外,选择逆变器的效率也非常重要,效率越高则在逆变器身上浪费的电能就少,用于电器的电能就更多,特别是当你使用小功率系统时这一点的重要性更明显 三、作用 简单地说,逆变器就是一种将低压(12或24伏或48伏)直流电转变为220或110伏交流电的电子设备。因为我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。我们处在一个“移动”的时代,移动办公,移动通讯,移动休闲和娱乐。在移动的状态中,人们不但需要由电池或电瓶供给的低压直流电,同时更需要我们在日常环境中不可或缺的220伏交流电,逆变器就可以满足我们的这种需求。 四、特点 1.转换效率高、启动快; 2.安全性能好:产品具备短路、过载、过/欠电压、超温5种保护功能; 3.物理性能良好:产品采用全铝质外壳,散热性能好,表面硬氧化喷砂处理,耐摩擦性能好,

相关主题