搜档网
当前位置:搜档网 › 设备状态监测与故障诊断作业

设备状态监测与故障诊断作业

设备状态监测与故障诊断作业
设备状态监测与故障诊断作业

设备状态监测与故障诊断作业

一、论述齿轮啮合频率产生的机理及齿轮故障诊断方法

二、滚动轴承故障的特征频率推导计算

三、针对某个机组对象建立其状态监测与故障诊断系统,描述测点布置、系统硬件结构组成(框图)及各部分功能

(如:XXX(如汽轮机)状态在线监测与故障诊断系统)

(如:旋转机械状态监测与智能故障诊断)

(如:面向Internet的远程工况监视与故障诊断)

内容包括:

监测对象介绍,

测点布置

监测诊断系统构成/总体结构、

功能模块/如在线分析与智能诊断模块)

目录

一、论述齿轮啮合频率产生的机理及齿轮故障诊断方法 (1)

1.1 齿轮啮合频率的产生机理 (1)

1.1.1 概述 (1)

1.1.2 齿轮的振动机理 (2)

1.2 齿轮故障诊断的方法 (5)

1.2.1齿轮的故障类型 (5)

1.2.2 齿轮故障的特征信息 (6)

1.2.3 齿轮故障诊断的常用方法 (10)

1.3 实例分析 (15)

1.4 小结 (16)

二、滚动轴承故障的特征频率推导计算 (17)

2.1 滚动轴承故障特征频率的经验公式 (17)

2.2 滚动轴承故障的特征频率推导计算 (17)

三、高炉布料器齿轮箱在线状态监测与故障诊断系统 (19)

3.1 高炉炉顶布料齿轮箱的构成及工作原理 (19)

3.2 系统的监测参数及测点布置 (20)

3.3 系统总体结构及功能模块划分 (21)

3.3.1 信号采集及预处理模块 (22)

3.3.2 实时状态监测与识别模块 (23)

3.3.3 在线分析诊断模块 (26)

3.4 总结 (27)

四、感悟和致谢 (27)

1 论述齿轮啮合频率产生的机理及齿轮故障诊断方法

齿轮是现代工、农业生产设备中极其重要的传动零件,由于其在工作过程中长期承受各种交变载荷、冲击和摩擦力的作用或其本身在制造过程中留下了缺陷,齿轮相对于其他部件较容易出现故障甚至损坏。生产设备中的齿轮发生故障,轻者会使生产设备所加工出来的产品不符合标准要求,重者会导致生产设备停车,从而给生产企业造成经济损失,同时也担误了工时。因此,为了尽可能将这些不确定的机械故障所引起的经济损失降到最低,需要我们在故障初期就能作出诊断,为企业尽早安排检修提供科学依据。对齿轮振动信号进行时频分析就是一种比较实用的方法。

1.1 齿轮啮合频率的产生机理

1.1.1 概述

齿轮传动系统是一个弹性的机械系统,由于结构和运动关系的原因,存在着运动和力的非平稳性。图1.1是齿轮副的运动学分析示意图。图1.1中1O 是主动轮的轴心,2O 是被动轮的轴心。假定主动轮以1w 作匀角速度运动,A 、B 分别为两个啮合点,则有1O A> 1O B ,即A 点的线速度A V 大于B 点的线速度B V 。

而2O A<2O B ,从理论上有 、 ,则23w w <。然而A 、B 又是被动轮的啮合点,当齿轮副只有一个啮合点时,随着啮合点沿啮合线移动,被动轮的角速度存在波动。当有两个啮合点时,因为只能有一个角速度,因而在啮合的轮齿上产生弹性变形,这个弹性变形力随啮合点的位置、轮齿的刚度以及啮合的进入和脱开而变化,是一个随时间变化的力F (t)c 。

齿轮传动系统的啮合振动是不可避免的。振动的频率就是啮合频率。也就是齿轮的特征频率,其计算公式如下:

齿轮一阶啮合频率:060

C N f Z = 啮合频率的高次谐波:0Ci C f i f =?,234n i =、、

其中:N ——齿轮轴的转速(r/min ) Z ——齿轮的齿数

22B V O B ω=32A V O A

ω=

图1.1 齿轮副的运动学分析

1.1.2 齿轮的振动机理

齿轮传动的动态激励:

x —在齿面接触力作用下沿作用线产生的齿轮相对位移 M —齿轮副的等效质量,1212m m M m m =

+ C —齿轮啮合阻尼

()K t —齿轮啮合刚度,随时间t 变化

1δ —齿轮受载后的平均弹性变形 图1.2 一对齿轮的力学模型 2δ —齿轮传动误差和故障激励所引起两齿轮间的相对位移

激励源由两部分组成:1()K t δ 称为常规啮合激励,也即无故障的正常齿轮在啮合过程中也会产生的向量振动。2()K t δ 是由系统的内部激励和外部激励产生的,齿轮故障振动主要由这部分激励引起,所以也称为齿轮的“故障函数”。

))(()(21δδ+=++t K x t K x C x

M

内部激励是指轮齿在啮合过程中由于缺陷或故障产生的激励。如齿轮由于制造不精确、装配质量低产生的轮齿周节误差、齿形误差、齿轮偏心、质量不平衡、轴线不对中等故障,还有运行中产生的齿面疲劳、擦伤、磨损和断裂等故障带给齿轮的激励。

外部激励则与齿轮本身问题无关,是齿轮外部输入的激励,但也影响到齿轮的振动情况。例如滚动轴承故障的传递、负载力矩波动、摩擦离合器发生的摩擦激励等。

具体的动态激励有以下四种:

(1)刚度激励(2)传动误差

(3)啮合冲击(4)节线冲击

1.1.

2.1 刚度激励 1212

K K K K K =+ 式中,1K 和 2K 分别为主动轮和被动轮的单齿刚度。单齿刚度随啮合位置的变化而变化。

综合刚度的大小还与齿轮的重合度有关。重合度用来表示直齿齿轮啮合时接触轮齿的平均对数。大多数齿轮啮合的重合度不是整数,在啮合过程中参与啮合的轮齿对数随时间而作周期性变化,因而轮齿啮合的综合刚度也随时间而作周期性变化。从图1.3可以看出直齿啮合过程中的力和刚度变化。

(a )啮合齿上的作用力

(b )啮合齿的刚度

(c )齿轮发生的振动

图1.3 直齿啮合过程中的力和刚度变化

1.1.

2.2 传动误差

传动误差构成了齿轮振动和噪声的主要激发源。传动误差大,则齿轮运转过程中由于进入和脱离啮合时的碰撞加剧,产生较高的振动峰值,并且形成短暂时间的幅值变化和相位变化。

具体有包括:

(1)制造误差

图1.4 齿轮的偏心和周节误差 图1.5 齿轮的齿形误差

(2)装配误差

齿的宽度方向上接触面积少,造成轮齿负荷不均。齿轮轴不平行产生载荷冲击,容易造成齿的断裂。

(3)轮齿损伤误差

齿轮在运行中由于各种故障形成的齿面损伤,在齿轮传动中就会产生齿轮的传动误差激励。传动误差激励正是我们诊断齿轮故障的信息来源。

图1.6 一端接触 图1.7 两齿轮轴不平行

(4)外部激励误差

外部激励的因素较多,负载波动引起齿轮传递转矩波动、滚动轴承故障的传递、摩擦离合器力矩变化产生的影响等,这些故障信号虽然是从轮齿的外部输入,但是影响到轮齿上的啮合力和弹性变形,其最终结果就是产生轮齿的传动误差。

1.1.

2.3 啮合冲击

齿轮在啮合过程中,由于轮齿误差和受载弹性变形的影响,轮齿进入啮合点和退出啮合点与理论值发生偏差,因而在进入啮合和退出啮合时均会发生冲击,称为“啮合冲击”。

啮合冲击是一种周期性的冲击力。

1.1.

2.4 节线冲击

主动轮带动从动轮旋转时,主动轮

上的啮合点由齿根移向齿顶,啮合半径

逐渐增大,速度渐次增高;而从动轮上

的啮合点是由齿顶移向齿根,啮合半径

逐渐减小,速度渐次降低。两轮齿齿面

在啮合点的速度差异就形成了主动轮和

从动轮的相对滑动。

在主动轮上,齿根和节点之间的啮合

点速度低于从动轮上的啮合点速度,因此

滑动方向向下;而在节点处,因为两轮上图1.8 齿面滑动方向

的啮合点速度相等,相对滑动速度为0。

因此,摩擦力在节点处改变了方向,形成了节线冲击。

1.2 齿轮故障诊断的方法

1.2.1齿轮的故障类型

齿轮由于某种原因不能正常工作的现象,或者说齿轮在其使用过程中,由于某些原因而丧失工作能力或功能参数漂移到界限值以外的现象,被称为齿轮故障。

从总体上讲,齿轮故障可划分为两大类:

一类是由制造和装配等原因造成的,如齿轮误差、齿轮与内孔不同心、各部分轴线不对中、不平衡等;另一类则是齿轮由于长期运行而形成的,如齿轮表面发生点蚀、疲劳剥落、磨损、塑性流动、胶合以及齿根裂纹,断齿及其他损伤等故障。

齿轮故障若按照振动特征和故障诊断技术应用的角度来分类,大体分为以下两类:

(l)分布式故障

齿面磨损、齿面点蚀及疲劳剥落。

(2)局部故障

齿根裂纹、断齿、局部齿面剥落和塑性变形。

分布式故障分布在一个齿轮的各个轮齿上,而局部故障则集中于某一个或几个齿上。

1.2.2 齿轮故障的特征信息

1.2.2.1 啮合频率

齿轮工作过程中的故障信号频率基本上表现为两部分:一部分为齿轮啮合频率及其谐波构成的载波信号,另一部分为低频成分的幅值和相位变化所构成的调制信号。调制信号包括了幅值调制和频率调制。

从频域和时域上看,齿轮振动信号的主要特征成分有:

1)啮合频率及其谐波成分。

2)幅值调制和频率调制所形成的边频带。

齿轮在啮合过程中,啮合齿上的载荷和刚度是随时间而变化的,这种变化就会产生啮合 频率的振动。

传动误差、啮合冲击、节线冲击等问题也会使齿轮在啮合过程中发生啮合频率的振动。

转轴中心固定的齿轮,其啮合频率为:

1122m f f z f z ==

1f 、2f —主动轮和从动轮的转速频率

1z 、2z —主动轮和从动轮的齿数 图1.9 正常齿轮的啮合频率波形

当齿面发生磨损,或者负荷增大,齿轮径向间隙过大以及齿轮游隙不适当等原因所引起的故障时,由于轮齿的啮合状况变坏,啮合频率的谐波成分幅值就会明显增大。

1.2.2.2 调制与边频带

(1) 幅值调制

设代表啮合频率的载波信号为:)2sin()(0?π+=t f A t g m

代表齿轮旋转频率的调制信号为:()1cos(2)r e t B f t π=+

则调幅后的振动信号为:0()[1cos(2)]sin(2)r m x t A B f t f t ππφ=++ 式中,A —载波信号的振幅;B —调制指数;m f —载波频率(啮合频率);r f —调制波频率(齿轮旋转频率,每旋转一周,故障点产生一次冲击);0φ—初相角。 将上式展开可得: 000()sin(2)sin[2()]sin[2()]22

m m r m r AB AB x t A f t f f t f f t πφπφπφ=+++++-+ 信号图样如图1.11所示。

齿轮表面发生均匀性磨损,将引

起啮合频率及其各次谐波幅值的变

化。啮合频率的高次谐波增长得比基

波还快。磨损厉害时,二次谐波幅值

可能超过啮合基波。

从啮合基频及其谐波幅值的相对

增长量上可以反映出齿轮表面的磨损

程度。

图1.10 齿面磨损前后的啮合频率及其谐波幅值变化(实线为磨损前,虚线为磨损后)

(a)载波信号(b)调制信号(c)幅值调制后的信号

图1.11

◆局部性缺陷:发生断齿或大的剥落等,当啮合点进入到缺陷处,齿轮就产生

一个冲击脉冲。由于脉冲信号可以分解为许多正弦分量之和,因此在频谱上形成以啮合频率为中心的一系列边频。其特点是边频数量较多,幅值较低,分布比较均匀平坦。

图1.12

◆均布缺陷:是指比较均匀分布的缺陷,它相当于时域包络线较宽的脉冲。因

此,它在频域中表现为在啮合频率两边产生了一簇幅值较高、起伏较大、分布较窄的边频带。

图1.13

(2) 频率调制

若载波信号为: 0sin(2)m A f t πφ+

制信号为: sin(2)r f t βπ

频率调制可表示为:0()sin[2sin(2)]m r x t A f t f t πβπφ=++ 式中,r

f f β?=—频率调制指数,即调制产生的最大相位移;f ?—最大频率偏差值,也就是齿轮的最大角速度波动量;r f —调制频率,即分度不均匀齿轮的转频。

图1.14 齿距周期性变化产生调频信号和频谱图

图1.15 调频、调幅综合影响下的边频带

(3)典型故障与特征信号的关系

◆断齿或裂纹:以齿轮啮合频率及其谐波为载波频率,故障齿轮所在轴转频及

其倍频为调制频率,调制边频带宽而高。

◆齿轮均匀磨损:齿轮的啮合频率及其谐波的幅值明显增大。

◆齿面剥落等集中性故障:边带的阶数多而分散。

◆齿面点蚀等分布性故障:边带阶数少而集中。

◆齿形误差:以齿轮啮合频率及其谐波为载波频率,齿轮所在轴转频及其倍频

为调制频率的啮合频率调制;

◆轴不对中:调制频率的2倍频幅值最大;

◆轴承故障:齿轮啮合频率的振幅迅速升高,边频的分布和幅值并无变化。

1.2.3 齿轮故障诊断的常用方法

尽管在齿轮振动或噪声信号及其频谱图中包含着丰富的信息,但是由于齿轮动态特性及故障症状的复杂性,不同的齿轮故障具有不同的振动特征及频率结构。因此为了获得有效的故障特征信息,通常需要通过信号处理与分析技术,提取故障特征信息,以便最终给出正确的故障诊断结论。

目前常用的信号分析处理方法有以下几种:

时域分析方法,包括时域波形、调幅解调、相位解调等

频域分析,包括功率谱、细化谱、倒频谱分析

时频域分析方法,包括短时FFT,维格纳分布,小波分析等。

1.2.3.1 时域同步平均分析法

信号同步平均的原理是按齿轮每转一周按脉冲的周期间隔截取信号,然后进行分段叠加处理,以消除随机信号和其它非周期信号的干扰影响。这种方法可以有效降低其他部件和振动源对于信号的影响,提高信噪比。

在测取齿轮振动信号的同时也测取齿轮的转速脉冲信号,脉冲的间隔时间作为齿轮每转的时标。用该脉冲信号去触发A/D转换器工作,从而保证齿轮按旋转周期截取信号,并且每段信号的起始点对应于齿轮的某一角位置。然后再把每段信号进行平均处理和光滑化滤波,最后得到的有效信号中仅保留了周期成分,其它噪声将被逐渐除去。

图1.16 时域同步平均法

齿轮在几种状态下的时域平均信号

(a)正常齿轮(b)齿轮安装对中不良

(c)齿面严重磨损(d)齿面局部剥落或断齿

图1.17

1.2.3.2 细化谱分析法

齿轮的振动频谱图包含着丰富的信息,不同的齿轮故障具有不同的振动特征,其相应的谱线也会发生特定的变化。

由于齿轮故障在频谱图上反映出的边频带比较多,因此进行频谱分析时必须有足够的频率分辨率。当边频带的间隔(故障频率)小于分辨率时,就分析不出齿轮的故障,此时可采用频率细化分析技术提高分辨率

基于复解析带通滤波器的细化选带频谱分析:

具体步骤

1)确定中心频率及细化倍数。

2)构造一个复解析带通滤波器

3)选抽滤波。

4)复调制移频。

5)作点FFT和谱分析,取正频率部分

图1.18

图1.19 齿轮振动信号的频谱分析

从图1.19左图中可几以看出,在所分析的0-2kHz频率范围内,有1-4阶的啮合频率的谱线,还可较清晰地看出有间隔为25Hz的边频带,而在两边频带间似乎还有其他的谱线,但限于频率分辨率已不能清晰分辨。

利用频谱细化分析技术,对其中900-1100Hz的频段进行细化分析,由细化谱中可清晰地看出边频带的真实结构,两边频带的间隔为8.3Hz,它是由于转动频率为8.3Hz的小齿轮轴不平衡引起的振动分量对啮合频率调制的结果。

用振动频谱的边频带进行齿轮不平衡一类的故障诊断时,必须要有足够的频率分辨率,否则会造成误诊或漏诊,影响诊断结果的准确性。

1.2.3.3 倒谱分析法

倒频谱分析又称二次频谱分析,对于同时有数对齿轮啮合的齿轮箱振动频谱图,由于每对齿轮啮合都将产生边带频,几个边频带谱交叉分布在一起,仅进行频率细化分析是不行的,还需要进一步做倒频谱分析。

倒频谱能较好地检测出功率谱上的周期成分,将原来谱上成簇的边频带谱线简化为单根谱线,便于观察。

而齿轮发生故障时的振动频谱具有的边频带一般都具有等间隔(故障频率)的结构,利用倒频谱这个优点,可以检测出功率谱中难以辨识的周期性信号。

倒频谱可以将输入信号与传递函数区分开来,便于识别;还能区分出因调制引起的功率谱中的周期量,找出调制源。

倒频谱的定义是功率谱对数的功率谱,对多段平均的自功率谱取对数,得到对数谱,具体步骤如下:

1) 先进行FFT变换,使时域的卷积等于频域相乘:

y

(f)x(f)h(f)

2) 取对数,变积为和:

=+

log(y(f))log(x(f))log(h(f))

3) 进行频谱反变换:

C(q)f1(log(y(f))

=-

倒频谱分析优点:检测周期性的能力

图1.20

(a) 振动信号频谱:包含啮合频率(4.3kHz)的三次谐波,由于频率分辨率太低(50Hz ),没有边频带

(b) 2000线功率谱(3.5-13.5kHz):包含三次谐波,但不包含两根轴回转频率的低次谐波

(c) 7.5-9.5kHz的细化频谱:看到轴转速形成的边频带

(d) 倒谱:清楚地表明了对应两根轴回转频率(80Hz和50Hz)地分量A1,B1

而在高分辩率谱图(c)中却难以分辩。

1.3 实例分析

某集装箱起重机小车运行机构减速箱出现异响, 要求对该减速箱进行监测, 判断分析齿轮有无故障。图1.21是该减速箱示意图。

测得得电机转速为650r/min ,各齿轮齿数分别Z1=13,Z2=58,Z3=15,Z4=82。

图1.21 减速箱示意图

对减速箱1,3,4测点进行振动测量。其中点3处齿轮振动信号图和功率谱图如图1.22所示。

图1.22 点3处齿轮振动信号图和功率谱图

齿轮3的啮合频率:33650135815()36.423Hz 6060

m n z f ***=== 272.8448Hz m f =

3109.2672Hz m f =

在这三个峰值两侧存在间距等同的小峰,说明齿轮3存在缺陷。

对上面的功率谱图进行倒谱分析,得到倒谱图如下:

图1.23 倒谱图

在0.423τ=处的上边频:1 2.364Hz 0.423f ==

齿轮3的转频: 65013

58 2.428Hz

60r f *== 根据频谱图在啮合频率m f 及二阶、三阶频率2m f 、3m f 处强烈谱峰值且有峰值强烈的边频谱值,我们断定齿轮3 有严重点蚀存在。经开箱检查,发现在齿轮3 上有多个面积较大的凹坑,说明诊断完全正确。

1.4 小结

振动诊断法是齿轮故障诊断的最常用的方法,它是通过提取振动信号的与各种故障相对应的特征信息并进行分析对比来确定齿轮的故障类型、故障发生的位置和故障程度。

目前基于振动的齿轮故障诊断方法已经发展到了相对成熟的水平,广泛应用于各种齿轮故障设备和在线故障检测系统。但是随着新技术新方法的不断出现,齿轮故障诊断的方法也在不断发展。其中智能化诊断系统成为一个重要的方向,并将得到进一步发展。智能专家系统中多种齿轮故障分析方法相互结合使用,如小波分析与神经网络、模糊识别与小波分析相结合等新分析方法应用,这样提高诊断的效率和准确率。

一、 滚动轴承故障的特征频率推导计算

2.1 滚动轴承故障特征频率的经验公式

内圈故障频率: 0.6i r f z f =**

外圈故障频率: 0.4o r f z f =**

保持架故障频率: 0.381~0.4c r f f =*

滚动体故障频率: 0.23b r f z f =** (z < 10)

0.18b r f z f =** (z > 10)

外圈与保持架关系: o c f z f =*

外圈与内圈关系: o r f z f =*

(r f 为转频 ;z 为滚动体个数 )

2.2 滚动轴承故障的特征频率推导计算

当轴承元件的工作表面出现局部缺陷时,会以一定的通过频率(取决于转频、 轴承型号)产生一系列的宽带冲击,称为轴承的“通过频率”或“故障频率”,实际中滚动轴承故障振动监测就是检测这个频率。

下面以角接触球轴承为例,通过分析轴承各元件之间的相对运动关系来推出 轴承故障特征频率的计算公式。

图2.1

图2.1所示为滚动轴承各元件之间运动关系示意图。为简单起见,设轴承外圈固定,内圈(即轴)的旋转频率为r f ,轴承节径为D ,滚动体直径为d ,接触角为α,滚动体个数为z ,并假定滚动体与内外圈之间纯滚动接触。

由于外圈固定,所以滚动体上B 点的速度为零,而A 点的速度为: 2(cos )2A C r c v v f D d f D παπ==-=

由此可以得到: (1cos )2r c f d f D

α=- 其中,s f 为滚动体的公转频率,即保持架的转动频率。

设滚动体的自传频率为b f ,则b f 可以这样求得:给整个轴承加一个转动角速度“c f - ”(相当于站在保持架上看轴承运动),则此时保持架固定不动,外圈以c f -转动,滚动体只有自转角速度b f ,根据纯滚动关系,此时B 点的速度(注意此时滚动体上A 点绕其中心C 转动)

(cos )B b c v df D d f ππα==+

由此可得: 22(1()cos )2g r D d f f d D

α=

- 进而可得:

(1)个滚动体与外圈上某一固定点接触的频率为: (1cos )2o c r z d f zf f D

α==- (2)个滚动体与内圈上某一固定点接触的频率为: ()(1cos )2i s c r z d f z f f f D

α=-=+ (3)滚动体上某一固定点与外圈或内圈接触的频率为: 22(1()cos )2b g r D d f f f d D

α==- o f 、i f 和 b f 分别称为外圈、内圈和滚动体的通过频率。当上述的“某一点”是局部损伤点(例如点蚀点、剥落点、烧伤点等)时,o f 、i f 和 b f 分别成为局部损伤点撞击滚动轴承元件的频率,所以又分别称为外圈、内圈和滚动体的故障特征频率。

工程材料及机械制造基础大作业(DOC)

《工程材料及机械制造基础》 课程结业论文 学院机械工程学院 专业 班级 学号 姓名 指导老师 完成日期2015年 5 月 15 日

卧式和面机典型零件的选材及加工工艺 一、前言 1.课程背景 工程材料及机械制造基础是研究常用机械零件的制造过程及制造方法的一门综合性技术基础课。是高等工业学校机械类专业和一些非机械类专业必修的技术基础课。课程内容包含工程材料、成型工艺基础和机械加工工艺基础三部分,主要介绍常用工程材料的组织、性能、应用和选用原则;各种毛坯的成型方法及零件的切削加工方法的基本原理和工艺特点;零件的结构工艺性以及机械加工工艺过程的基础知识;机械制造新材料、新技术及新工艺。通过本课程的学习,我们获得了常用工程材料、材料成形工艺及现代机械制造的基础知识,为学习其它相关课程及以后从事工程技术工作和科学研究奠定必要的基础。 本文以卧式和面机为例,通过初步分析卧式和面机典型零件的材料选择、毛坯生产方法、热处理工艺、零件制造工艺流程和结构工艺性,以加深对工程材料及机械制造基础课程的理解。 2.卧式和面机简介 和面机是一种食品加工机械,在食品机械的设计、制造、维护及材料等方面都要考虑到食品的特殊要求,要有切实可行的密封,简单方便的洗涤,以及彻底干净的杀菌的机构。通常我们应该注意以下几点。 1)结构上,接触食品的各个部件要能简单迅速的分解组合,分解的零件能便于洗涤; 2)材料上,对接触食品的零部件尽可能地采用不锈钢或其他防锈无污染材料; 3)环境保护上,必须有可靠的密封措施,严防杂物混入食品和物料散失; 4)在温度上,要有可靠的控温措施; 5)在工作环境上,机器应放置在空气流通、光线、温度和湿度适宜的地方。 和面机作用是进行面团的调制,既将各种原、辅料加水搅拌,调制成即符合质量要求,又适合机械加工成形的面团,主要用于面包、饼干、糕点、膨松食品、夹馅饼等食品生产过程中的面团调制。和面机可分为卧式和面机和立式和面机。 卧式和面机主要是指搅拌容器轴线与搅拌器回转轴线都处于水平位置,它的特点是,结构简单,制造成本低,卸料清洗方便,所以在食品加工中,如面包、饼干、糕点及一些饮食行业的面食中得到了广泛的应用。 根据食品生产的种类和特点不同,面团的各种性质各不相同,可分为韧性面团、水面团及酥性面团,一般来讲,对面团拉伸作用较强时,易于形成韧性面团,而对面团拉捏作用较强时,易于形成酥性面团。卧式和面机一般是在一根轴上安装几片浆叶,它对面团的拉伸作用较弱。适用于调制酥性面团。

[诊断学,教学改革,故障]关于《机械故障诊断学》的教学改革研究

关于《机械故障诊断学》的教学改革研究 随着现代工业的发展,机械设备的故障诊断技术日益得到重视,已经成为保障生产系统安全稳定运行和提高产品质量的不可或缺的重要手段及关键技术。目前,机械故障诊断在电力、化工、冶金、机械等大型企业得到了十分广泛的应用。此外,在现代机械制造系统中,如:柔性制造系统、计算机集成制造系统等,故障诊断技术也具有相同的重要性。机械故障诊断学作为学习故障诊断技术的专门课程,是近年来发展迅速的一门实践性、综合性、多学科交叉的学科。就学科本质而言,是属于动态系统辨识的研究范畴;就工程特点而言,是研究机械设备运行状态的科学。 在很多高校,机械故障诊断学已经成为机械工程、仪器仪表和能源动力等学科专业研究生培养体系中一门重要的选修课程,有些高校甚至还把该课程列为必修课程。我校近几年作为选修课开设了这门课程,但在该课程的教学过程中,主要还是从理论来到理论去,在理论联系实际方面还有许多工作要做。为了提高学生对该课程在工程实践中应用的认识,并提高教学质量和效果。我们提出了新的教学改革思路,主要包括是增加学生讲解环节、讨论环节、与工程实践相结合及实验教学等环节,并且对课程的考核方式也进行了改革。期望这些教学改革可以显著提高这门课程的教学效果,使得其在研究生的就业及工作中能够真正的发挥作用。 一、机械故障诊断学教学现状 目前,在机械故障诊断学的教学过程中,存在不少问题,其中的主要问题如下。 1.内容广泛。机械故障诊断学是多学科综合的课程,与数学、信号处理、传感器、人工智能等学科关系密切。本课程主要包括:信号检测、动态系统分析、故障诊断的人工智能方法、故障诊断的工程应用等,知识面非常宽广。因此,理论性非常强,我们以前讲授这门课程的时候,也都是特别注重理论,所以教学效果还有待提高。 2.学生基础薄弱。机械故障诊断学是为动力机械与工程专业的研究生开设的一门专业选修课,但是学生以前本科所学专业基本上都是热能工程或机械制造及其自动化专业。对于在故障诊断中占有重要地位的振动基础、传感器等的基础知识几乎都不具备。因此,从一开始,学生在听课的时候就感觉非常难,例如对于时域中的时间序列模型预测及频谱分析中各种频域概念很难理解。此外,有不少同学还没有接触过Matlab软件,或者说对此软件还是一知半解,课程后面的一些作业都很难完成。 3.与工程实际结合不紧密。以前在教学过程中,我们主要强调理论知识的讲解,和工程实际的结合不是非常紧密。因此,很多理论知识,即使学生学习过了,也不知道在工程实际中有什么用处。理论教学与工程实际仍然存在一定的距离。 4.缺少实验教学环节。在以前的教学环节中,由于缺少实验设备,没有安排实验教学环节。因此机械故障诊断总归是纸上谈兵。 5.考核方式单一。本课程一直以来都是采用大作业的形式进行考核,学生往往在交作业的前面几天进行突击,写出来的报告要么是格式不符合要求,要么就是大段地抄袭参考文献

智能状态监测与故障诊断教程文件

智能状态监测与故障诊断 测控一班 高青春 20091398

第一章 绪论 在现代化的机械设备的生产和发展中,滚动轴承占很大的地位,同时它的故障诊断与监测技术也随着不断地发展,国内外学者对轴承的故障诊断做了大量的研究工作,各种方法与技巧不断产生、发展和完善,应用领域不断扩大,诊断精度也不断提高。时至今日,故障诊断技术己成为一门独立的跨学科的综合信息处理技术,它以可靠性理论、信息论、控制论、系统论为理论基础,以现代测试仪器和计算机为技术手段,总的来说,轴承故障诊断的发展经历了以下几个阶段:第一段:利用通用的频谱分析仪诊断轴承故障。第二阶段:利用冲击脉冲技术诊断轴承故障。第三阶段:利用共振解调技术诊断轴承故障。第四阶段:以计算机为中心的故障诊断。 国外的滚动轴承的故障诊断与监测技术要先于中国,而且这项技术的发展趋势啊已经趋向智能化状态,因为它机械化迅速,技术和设备都比较先进些,目前的技术也比较完善。但是总体来看,这其中的距离在不断拉近,我们相信不久的将来,中国也会使机械完善大国,也会完善和提高技术的精密度和准确度。【2】【3】

1.1轴承监测与故障诊断的意义 滚动轴承是机械各类旋转机械中最常用的通用零件部件之一,也是旋转机械易损件之一,在机械生产中的作用不可取代,据统计旋转机械的故障有30%是由轴承故障引起的,它的好坏对机器的工作状态影响极大,轴承的缺陷会导致机器剧烈振动和产生噪音,甚至会引起设备的损坏,因此,对重要用途的轴承进行状态监测与故障诊断是非常必要的【3】而且,可以生产系统的安全稳定运行和提高产品质量的重要手段和关键技术,在连续生产系统中,如果某台设备因故障而不能继续工作,往往会影响全厂的生产系正常统运行,从而会造成巨大的经济损失,甚至可能导致机毁人亡的严重后果。未达到设计寿命而出现故障的轴承没有被及时的发现,直到定期维修时才被拆下来报废,使得机器在轴承出现故障后和报废前这段时间内工作精度降低,或者未到维修时间就出现严重故障,导致整部机器陷于瘫痪状态。因此,进行滚动轴承工作状态及故障的早期检测与故障诊断,对于设备安全平稳运行具有重要的实际意义。【14】 1.2滚动轴承故障的分类: 滚动轴承的故障多种多样,有生产过程中产生的也有使用过程中后天造成一系列故障,其失效形式有: 1.2.1疲劳剥落: 指滚动体或滚道表剥落或脱皮在表面上,形成不规则 凹坑等甚至会一定深度下形成能裂纹,继扩展到接触表面发生剥落坑,最后大面积剥落,造成失效。【12】

机械制造基础大作业

机械制造基础大作业金属的强韧化

一.金属的强韧化:提高金属的强度和韧度。 二.1.金属的塑性变形:金属材料在外力的作用下产生变形,当应力超过材料的弹性变形时就产生塑性变形。它是当外力除去后不能恢复的永久变形。 2.单晶体金属塑性变形的机制:单晶体塑性变形的基本形式 有两种:滑移和孪生。其中滑移是最基本的,最重要的变形方式。 (1)滑移:当金属晶体受到外力作用时,不论外力的方向、大小与作用方式如何,均可将总的应力G分解成垂直于某一滑移面的正应力X和平行于滑移面的切应力Y。在正应力X 的作用下,发生弹性伸长,并在X足够大的时候发生断裂。 切应力Y能使试样发生弹性歪扭,当切应力Y增大到一定值时则一定晶面两侧的两部分晶体产生相对滑动,滑动的距离超过一个原子间距事晶格的弹性歪扭随之消失,而原子滑移到新位置重新处于平衡状态,于是晶体就产生微量的塑性变形。当许多晶体面滑移总和就产生了宏观的塑性变形。 滑移:在外力的作用下不断增值新的位错,大量的位错移出晶体表面就产生了宏观的塑性变形。(通过滑移面上的位错逐步实现的。) 位错:所谓位错,是晶体某处有一列或若干列原子发生有规律的错排现象。刃型位

错是金属晶体中最常见最简单的位错。 (2)孪生:孪生是晶体的一部分沿一定的晶面和晶向进行剪切变形的现象。在这部分晶体中每个相邻的原子间相对位移只有一个原子间距的几分之一。但是许多层晶面积累起来的位移便可形成比原子间距大许多的位的切变。 3.单晶体金属塑性变形的特点:滑移总是沿晶体中原子排 列最紧密的晶面和晶向进行;滑移是晶体的相对滑动,不应期晶格的类型变化。 4.多晶体金属塑性变形的机制:多晶体金属塑性变形除了 滑移和孪生外,还有晶界滑动和迁移,以及点缺陷的定向扩散。 (1)晶界的滑动和迁移:是高温下的塑形变形方式,此时外应力往往低于该温度下的屈服极限。列如:高温合金经常

机械故障诊断综合大作业—航空发动机的状态监测和故障诊断

机械系统故障诊断 综合大作业 航空发动机的状态监测和故障诊断 1.研究背景与意义 航空发动机不但结构复杂,且工作在高温、大压力的苛刻条件下。从发动机发展现状看,无论设计、材料和工艺水平,抑或使用、维护和管理水平,都不可能完全保证其使用中的可靠性。而发动机故障在飞机飞行故障中往往是致命的,并且占有相当大的比例,因此常常因发动机的故障导致飞行中的灾难性事故。 随着航空科学技术的发展并总结航空发动机设计、研制和使用中的经验教训,航空发动机的可靠性和结构完整性已愈来愈受到关注。自70年代初期即逐步明确航空发动机的发展应全面满足适用性、可靠性和经济性的要求,也就是在保证达到发动机性能要求的同时,必须满足发动机的可靠性和经济性(维修性和耐久性)的要求。 可靠性工作应贯穿在发动机设计-生产-使用-维护全过程的始终。对新研制的发动机,应在设计阶段就同时进行可靠性设计、试验和预估;对在役的发动机,应经常进行可靠性评估、监视和维护。军机和民用飞机的主管部门,设计、生产、使用和维护等各部门,应形成有机的、闭环式的可靠性管理体制,共同促进航空发动机可靠性的完善和提高。 2.国内外进展 自70年代前期,国外一些先进的民用和军用航空公司即着手研究和装备发动机的状态监视和故障诊断系统。电子技术与计算机技术的迅速发展,大大促进了航空发动机的状态监视与故障诊断技术的发展。至今,监视与诊断技术作为一项综合技术,已发展成为一门独立的学科,其应用已日趋广泛和完善。 按民航适航条例规定航空发动机必须有15个以上的监视参数。现今美国普?惠公司由有限监视到扩展监视,逐步完善了其TEAMIII等系统,美国通用电气公司也不断在发展其ADEPT系统。 从各国空军飞机发动机的资料来看,大都采用了发动机状态监视与故障诊断系统。包括发动机监视系统EMS,发动机使用情况监视系统EUMS和低循环疲劳计数器LCFC等,同时为了帮助查找故障,近年来还发展了发动机故障诊断的专家系统,如XMAN和JET—X。美国自动车工程协会(SAE)E-32航空燃气涡轮监视委员会研究并颁布了一系列指南,包括航空燃气涡轮发动机监视系统指南、有限监视系统指南、滑油系统监视指南、振动监视系统指南、使用寿命监视及零件管理指南等。 我国相关民用航空公司和院校开展的发动机状态监测与故障诊断的研究工作已初见成效。并且对于新研制的高性能发动机已将实施状态监视列为重要的技、战术指标,因此正较全面的开展这方面的研究工作。但是总的看来,国内该项工作开展得还不够,亟待有计划、有步骤地借鉴国外的成功经验,发展并推广我们自己的状态监视与故障诊断技术,以适应飞机和发展的需要。

MDS-4000输变电设备状态监测与故障诊断系统

MDS-4000输变电设备状态监测与故障诊断系统 MDS-4000系统简介 MDS-4000输变电设备状态监测与故障诊断系统是为满足国家电网公司智能电网建设、集约化生产管理及“三集五大”中大生产体系集中监控要求而开发的重要技术支撑系统。 MDS-4000输变电设备状态监测与故障诊断系统是智能电网建设的重要内容,它通过各种先进的传感技术、数字化技术、嵌入式计算机技术、广域分布的通信技术、在线监测技术以及故障诊断技术实现各类电网设备运行状态的实时感知、监视、分析、预测和故障诊断。输变电设备状态监测技术是实现智能变电站建设的关键支撑技术,是智能变电站建设的核心内容。因此,输变电设备状态监测与故障诊断系统的建设对提高国家电网公司生产管理水平、加强状态监测检修辅助决策应用、推动智能电网建设具有积极而深远的意义。 MDS-4000系统可为智能变电站提供在线监测与故障诊断的整体解决方案。系统可对变压器温度及负荷、油中溶解气体、油中微水、套管绝缘、铁芯接地电流、局部放电、辅助设备(冷却风扇、油泵、瓦斯继电器、有载分接开关等)、断路器及GIS中SF6气体密度及微水、GIS局部放电、断路器动作特性、GIS室内SF6气体泄露、电流互感器及容性电压互感器绝缘、耦合电容器绝缘和避雷器绝缘等信息进行综合监测。MDS-4000系统具有准确性高、可靠性高、互换性好等特点,是按照统一的结构方式、通讯标准、数据格式等的全面集成。 MDS-4000输变电设备状态监测与故障诊断系统依据获得的电力设备状态信息,采用基于多信息融合技术的综合故障诊断模型,结合设备的结构特性和参数、运行历史状态记录以及环境因素,对电力设备工作状态和剩余寿命作出评估;对已经发生、正在发生或可能发生的故障进行分析、判断和预报,明确故障的性质、类型、程度、原因,指出故障发生和发展的趋势及其后果,提出控制故障发展和消除故障的有效对策,达到避免电力设备事故发生、保证设备安全、可靠、正常运行的目的。 MDS-4000系统特点 MDS-4000系统技术特点

状态监测与故障诊断的基本图谱

状态监测与故障诊断的基本图谱 一、常规图谱 常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。 1. 机组总貌图 机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。 2. 单值棒图 较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。 3. 多值棒图 多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。 正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5倍频微量或无,可选频段很小,残余量不大。 其中: (1)通频值~即总振动值,为各频率振动分量相互矢量迭加后的总和。 (2)一倍频~为转子实际运行转速n下的频率f,又称工频、基频、转频, f = n/60 [Hz];转子动不平衡及轴弯曲、轴承不良(偏心)、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。 (3)二倍频~二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等,都会引起二倍频振动分量增大,绝大多数是轴系不对中。 (4)0.5倍频~0.5倍工频,又称半频,油膜涡动会引起该频率段增大,轴承工作不良也会引起该段频率增大;旋转失速、摩擦也都有可能。 (5)可选频段~由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6)倍工频或(0.3~0 .8)倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。 (6)残余量~除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时,转子有可能发生摩擦、高频气流脉动等。 4. 波形图 波形图显示了振动位移与时间的关系,又称幅值时域图。 波形图显示了振幅、周期(即频率)、相位,特别是波形的形状和状态。 图中:① 振幅为正峰与负峰之间的位移量,比较各周期对应的峰高,即可知振幅值是否稳定;② 二个亮点之间为一个旋转周期,波形图的周期数可以选取,想了解波形重复性

哈工大机械制造技术基础大作业

一、零件加工图样

在CA6140机床中,拨叉在变速箱中起到控制齿轮组的移动,改变啮合齿轮对,从而改变传动比实现变速功能。 零件材料采用200HT 灰铸铁,生产工艺简单、可铸性高,但材料脆性大不易磨削。需要加工的部分及加工要求如下: 1、0.0210Φ22+孔,还有与其相连的8M 螺纹孔与Φ8锥销孔; 2、小孔的上端面,大孔的上下两端面; 3、 大头的半圆孔0.40Φ55+; 4、 Φ40上端面,表面粗 5、 糙度为 3.2Ra ,该面与Φ20孔中心线垂直度误差为0.05mm ; 5、0.50Φ73+半圆形上下端面与Φ22孔中心线垂直度误差为0.07mm 。 二、零件加工工艺设计 (一)确定毛坯的制造形式 零件材料为HT200。考虑到零件在机床运行时过程中所受冲击不大,零件结构又比较简单,生产类型为大批生产,故选择铸件毛坯。选用铸件尺寸公差等级CT9级。 (二)工艺初步安排 零件的加工批量以大批量为主,用通用机床加工,工序适当集中,减少工件装夹次数以缩短生产周期、保证其位置精度。 (三)选择基准 基准的选择就是工艺规程设计中的重要工作之一。基准选择得正确合理,可以使加工质量得到保证,生产效率得以提高。 (1)粗基准的选择:以零件的底面为主要的定位粗基准,以两个小头孔外圆表面为辅助粗基准。这样就能限制工件的五个自由度,再加上垂直的一个机械加紧,就可达到完全定位。 (2)精基准的选择:考虑到要保证零件的加工精度与装夹准确方便,依据“基准重合”原则与“基准统一”原则,以粗加工后的底面为主要定位基准,以两个小孔头内圆柱表面为辅助的定位精基准。 (四)制定工艺路线

1、工艺方案分析 此零件加工工艺大致可分为两个:方案一就是先加工完与Φ22mm的孔有垂直度要求的面再加工孔。而方案二恰恰相反,先加工Φ22mm的孔,再以孔的中心线来定位加工完与之有垂直度要求的三个面。方案一装夹次数较少,但在加工Φ22mm的时候最多只能保证一个面与定位面之间的垂直度要求。其她的两个面很难保证。因此,此方案有很大弊端。方案二在加工三个面时都就是用Φ22mm孔的中心线来定位,这样很容易就可以保证其与三个面之间的位置度要求。 2、总体工艺路线: 详细工艺安排: 工序1:以Φ22孔的外表面为基准,扩、精铰Φ22孔; 工序2:以Φ22孔的底面为基准,钻、扩、精铰Φ8锥销孔,攻Φ8螺纹; 工序3:以Φ22孔为基准,粗铣Φ40上端面; 工序4:以Φ22孔为基准,粗铣Φ73上下端面; 工序5:以Φ22孔为基准,镗、精镗Φ55孔; 工序6:铣断Φ73半圆; 工序7:半精铣Φ40上端面; 工序8:半精铣Φ73上、下端面; 工序9:检查,去毛刺。 加工工艺卡片 拨叉加工工艺过程 序号工序内容定位基准机床设备 1 扩、精铰Φ22孔Φ22孔的外表面立式钻床 2 钻Φ8锥销孔Φ22孔的底面立式钻床 3 精铰Φ8锥销孔Φ22孔的底面立式钻床

机械故障诊断大作业滚动轴承

机械故障诊断大作业滚动轴 承 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

课程名称:机械故障诊断 设计题目:基于FFT的轴承故障诊断学院:机械工程系 班级: 学号: 姓名: 指导老师:李奕璠 2017年12月23日

摘要 滚动轴承是旋转机械中重要的零件,以往的动检工作对滚动轴承强烈振动原因分析不足,不能满足设备维修工作的需要。所以要定期对旋转机械进行动态监测,根据所测数据做出诊断分析,及时发现滚动轴承强烈震动情况。 傅里叶变换在故障诊断技术中是重要的工具,但傅里叶变换及其逆变换都不适合数字计算机计算,要进行数字计算机处理,必须将连续性信号离散化,无限长数据有限化,再进行采样和截断。这种算法称为有限离散傅里叶变换(DFT),为了提高效率,在DFT的基础上,运用快速傅里叶变换(FFT)对滚动轴承进行故障诊断。通过FFT方法分析轴承的信号图,对滚动轴承振动的产生原因进行深入分析,不断总结经验,提高故障分析能力,掌握造成滚动轴承强烈振动的原因,及时消除振动,为设备安全提供可行性措施。 关键词:滚动轴承;故障诊断; FFT

第1章绪论 1.1 滚动轴承概述 滚动轴承(rolling bearing)是将运转的轴与轴座之间的滑动摩擦变为滚动摩擦,从而减少摩擦损失的一种精密的机械元件。滚动轴承一般由内圈、外圈、滚动体和保持架四部分组成,内圈的作用是与轴相配合并与轴一起旋转;外圈作用是与轴承座相配合,起支撑作用;滚动体是借助于保持架均匀的将滚动体分布在内圈和外圈之间,其形状大小和数量直接影响着滚动轴承的使用性能和寿命;保持架能使滚动体均匀分布,引导滚动体旋转起润滑作用。 图1滚动轴承结构 滚动轴承是各类旋转机械中最常用的通用零件之一,也是旋转机械易损件之一。据统计,旋转机械的故障越有30%是由轴承故障引起的,它的好坏对机械的工作状况影响很大。轴承的缺陷会导致机器剧烈振动和产生噪声,甚至会

状态监测与故障诊断

状态监测与故障诊断与飞设密不可分 刚刚接触这门课的时候,我只知道这是民航飞行学院开设的课程,但还不知道这门课到底讲什么东西,对我们飞设来说到底有什么借鉴之处。经过几周的学习,我初步了解了这门课。简单说,状态监测与故障诊断和飞设之间有着密切的联系。他们是一种表里关系,是一种感知和应用的关系,两者互为支撑,共同促进了航空工业的进步发展。 状态监测与故障诊断促进了设计行业的发展。 状态监测与故障诊断为设计飞机提供了大量的、可靠的数据。 这提供了一种实验。通过对飞行器飞行状态、各个零部件的工作状态、各个系统的运行情况进行检测,我们可以获得大量的实时数据,进而进行详细的分析,即故障诊断。一方面我们可以检测出飞行器的故障来源,对飞行器进行维修。同时,我们可以统计飞行器各部分发生故障的频率和原因等,进而分析得出设计上的缺陷。这也可以作为设计飞机的依据,比如发动机轴承要用什么材质,设计寿命多长时间最为合适。再者,分析得到的数据可以对目前的设计理论进行验证,这对飞行器设计来说更为至关重要。 状态监测与故障诊断也可以给设计提出新的问题与要求。比如国内大气污染严重,飞机的空调系统收到了巨大的影响。这就要求飞机设计时采取某些措施来防止这些问题发生。 设计行业也促进了状态监测与故障诊断的发展。 飞行器设计理论可以指导状态监测与故障诊断的实际应用。 应用已经提出验证的的理论,我们可以初步分析出各部件的特性,这样便可以某些易损坏或是极度危险的零部件进行重点监控,这样不但更具可行性,而且还大大节约了人力物力,降低航空公司的运营成本。比如发动机是飞行器的核心部分之一,构建复杂,极易出现故障,所以要重点监测。 同时已有的理论基础可以为状态监测提供必要的手段,使其具有可行性。最简单的就是发动机的涡轮叶片,我们可以通过测量转子的惯性矩来分析判断叶片是否有松动,这样方便可行。 在理论方面,飞行器设计理论也在指导状态监测与故障诊断的发展,经过传感器采集的数据杂乱无章而且数目极为庞大。如果没有现有理论的指导,我们很难得到数据处理的方向方法,这样就得不到有价值的数据,更不要说进行故障诊断了。而应用现有理论我们可以有方向,有目的的对数据进行处理,这样我们就可以判断出是哪一方面有问题,到底有什么样的问题。 总之,状态监测与故障诊断给了我一个新的视角去看待问题,从另一个角度认识飞设这个专业。打个比方,过去我们专业所关注的是从已知到要求的问题,我们知道各种数据,所做的是对数据的分析与应用。而状态监测与故障诊断则是从要求到已知的问题,是一个反问题,我们要做的是我们如何才能得到我们所需要的数据,如何才能保证所得导数据的可靠性等。 除此之外,还有就是这门课的感受吧。 这门课也进行大半了,但是自己并没有达到自己想要的水平。总感觉有些遗憾。很多东西还是一知半解,还不能应用。我想一方面与专业基础有关系,很多基础性东西我们不懂不会,这就对理解内容造成了困难,先是听不懂,然后就不想听了,紧接着更听不懂了,直至彻底放弃掉。当然这也和上课态度以及这门课是拓展课有关吧。有的人说这门课对我没用,但我想说大

机械制造基础形成性考核册作业答案

机械制造基础形成性考核册作业答案 1、举例说明生产纲领在生产活动中的作用,说明划分生产类型的规律。 答:产品的年生产纲领是指企业在计划期内应当生产的产品产量和进度计划。 在计算出零件的生产纲领以后,即可根据生产纲领的大小,确定相应的生产类型。 2、何谓机床夹具?夹具有哪些作用? 答:在机械加工中,为了保证工件加工精度,使之占有确定位置以接受加工或检测的工艺装备统称为机床夹具,简称夹具。 作用:1)保证产品加工精度,稳定产品质量。 2)提高生产效率,降低加工成本。 3)改善工人的劳动条件。 4)扩大机床的工艺范围。 3、机床夹具有哪几个组成部分?各起何作用? 答:机床夹具大致可以分为6部分。 1)定位部分:用以确定工件在夹具中的正确位置。 2)夹紧元件:用以夹紧工件,确保工件在加工过程中不因外力作用而破坏其定位精 度。 3)导向、对刀元件:用以引导刀具或确定刀具与被加工工件加工表面间正确位置。 4)连接元件:用以确定并固定夹具本身在机床的工作台或主轴上的位置。 5)夹具体:用以连接或固定夹具上各元件使之成为一个整体。 6)其他装置和元件。 4、工件夹紧的基本要求是什么? 答:1)夹紧既不应破坏工件的定位,又要有足够的夹紧力,同时又不应产生过大的夹紧变形,不允许产生振动和损伤工件表面。 2)夹紧动作迅速,操作方便、安全省力。 3)手动夹紧机构要有可靠的自锁性;机动夹紧装置要统筹考虑其自锁性和稳定的原动力。 4)结构应尽量简单紧凑,工艺性要好。 5、什么叫“六点定位原则”?什么是欠定位?过定位? 答:夹具用合理分布的六个支承点限制工件的六个自由度,即用一个支承点限制工件的一个自由度的方法,使工件在夹具中的位置完全确定,这就是六点定位原理。 根据工件的加工要求,应该限制的自由度没有完全被限制的定位,称为欠定位。 同一个自由度被几个支承点重复限制的情况,称为过定位(也称为重复定位、超定位) 6、什么是粗基准?如何选择粗基准? 答:采用毛坯上未经加工的表面来定位,这种定位基准称为粗基准。

大作业模板故障诊断

新疆农业大学机械交通学院 机械故障诊断课程论文题目: 姓名与学号: 指导教师: 年级与专业: 所在学院: 课程评分: 二零一一年月日

棉花异性纤维检测技术的研究综述 浙江大学-岑斌(生工052,3051315017) 【摘要】本文介绍和分析了目前为止绝大多数对皮棉中异性纤维检测的研究。这些研究从棉花杂质的几何、物理和成分官能团光谱特性入手,应用可见光机器视觉、红外波段光谱图像和断层X 光摄影等检测技术,采用数字图像处理和化学计量学分析方法,分类识别各种皮棉杂质。 关键词皮棉,异性纤维,检测 【Absatract】This paper has described and analyzed the vast majority of lint so far in the detection of the raw cotton foreign matters.Many researchers have applied different techniques to identify various contaminations of raw cotton based on their characteristics of geometry , physics and spect roscopy..These techniques are machine vision at visible light wave , infrared spect roscopy , X-ray micro-tomographic image , and so on. Keywords:Raw cotton, Foreign matters, Detection. 前言 我国采摘棉花大部分是人工摘拾。这样对异性纤维的控制很不利。由于棉农对异性纤维的危害认识不足,采摘交售棉花时习惯用编织袋装棉花、用有色的或非棉线绳绑扎棉袋口等。在采摘、装棉、晒棉、运棉和售棉等过程中,难免混入叶子、铃壳、种皮和异性纤维等杂质。严重影响了棉纺厂的产品质量。异性纤维是困扰纺织企业的一大难题.每年纺织企业都要投入大量的人力、物力、财力进行人工挑拣。显然,在纺织清理和加工的每个环节,研究快速检测原棉中杂质,减少并消除它,这对于提高加工质量和效率是非常必要的。 1.原棉杂质检测的主要手段 在检测棉花中叶子,茎皮,秆和异性纤维等杂质时,可以从其基本物理特性入手,例如颜色、形状、大小、密度、表面密度和重量等;也可以从其化学成分方面入手来识别这些杂质,比如荧光效应和官能团光谱特性等。在具体方法上,对杂质的检测有机器视觉(可见光波段)、X光断层摄影、红外波段光谱或图像和紫外荧光光谱或图像等;在对杂质定性和定量分析的方法上,主要有固定线性判别式、聚类算法、贝叶斯学习算法和贝叶斯加权K均值聚类算法等数字图像处理方法。 根据以上皮棉杂质检测技术的特点,从原理上可分为基于图像技术的杂质检测研究和基于分光技术的杂质检测研究。一些典型的研究见表1。 表1 棉花杂质检测研究的文献整理 类型范围检测设备杂质类型检测率识 别率(%) 文献 静态国内显微近红外成 像无色塑料、黄麻、编织袋、白 头发丝、白羊毛、猪鬃 —郏东耀等人,2004

机械制造基础形成性考核第四次作业答案

1、举例说明生产纲领在生产活动中的作用,说明划分生产类型的规律。 答:产品的年生产纲领是指企业在计划期内应当生产的产品产量和进度计划。 在计算出零件的生产纲领以后,即可根据生产纲领的大小,确定相应的生产类型。 2、何谓机床夹具?夹具有哪些作用? 答:在机械加工中,为了保证工件加工精度,使之占有确定位置以接受加工或检测的工艺装备统称为机床夹具,简称夹具。 作用:1)保证产品加工精度,稳定产品质量。 2)提高生产效率,降低加工成本。 3)改善工人的劳动条件。 4)扩大机床的工艺范围。 3、机床夹具有哪几个组成部分?各起何作用? 答:机床夹具大致可以分为6部分。 1)定位部分:用以确定工件在夹具中的正确位置。 2)夹紧元件:用以夹紧工件,确保工件在加工过程中不因外力作用而破 坏其定位精度。 3)导向、对刀元件:用以引导刀具或确定刀具与被加工工件加工表面间 正确位置。 4)连接元件:用以确定并固定夹具本身在机床的工作台或主轴上的位置。 5)夹具体:用以连接或固定夹具上各元件使之成为一个整体。 6)其他装置和元件。 4、工件夹紧的基本要求是什么? 答:1)夹紧既不应破坏工件的定位,又要有足够的夹紧力,同时又不应产生过大的夹紧变形,不允许产生振动和损伤工件表面。 2)夹紧动作迅速,操作方便、安全省力。 3)手动夹紧机构要有可靠的自锁性;机动夹紧装置要统筹考虑其自锁性和稳定的原动力。 4)结构应尽量简单紧凑,工艺性要好。 5、什么叫“六点定位原则”?什么是欠定位?过定位? 答:夹具用合理分布的六个支承点限制工件的六个自由度,即用一个支承点限制工件的一个自由度的方法,使工件在夹具中的位置完全确定,这就是六点定位原理。 根据工件的加工要求,应该限制的自由度没有完全被限制的定位,称为欠定位。

故障诊断综合大作业

空间站的安全监测与自主维护装置构思 机自24 王东岳 2120101087 一、背景与意义 在过去的几十年中,世界各国在发展航天技术的过程中,由于错综复杂的原因,发生了数以千计的事故,数以万计的故障。特别在研制初期这种情况尤为明显,可以说世界各国的航天器是在不断出现事故和故障中发展起来的。当前,发展载人航天技术已成为世界航天的发展热点,空间站更是其中的一位佼佼者。它是一项投资巨大、技术复杂的综合性大型航天工程,因此加强空间站的安全保障,尤其是设计初期的安全计划则成了一项必不可少的关键工作,其中故障监测报警、诊断和恢复技术成为航天事业中保障航天器安全,提高可靠性,降低风险的有效对策。 空间站是机械、电子、材料、控制、推进、能源、通讯以及航天医学和生物学、计算机技术、遥感技术、天体物理等多学科最新的尖端成果的协同运用,造价极其昂贵的大型复杂系统,而且要在数以年计的任务时间内可靠运行。因此,空间站的设计必须要求具备故障检测和诊断能力,这是提高空间站可靠性的极为重要的补充,也是空间站设计中的一个不容忽视的至关重要的环节。 二、国内外展综述 故障检测、报警与诊断技术随着80年代初期以来人工智能和专家系统技术在各个民用行业的兴起和成功应用,在载人航天事业中占有越来越关键的地位。故障诊断系统已与空间站的各分系统,各软、硬件配置集为一体。以空间站站上火灾的预防和控制方法的具体应用也可看出故障检测、报警与诊断技术的渗透:故障检测系统实时监测站上环境中的温度、放射线、烟雾因子以及空气化学成分等的变化,或产生报警,或由诊断系统诊断后提出对策,由站上的多专家系统(站上二氧化碳,氮,Halan1301为灭火专家) 进行故障隔离。 故障检测诊断技术一直是载人航天器发展的一大特色,经历了60年代简单的状态监测(水星号),70年代初的基于算法的故障监测(阿波罗计划)和80年代基于知识的智能诊断(航天飞机),智能诊断进一步发展到目前的基于模型的自主诊断(空间站)。基于模型的故障诊断方法已成为目前故障诊断方法的研究热点,它结合系统的物理特性和有限的经验知识有效地进行诊断。基于模型的诊断专家系统尤其适合于经验知识少,领域专家与能力较弱的空间站站上故障诊断、隔离和恢复,对紧急的、危及航天员安全和空间站安全的故障进行自主诊断和局部处理。 国内对航天器在轨故障检测和诊断技术研究较晚,主要由航空航天研究院校所承担。北京控制工程研究所研制出了卫星控制系统实施故障诊断专家系统原型(SCRDES)。 在“东方红3号”、“资源1号”、“资源2号”和神舟飞船等型号中采用了系统诊断和重构等智能化技术。哈尔滨工业大学分别与中国空间技术研究院等单位合作对载人障诊断进行了深入的研究,取得了一定的经验,并且已经分别开发出故障诊断原型系统 [15]。但是,国内所开发的大部分故障诊断系统基本上还属于实验型,距离实用化阶段 还有许多工作要做,而且主要以地面诊断为主。 三、方案设计 (1)已有方案及对比分析

电气设备状态监测与故障诊断word版本

电气设备状态监测与故障诊断 1 前言 1.1 状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 “监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。 广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。 1.2 状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所

设备状态监测及故障诊断

设备状态监测及故障诊断 近年来,为了提高设备管理与维修的现代化水平,在省设协和油田设备处的大力支持与帮助下,我厂应用状态监测及故障诊断技术,及时发现并解决了许多设备隐患,提高了设备运行可靠度,为电厂长周期、满负荷生产奠定了良好的基础。 1 开展状态监测与故障诊断工作的缘由 1.1 状态监测与故障诊断是一种新的管理理念 电厂生产的特点是自动化水平高、生产连续性强,一旦某台设备发生故障,将迫使机组降低负荷,甚至停机。多年的摔打与磨练告诉我们:单凭眼看、手摸、耳听、鼻嗅等感观经验来判断设备故障已无法适应现代化生产的需要,只有开展状态监测和故障诊断工作才能彻底摆脱这种落后的管理模式。 1.2 状态监测和故障诊断是提高设备管理水平的需要 我厂已搞过8次大修,在检修项目的确立和设备系统部件的更换上,虽然针对性、方向性有了很大提高,但确切性、适宜性、经济性仍有差距。根据“四个凡是”的贯标精神要求,设备、系统的大小修的立项应更具科学性、针对性,减少盲目性,要解决这一问题,惟有开展状态监测和故障诊断。 1.3 状态监测和故障诊断是降本增效的需要。我厂检修费用一年比一年紧缩,降本增效压力逐年递增,如何进一步降低发电成本,是摆在全厂干部职工面前的一个现实问题。从历年大修情况来看,部分单位存在不同程度的欠修和过剩检修。过剩检修意味着工作量加大,费用增加,造成人、财、物的浪费,而欠修将给设备运行带来隐患。开展状态监测和故障诊断可有效避免欠修和过剩检修,做到物尽其用,达到降本增效的目的。 1.4 状态监测和故障诊断是二期投产的需要 我厂二期两台机组相继投产,如果按照过去三年一大修的计划,每年至少要安排一台机组大修,甚至一年安排两台机组的大修。我厂经过8次机组大修,积累了丰富的检修经验,对设备、系统的性能特点有了更深的了解。特别是1999年和2000年的机组技改性大修,使设备的可靠性有了明显提高,基本具备了把机组三年一大修改为四年一大修的条件。延长大修周期的保证是开展状态监测和故障诊断,延长设备使用寿命,避免突发性故障。 近几年来,通过实践逐步提高了对状态监测和故障诊断工作的认识,通过对设备定时、定点、定人监测,特别是#2机组在线监测系统,避免了多起设备事故,更坚定了我们开展这项工作的决心。 2 开展状态监测及故障诊断技术的依据

2015机械制造基础大作业综述

2015年河北建筑工程学院机械制造基础大作业 一、填空题 1. 铸造合金流动性是指__熔融_ 金属本身流动的能力。 2. 铸件在固态收缩阶段若收缩受阻,产生的内应力是铸件产生__变形和___裂纹_的主要原因。 3. 控制铸件凝固的原则有两个,即_顺序__凝固和_同时_凝固。 4. 设计和制造时,应使零件工作时所受__最大正应力___力与流线方向一致, ___最大切应力__力与流线方向垂直。 5. 绘制自由锻锻件图的目的之一是计算坯料的___质量__和__尺寸。 6. 锤上模锻___不能__直接锻出有通孔的锻件; 锻模内壁模锻斜度要__大于__外壁的模锻斜度。 7. 低碳钢焊接热影响区中的___焊缝__区和焊接接头的_熔合区性能最差。 8. 电焊条的选择主要根据被焊金属的___化学成分类型_____和___母材_来选择相应的焊条类别。 9. 切削平面是通过主刀刃上任一点,与切削表面_相切_,并垂直于_基面__的平面。 10. 当外圆车刀刀尖高于工件中心线时,使工作时实际前角_变大__,后角_变小_。 11. 切屑的种类通常分为节状切屑、__带状__切屑和__崩碎__切屑。 12. 切削时,切削热的主要来源是_切屑塑性变形所消耗的功_ 、切屑

与前刀面的磨擦和__工件与后刀面的摩擦功__ 。 13. 刀具磨损过程可分为___磨合_磨损、_稳定__磨损和__剧烈_磨损三个阶段。 14. 同是加工平面,由于采用的铣刀和铣床的不同可分为__端铣_和_周铣。 15. 钻孔时的径向力主要由麻花钻的_两端切削刃长短不一_产生,为减少它的影响,在生产中通常要_使两端的切削刃磨损一致。 16. 拉削加工时,工件必须_夹紧,其进给量由_齿升量_来决定。 17. 铰孔分为机铰和手铰,__手铰_的加工质量较高于__机铰_。 18. 砂轮的硬度是指磨粒_在外力作用下脱落的难易程度_ ,组织是指__模料占模具的容积比率__ 。 19. 按加工原理的不同,齿轮齿形的加工方法可分为__成形法_和_展成法_。 20. W18Cr4V的含碳量是0.7~0.8%,含Cr量是4.0 %,含V量1.0~1.4%。 21.X6132的含义是 x指铣床 6 代表卧式铣床 1代表万能升降系统 32指最大铣削直径为320毫米。22.积屑瘤的存在可代替切削刃进行切削,对切削刃有一定的保护性,还可增大刀具的实际工作前角,对粗加工的切削过程有利。 23.切削层参数主要有切削层公称横截面积 AD 、切削层公称宽度bD 、切削层公称厚度hD 。

机械故障诊断大作业

机械故障诊断大作业 题目:基于小波分析的轴承故障诊断 指导教师:奕璠 班级: 学号: 姓名: 成绩: 西南交通大学峨眉校区机械工程系

基于小波分析的轴承故障诊断 摘要滚动轴承在机械设备中使用非常广泛,其工作状态直接影响整个设备的运行效率。对滚动轴承进行状态监测与故障诊断,能够避免重大事故的发生,获得较大的经济和社会效益。在多样化的现代信号数据处理方法中,小波分析比较适合非稳定信号分析处理,小波变换不仅能够给出信号的时间和频率的二维关系,还能根据信号局部特征调整其窗口宽度。采用Matlab编程快速地在计算机上实现基于小波分析的滚动轴承故障诊断。对正常或故障轴承的振动信号进行小波分解与重构,基于小波分解系数对含有故障特征频率的第一层细节信号进行小波重构并提取其Hilbert包络谱,从中找到并测出特征频率,并和根据理论计算得到的故障特征频率对比判断故障类型。 关键词:故障诊断小波分析 Matlab Hilbert包络谱特征频率 第一章绪论 滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障越30%是因为滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。滚动轴承在机械设备中使用非常广泛,其工作状态直接影响整个设备的运行品质,对滚动轴承进行状态监测与故障诊断,能够避免重大事故的发生,获得较大的经济和社会效益。随着生产的需要,对轴承故障的检测方法也越来越多,其中,运用比较广发的集中方法是FFT、功率谱、倒谱分析、小波分析、经验模态分解、形态滤波、双谱分析。 小波变换是一种时频分析方法,可进行多分辨率分析,对轴承振动信号进行小波变换, 小波变换可以把振动信号分解成多个具有不同时间和频率分辨率的小波信号,同时对振动信号进行处理时就能有效地克服信号的泄漏和混叠等,从而可以在一个变换中同时研究低频长时现象和高频短时现象。使振动信号的检测和分析更符合于真实的情况。提取其中具有故障特征的细节信号进行重构;对重构信号做Hilben包络谱分析,从中检测出轴承的故障特征频率,据此判断故障类型。利用Matlab软件编程快速地实现了基于小波变换分析的滚动轴承故障判断。 第二章滚动轴承故障概述 1.滚动轴承故障的特征频率

相关主题