搜档网
当前位置:搜档网 › 勾股定理知识点+对应类型

勾股定理知识点+对应类型

勾股定理知识点+对应类型
勾股定理知识点+对应类型

第二章 勾股定理、平方根专题

第一节 勾股定理

一、勾股定理:

1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么

a 2+

b 2=

c 2. 即直角三角形两直角边的平方和等于斜边的平方

A

B

C

a b c

弦股

勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边

勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个

三角形是直角三角形。

2. 勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么

ka ,kb ,kc 同样也是勾股数组。)

*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13

3. 判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2

+b 2

=c 2

,那么这个三角形是直角

三角形。(经典直角三角形:勾三、股四、弦五)

其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:

(1)确定最大边(不妨设为c );

勾股定理和 平方根

勾股定理

平方根 立方根 实数

近似数、 有效数字

判定直角三角形

勾股定理的验证

定义、性质 开平方运算

开立方运算

定义、性质

(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)

4.注意:(1)直角三角形斜边上的中线等于斜边的一半

(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的

一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角

等于30°。

5. 勾股定理的作用:

(1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n 的线段

二、平方根:(11——19的平方)

1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。(也称为二次方

根),也就是说如果x 2

=a ,那么x 就叫做a 的平方根。

2、平方根的性质:

①一个正数有两个平方根,它们互为相反数;

一个正数a 的正的平方根,记作“a ”,又叫做算术平方根,它负的平方根,记作“—a ”,这两个平方根合起来记作“±a ”。( a 叫被开方数, “”是二次根号,这里“”,

亦可写成“2

”)

②0只有一个平方根,就是0本身。算术平方根是0。 ③负数没有平方根。

3、 开平方:求一个数的平方根的运算叫做开平方,开平方和平方运算互为逆运算。

4、(1) 平方根是它本身的数是零。

(2)算术平方根是它本身的数是0和1。

(3)

()

()()().0,0,0222

<-=≥=≥=a a a a a a a a a

(4)一个数的两个平方根之和为0

三、立方根:(1——9的立方)

1、立方根的定义:如果一个数的立方等于a ,那么这个数就叫做a 的立方根。(也称为二次

方根),也就是说如果x 3

=a ,那么x 就叫做a 的立方根。记作“3a ”。

2、立方根的性质:

①任何数都有立方根,并且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. ②互为相反数的数的立方根也互为相反数,即3a -=3a - ③a a a ==3333)(

3、开立方:求一个数的立方根的运算叫做开立方,开立方与立方运算为互逆运算,开立方

的运算结果是立方根。

4、立方根是它本身的数是1,0,-1。

5、平方根和立方根的区别:

(1)被开方数的取值范围不同:在±a 中,a ≥0,在a 3

中,a 可以为任意数值。

(2)正数的平方根有两个,而它的立方根只有一个;负数没有平方根,而它有一个立方根。

6、立方根和平方根:

不同点:

(1)任何数都有立方根,正数和0有平方根,负数没有平方根;即被开方数的取值范围

不同:±a 中的被开方数a 是非负数;3

a 中的被开方数可以是任何数.

(2)正数有两个平方根,任何数都有惟一的立方根;

(3)立方根等于本身的数有0、1、—1,平方根等于本身的数只有0. 共同点:0的立方根和平方根都是0. 四、实数:

1、定义:有理数和无理数统称为实数

无理数:无限不循环小数称(包括所有开方开不尽的数,∏)。 有理数:有限小数或无限循环小数

注意:分数都是有理数,因为任何一个分数都可以化为有限小数或无限循环小数的形式 2、实数的分类:

实数有理数正有理数零负有理数有限小数或无限循环小数无理数正无理数负无理数无限不循环小数????????????????????

??????????

??

?

实数的性质:①实数的相反数、倒数、绝对值的意义与在有理数范围内的意义是一样的。

②实数同有理数一样,可用数轴上的点表示,且实数和数轴上的点一一对应。 ③两个实数可以按有理数比较大小的法则比较大小。 ④实数可以按有理数的运算法则和运算律进行运算。

实数

有理数

无理数 (无限不循环小数)

整数

分数

有限小数或无限循环小数

3、近似数:由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到

精确的数,用以描述所研究的量,这样的数就叫近似数。 取近似值的方法——四舍五入法

4、有效数字:对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数

都称为这个近似数的有效数字 5、科学记数法:

把一个数记为做科学记数法。是整数)的形式,就叫其中n ,10a 1(10a n

<≤? 6、实数和数轴:

每一个实数都可以用数轴上的点来表示;反过来,数轴上每一个点都表示一个实数。实数与数轴上的点是一一对应的。

勾股定理:

(一)结合三角形:

1.已知?ABC 的三边a 、b 、c 满足0)()(2

2

=-+-c b b a ,则?ABC 为 三角形 2.在?ABC 中,若2

a =(

b +

c )(b -c ),则?ABC 是 三角形,且∠ ?90 3.在?ABC 中,AB=13,AC=15,高AD=12,则BC 的长为

1.已知2512-++-y x x 与25102

+-z z 互为相反数,试判断以x 、y 、z 为三边的三角形的形状。

2.已知:在?ABC 中,三条边长分别为a 、b 、c ,a =12

-n ,b =2n ,c =12

+n (n >1) 试说明:∠C=?90。

3.若?ABC 的三边a 、b 、

c 满足条件2a c b a c b 2624103382

2++=+++,试判断?ABC 的形状。

4.已知,0)10(8262=-+-+-c b a 则以a 、b 、c 为边的三角形是

(二)、实际应用:

1. 梯子滑动问题:

(1)一架长2.5m 的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m (如图),如果梯子的顶端沿墙下滑0.4m ,那么梯子底端将向左滑动 米

(2)如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 1米,(填“大于”,“等于”,或“小于”)

(3)如图,梯子AB 斜靠在墙面上,AC ⊥BC ,AC=BC ,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( ) A. y x = B. y x > C. y x < D. 不能确定

(4)小明想知道学校旗杆的高度,他发现旗杆上的绳子吹到地面上还多1 m ,当他把绳子的下端拉开5米后,发现绳子下端刚好触到地面,试问旗杆的高度为 米

8

6

A

C

B

2. 直角边与斜边和斜边上的高的关系:

直角三角形两直角边长为a ,b ,斜边上的高为h ,则下列式子总能成立的是( ) A. 2

b ab = B. 2

2

2

2h b a =+ C.

h b a 111=+ D. 222111h

b a =+ 变:

如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,设AB=c ,AC=b ,BC=a ,CD=h 。 求证:(1)

2221

11h b a =+ (2)h c b a +<+

(3)以h c h b a ++,,为三边的三角形是直角三角形

D

A

B

C

试一试:(1)只需证明1)1

1(

2

22

=+b a h ,从左边推到到右边 (2)()()2

2

h c b a +<+

(3)()()2

2

2

h c h h a +=++,注意面积关系ch ab =的应用

3. 爬行距离最短问题:

1.如图,一个无盖的正方体盒子的棱长为10cm ,得到1C 处有一只昆虫甲,在盒子的内部有一只昆虫乙(盒壁的 忽略不计)

(1)假设昆虫甲在顶点1C 处静止不动,如图a ,在盒子的内部我们先取棱1BB 的中点E ,再连结AE 、1EC ,昆虫乙如果沿途径1C E A →→爬行,那么可以在最短的时间内捕捉到昆虫甲,仔细体会其中的道理,并在图b 中画一条路径,使昆虫乙从顶点A 沿这条路爬行,同样可以在最短的时间内捕捉到昆虫甲。

(2)如图b ,假设昆虫甲从点1C 以1 厘米/秒的速度在盒子的内部沿C C 1向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多少时间才能捕捉到昆虫甲?

试一试:对于(2),当昆虫甲从顶点1C 沿棱C C 1向顶点C 爬行的同时,昆虫乙可以沿不同的路径爬行,利用勾股定理建立时间方程,通过比较得出昆虫乙捕捉到昆虫甲的最短时间

图b

图a

A

D

C

B

A1

B1

C1

D1

D1

C1

B1

A1

B

C

D

A

2.如图,一块砖宽AN=5㎝,长ND=10㎝,CD 上的点F 距地面的高FD=8㎝,地面上A 处的一只蚂蚁到B 处吃食,要爬行的最短路线是 cm

3.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B

是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是分米?

4.如图,一只蚂蚁沿边长为a的正方体表面从点A爬到点B,则它走过的路程最短为()

A. a3

B. ()a2

1+ C. a3 D.a5

B

A

Q

N

M

P

4.折叠问题:

1.如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC折叠,使点B与点A 重合,折痕为DE,则CD等于()

A.

4

25

B.

3

22

C.

4

7

D.

3

5

A B

C

E

D

1. 小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树离地面的高度是米。

2. 如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是____________米,水平距离是米。

3. 如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离

是。

4. 如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为。

(三)求边长:

1. (1)在R t ABC ?中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,∠C=?90 ①已知:a =6,c =10,求b ; ②已知:a =40,b =9,求c ;

2.如图所示,在四边形ABCD 中,∠BAD=?90,∠DBC=?90,AD=3,AB=4,BC=12,求CD 。

(五)方向问题:

1. 有一次,小明坐着轮船由A 点出发沿正东方向AN 航行,在A 点望湖中小岛M ,测得∠MAN =30°,当他到B 点时,测得∠MBN =45°,AB =100米,你能算出AM 的长吗?

M

A B N

2.一轮船在大海中航行,它先向正北方向航行8 km ,接着,它又掉头向正东方向航行15千米.

⑴ 此时轮船离开出发点多少km?

⑵ 若轮船每航行1km ,需耗油0.4升,那么在此过程中轮船共耗油多少升?

(六)利用三角形面积相等:

1.如图,小正方形边长为1,连接小正方形的三个得到,可得△ABC ,则边AC 上的高为( ) A.

223 B. 5103 C. 553 D. 55

4

A

B

C

(七)旋转问题:

1.如图,点P 是正△ABC 内的点,且PA=6,PB=8,PC=10,若将△PAC 绕点A 旋转后,得

到△AB P ',则点P 与点P ’之间的距离为 ,∠APB=

P'

A

B

C

P

2.如图,?ABC 为等腰直角三角形,∠BAC=?90,将?ABH 绕点A 逆时针旋转到?AC H '处,若AH=3㎝,试求出H 、H '两点之间的距离。

3.如图所示,P 为正方形ABCD 内一点,将?ABP 绕B 顺时针旋转?90到?CBE 的位置,若BP=a ,求:以PE 为边长的正方形的面积

已知直角三角形ABC 中,∠ACB=?90,CA=CB ,圆心角为?45,半径长为CA 的扇形CEF 绕点C 旋转,且直线CE 、CF 分别与直线AB 交于点M 、N ,当扇形CEF 绕点C 在∠ACB 的内部旋转时,如图,试说明MN 2

2

2

BN AM +=的理由。

E

B

A

C

M N F

如图所示,已知在?ABC 中,AB=AC ,∠BAC=?90,D 是BC 上任一点,求证:BD 2

2

2

2AD CD =+。

已知∠AOB=90°,在∠AOB 的平分线OM 上有一点C ,将一个三角板的直角顶点与点C 重合,它的两条直角边分别与OA 、OB (或它们的反向延长线)相交于点D 、E 。 当三角板绕点C 旋转到CD 与OA 垂直时,如图①,易证:OC OE OD 2=

+;当三角板

绕点C 旋转到CD 与OA 不垂直时,如图②、③这两种情况下,上述结论还是否成立?若成立,请给与证明;若不成立,线段OE 、OC 、OD 之间有怎样的等量关系?请写出你的猜想,不需证明。

试一试:对于第1问,OD=CE ,问题的实质是2

22OC OE =,OC OE 2

2

=

,对于第二问,通过作辅助线,将问题转化为第1问可解决。

(八)折叠问题:

1.如图,矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是多少?

2.如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。 (1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长

3.如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积

D

C

B

A

F E

4.如图所示,有一个直角三角形纸片,两直角边AC=6㎝,BC=8㎝,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?

5.如图,∠B=90°,AB=BC=4,AD=2,CD=6 (1)△ACD 是什么三角形?为什么? (2)把△ACD 沿直线AC 向下翻折,CD 交AB 于点E ,若重叠部分面积为4,求D'E 的长。

E D C

B

A C'

一、平方根:

(一)文字类题目:

一个数的平方等于它本身,这个数是 ; 一个数的平方根等于它本身,这个数是 ; 一个数的算术平方根等于它本身,这个数是 一个数的立方根等于它本身,这个数是 ; 一个正数的两个平方根的和是________. 一个正数的两个平方根的商是________.

(二). 定义:

1.(1) 81 的平方根是9±的数学表达式是( )

A.

981= B. 981=± C. 981±= D. 981±=±

81的平方根是( )

A. 9

B.9

C.9±

D.3±

9±表示 ,9±= 。

16的数是 ,将16开平方得 ,因此平方与 互为逆运算。 4的平方根是 ;

1

49

的平方根是 。 的平方根是0.81。 (2)数有平方根吗?若有,求出它们的平方根;若没有,请说明理由。

(1)-64; (2)(-4)2; (3)-52 (4)81 (3)若3a +1没有算术平方根,则a 的取值范围是 若3x-6总有平方根,则x 的取值范围是 。

若式子x -

3

1

的平方根只有一个,则x 的值是 。 (4)已知411+=-+-y x x ,那么x -y = 已知a 为实数,那么2a -等于( )

A. a

B. –a

C. -1

D. 0 (5)若04)3(2=-+

-y x ,则x +y =

已知0492

2

=-+-b a ,那么a +b =

已知x 、y 满足:0)532(322=--+--y x y x ,那么x -8y 的立方根为 (6)代数式b a +--3的最大值是 ,这时a 、b 之间的关系是 (7)若10=m ,则m = ;若43=m ,则m 的平方根是 (8)若3=x ,则x= ,

()32

=-x ,则x=

(9)下列个数中:()()()6

2

3

2

52860100-----,,,,,

没有平方根的有 个 2. 已知△ABC 的三边分别是a 、b 、c ,且满足04412

=+-+-b b a ,求c 的取值范围。

已知a 、b 为实数,且0262=-++b a ,解关于x 的方程:(a +2)x +2

b =a -1。

已知42

a -49=0,求a 1039-的值。

3. 列方程求值:

(1)2

x =196; (2)52

x -10=0; (3)36(x -3)2-25=0

4. (1)已知一个正数的平方根是2x -1和3-x ,求这个数

(2)已知3x y -+与1x y +-是一个数的两个平方根,求()2

x y -的平方根。

5. 估算:

(1)比较大小:

①5与52

②215-与4

3

(2)a 、b 为两个连续的整数,且b a <<

7,则b a +=

满足-2

A.21<

B. 32<

C. 43<

D. 54<

6. 计算: (1)

(

)

=+-32

32

(2)、下列计算正确的是( ) A 、451691

= B 、2

1

2214= C 、05.025.0= D 、525=-- 7. 平方根的性质:

=01.0 ;

()

=2

5 ;2

41???

?

??= ; 216= ;

()=-2

16 ;

()25-= 。

二、立方根

1. 定义:

(1)如果a 是x 的立方根,那么下列说法正确的是( ) A. –a 也是x 的立方根 B. –a 是-x 的立方根

C. a 是-x 的立方根

D. –a 和a 都是-x 的立方根

(2)下列各式:2.08.01.01.01

.0001.0393333=-=-==;④;③;②①,其中错误的有 个

2. 根据定义求值: (1)求值:

327102

- (2)3125

8--

(2)方程:

()133-=-x

216

125

3-

=x

3. 估算:

(1)估计68的立方根大小在( )

A. 2与3之间

B.3与4之间

C.4与5之间

D.5与6之间 (2)通过估算3420的整数部分为( )

A. 6

B. 7

C. 8

D. 9 (3)3100估算到个位=

4. 平方根与立方根相结合:

(1)若2x+1的平方根是5±,那么5x+4的立方根是 (2)已知8=x ,求38

1

x -的值。 (3)已知m 满足33

12=-m ,k 、n 满足()079132

=++-n k ,求k n m 32-的值

三、实数:

1. 实数的定义:

1.判断下列说法是否正确,为什么? (1)无限小数是无理数; (2)有理数都是是有限小数; (3)无理数都是无限小数; (4)带根号的数都是无理数

(5)任何实数的偶次幂都是正实数; (6)在实数范围内,若y x =,则x =y 。 (7)0是最小的实数;

(8)0是绝对值最小的实数; (9)数轴上的点与有理数是一一对应的 (10)数轴上的点与实数是一一对应的 2.下列说法正确的是 ( )

A.不存在最小的实数

B.有理数是有限小数

C.无限小数都是无理数

D.带根号的数都是无理数 3.下列说法正确的是( )

A.无限小数是无理数

B.不循环小数是无理数

C.无理数的相反数还是无理数

D.两个无理数的和还是无理数 4. 把下列各数填入相应的集合内:

---?-π,,,,,,,,,,3143173200318253621

31716

...

213、38-、0、27、3

π

、5.0、3.14159、-0.020020002 0.12121121112…… (1)有理数集合{ } (2)无理数集合{ } (3)正实数集合{ } (4)负实数集合{ } 2. 有效数字、科学记数法、近似数: 注意:2000有4个有效数字,精确到个位 3

102?有1个有效数字,精确到千位

1. 有几个有效数字,保留几个有效数字: 用四舍五入法,按要求取近似值:.

①地球上七大洲的面积约为149480000(保留2个有效数字) ②25.8万(保留2个有效数字)

③小明身高1.595m (保留3个有效数字) ④0.0608,0.060800 2.精确到哪一位:

由四舍五入法得到的近似数,分别精确到哪一位?各有几个有效数字? ①小明身高1.59m ; ②地球的半径约为6.4×103;

③组成云的小水滴很小,最大的直径约为0.2mm ; ④某种电子显微镜的分辨率为1.4×10-8; ⑤70万 ⑥9.03万 ⑦1.8亿 ⑧51040.6?

⑨0.090080

3.精确到0.1,0.01等:

①精确到个位(或精确到1)是 π精确到十分位(或精确到0.1)是 π精确到百分位(或精确到0.01)是

π精确到千分位(或精确到0.001)是 小亮用天平称得罐头的质量为2.026kg ,按下列要求取近似数,并指出每个近似数的有效数: ①精确到0.01kg; ②精确到0.1kg; ③精确到1kg. ②某人一天饮水1890ml (精确到1000ml )

③的眼睛可以看见的红光的波长为0.000077cm (精确到0.00001) 4.科学记数法:

(1)用科学记数法表示91800000,正确的是( ) A 、918×5

10 B 、91.8×6

10

C 、9.18×5

10

D 、9.18×7

10

(2)一个数用科学记数法记为6×4

10,这个数原来怎么记?它是几位整数?

一个数用科学记数法记为6.09×4

10,这个数原来怎么记?它是几位整数? 一个数用科学记数法记为6.00009×4

10,这个数原来怎么记?它有几位整数? (3)25.8万(保留2个有效数字) 2347600000(保留3个有效数字)

5.今年全国的消费额为29458.4亿元,小明认为这个数字精确到0.1亿元,而小亮认为这个数字精确到1000万元,你认为谁的说法对?为什么?

小亮,数位只存在个、十、百、千、万、十万等,不存在0.1万之类的

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

————————————————————————————————作者:————————————————————————————————日期: ?

勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

勾股定理知识点总结及练习

第 课时 第十八章 勾股定理 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2 +b 2 =c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=?,则 2 2 c a b = +,22 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,22 14()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为2 2 1422 S ab c ab c =? +=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2 S a b a b = +?+梯形,2 112S 22 2 ADE ABE S S ab c ??=+=? + 梯形,化简得证 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2 2 21,22,221n n n n n ++++(n 为正整数)2 2 2 2 ,2,m n mn m n -+(,m n >m ,n 为正整数) 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 c b a H G F E D C B A a b c c b a E D C B A c b a H G F E D C B A b a c b a c c a b c a b

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.sodocs.net/doc/e35656234.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.sodocs.net/doc/e35656234.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

人教版勾股定理知识要点--总结及练习

勾股定理知识总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2 ) 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2 +b 2 =c 2 ,那么这个三角形是直角三角形。 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 二、经典例题精讲: 题型一:直接考查勾股定理: 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 题型二:利用勾股定理测量长度: 例题1 如梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸 边,它的顶端B 恰好落到D 点,并求水池的深度AC. 题型三:勾股定理和逆定理并用— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1 = 那么△DEF 是直角三角形吗?为什么? 题型四:关于翻折问题: 例1、 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上

的点G 处,求BE 的长. 勾股定理练习(随堂练) 一.填空题: 1. 在Rt △ABC 中,∠C=90° (1)若a=5,b=12,则c=________________________; (2)b=8,c=17,则S △ ABC =________。 2.若一个三角形的三边之比为5∶12∶13,则这个三角形是________(按角分类)。 3. 直角三角形的三边长为连续自然数,则其周长为____________________。 4.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所 行的最短路线的长是_______________________。 二.选择题: 5.观察下列几组数据 :(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组 A. 1 B. 2 C. 3 D. 4 6.三个正方形的面积如图,正方形A 的面积为( ) A. 6 B.4 C. 64 D. 8 7.已知直角三角形的两条边长分别是5和12,则第三边为 ( ) A.13 B.119 C.13或119 D. 不能确定 8.下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是5、12,那么斜边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2 ∶b 2 ∶c 2 =2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 9.三角形的三边长为(a+b )2 =c 2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. A B 第8题图 A 10 6

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理知识点+对应类型

第二章勾股定理、平方根专题 第一节勾股定理 一、勾股定理: 1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦 股 勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个 三角形是直角三角形。 2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么 ka,kb,kc同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角 三角形。(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c);

(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边) 4.注意:(1)直角三角形斜边上的中线等于斜边的一半 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的 一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角 等于30°。 5. 勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。 (3)用于证明线段平方关系的问题。 (4)利用勾股定理,作出长为n 的线段 二、平方根:(11——19的平方) 1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。(也称为二次方 根),也就是说如果x 2 =a ,那么x 就叫做a 的平方根。 2、平方根的性质: ①一个正数有两个平方根,它们互为相反数; 一个正数a 的正的平方根,记作“a ”,又叫做算术平方根,它负的平方根,记作“—a ”,这两个平方根合起来记作“±a ”。( a 叫被开方数, “”是二次根号,这里“”, 亦可写成“2 ”) ②0只有一个平方根,就是0本身。算术平方根是0。 ③负数没有平方根。 3、 开平方:求一个数的平方根的运算叫做开平方,开平方和平方运算互为逆运算。 4、(1) 平方根是它本身的数是零。 (2)算术平方根是它本身的数是0和1。 (3) () ()()().0,0,0222 <-=≥=≥=a a a a a a a a a (4)一个数的两个平方根之和为0 三、立方根:(1——9的立方) 1、立方根的定义:如果一个数的立方等于a ,那么这个数就叫做a 的立方根。(也称为二次 方根),也就是说如果x 3 =a ,那么x 就叫做a 的立方根。记作“3a ”。 2、立方根的性质: ①任何数都有立方根,并且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. ②互为相反数的数的立方根也互为相反数,即3a -=3a - ③a a a ==3333)(

勾股定理知识点总结、经典例题

知识点及例题 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。 在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。 ,所以。

知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41. 如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。 经典例题透析类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因,

八年级上册数学第一章勾股定理知识点与练习知识讲解

八年级上册数学第一章勾股定理知识点与 练习

勾股定理 知识点一:勾股定理 勾股定理: . 勾股数: . 常见勾股数:3、4、5; 6、8、10; 5、12、13; 8、15、17; 7、24、25。 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 例1、若Rt ABC 中,90C ?∠=且a=5,b=12,则c= , 例2、Rt △ABC 中,若c=10,a ∶b=3∶4,则a= ,b= . 例3、如图,由Rt△ABC 的三边向外作正方形,若最大正方形的边长为8cm , 则正方形M 与正方形N 的面积之和为2_____cm 4、下列各组数:①0.3,0.4,0.5;②9,12,16;③4,5,6;④a 8,a 15,a 17(0≠a ); ⑤9,40,41。其中是勾股数的有( )组 A 、1 B 、2 C 、3 D 、4 练习 1、在△ABC 中,∠C=90°,c=37,a=12,则b=( ) A 、50 B 、35 C 、34 D 、26 2、在Rt △ABC 中,∠C=90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( ) A.5、4、3 B.13、12、5 C.10、8、6 D.26、24、10 3、若一个直角三角形的三边分别为a 、b 、c, 22144,25a b ==,则2c =( ) A 、169 B 、119 C 、169或119 D 、13或25 知识点二:勾股定理的逆定理 勾股定理的逆定理: 例1、三角形的三边长a,b,c满足2ab=(a+b)2 -c2 ,则此三角形是 ( ).

(完整版)勾股定理知识点梳理

勾股定理知识点梳理 1.直角三角型有哪些特殊的性质;①角,直角三角型的两锐角互余;②边,直角三角形两直角边的平方和等于斜边的平方,用符号表示:在Rt △ABC 中,c b a 222=+;③面积,两种计算面积的方法。 2.如何判定一个三角形是直角三角形呢? ①有一个内角为直角的三角形是直角三角形;②两个内角互余的三角形是直角三角形;③如果三角形的三边长为a 、b 、c 满足c b a 222=+,那么这个三角形是直角三角形 3.勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4.互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 5.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17;9,40,41等 6.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理知识点梳理

勾股定理知识点梳理Revised on November 25, 2020

勾股定理知识点梳理 1.直角三角型有哪些特殊的性质;①角,直角三角型的两锐角互余;②边,直角三角形两直角边的平方和等于斜边的平方,用符号表示:在Rt △ABC 中, c b a 2 22=+;③面积,两种计算面积的方法。 2.如何判定一个三角形是直角三角形呢 ①有一个内角为直角的三角形是直角三角形;②两个内角互余的三角形是直角三角形;③如果三角形的三边长为a 、b 、c 满足c b a 222=+,那么这个三角形是直角三角形 3.勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4.互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 5.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中, a , b , c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17;9,40,41等 6.勾股定理的证明 c b a H G F E D C B A

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为2 2 2 ()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 一. 典型例题 类型一:勾股定理的直接用法 1、在Rt △ABC 中,∠C=90° (1)已知a=6, c=10,求b , (2)已知a=40,b=9,求c ; (3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC 的长. b a c b a c c a b c a b a b c c b a E D C B A

勾股定理知识点总结归纳

精心整理 第18章勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① ② 定理 常见方法如下: 方法一:4 EFGH S S S ? += 正方形正方形ABCD ,1 4( 2 ab b ?+- 方法二: 四个直角三角形的面积与小正方形面积的和为S= 大正方形面积为22 () S a b a =+=+ 所以222 a b c += 方法三:1()() 2 S a b a b =+?+ 梯形 ,2 2 22 ab c ?+,化简得 证 3. 它只适用于直角三角形,对于锐角三角 因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4. ① 在ABC ?中,90 C ∠=?,则c,b=,a= ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5、利用勾股定理作长为的线段 作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。 b a

作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形 ,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, 为了有利于画图让其他两边的长为整数, 而10又是9和1 作法:如图所示在数轴上找到A 点,使OA=3,作以O 为圆心做弧,弧与数轴的交点B 即为 。 注:逆命题与勾股定理逆定理 可以判断真假的陈述句叫做命题, 写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 23(正确) 4(正确) 思路点拨:解析:1. 2. 3.?(正确) 4.(正确) 总结升华: 6.74页 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点归纳

形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数); 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 7.勾股定理的应用 勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用 勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错

A B C 30° D C B A A D B C 误的结论. 9.勾股定理及其逆定理的应用 勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形: 二、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222 a b c += 解:⑴2210AB AC BC =+ ⑵22 8BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? C B D A

人教版初中数学勾股定理知识点

第十七章 勾股定理 17.1 勾股定理 1、勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222a b c += 勾股定理的证明: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ ∴222 a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 17.2 勾股定理的逆定理 2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=,那么这个三角形是直 角三角形. 3、互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题. 4、勾股数:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称 a , b , c 为一组勾股数 常见的勾股数有:3、4、5;6、8、10;5、12、13;7、24、25等 例、在Rt △ABC 中,a=3,b=4,求c . 错解 由勾股定理,得 诊断 这里默认了∠C 为直角.其实,题目中没有明确哪个角为直角,当b >a 时,∠B 可以为直角,故本题解答遗漏了这一种情况. 当∠B 为直角时, 例、已知Rt △ABC 中,∠B=RT ∠, , c= b. 错解 由勾股定理,得 b a c b a c c a b c a b c b a H G F E D C B A a b c c b a E D C B A

相关主题