搜档网
当前位置:搜档网 › 函数图像的对称性问题(01)

函数图像的对称性问题(01)

函数图像的对称性问题(01)
函数图像的对称性问题(01)

函数的对称性

函数的对称性 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。 一、对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为a b x 2-=。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与y=-x 均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,2π π+=k x 是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x ,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x ,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,)0,2(ππ+k 是它的对称中心。 (11)正切函数:不是轴对称,但是是中心对称,其中)0,2(π k 是它的对称中心, 容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。 (12)对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能误以为最值处是它的对称轴。 (13)三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

利用函数图像的对称性解题

利用函数图像的对称性解题 【摘要】函数是数学的重要基础,函数性质的考察和应用重点和热点,而函数图像是函数性质的一种直观表现。函数图像的对称性,充分体现了数学的对称美,具有很好的数学价值。 【关键词】函数;图像;对称性;辅助函数; 二次函数是初中数学的重点内容之一,在初中代数中占有重要位置。其图象是一种直观形象的交流语言,含有大量的信息,为考查同学们的数形结合思想和应用图象信息的能力,二次函数图象信息题成了近年来各地中考的热点。所以学会从图象找出解题的突破点成了关键问题,那就要熟练掌握二次函数的基本知识。比如:二次函数的解析式,二次函数的顶点坐标对称轴方程,各字母的意义以及一些公式,对于这些知识,同学们掌握并不是很困难,但对二次函数图象的对称性,掌握起来并不是很容易,而且对于有关二次函数的一些题目,如果用别的方法会很费力,但用二次函数图象的对称性来解答,也许会有事倍功半的效果。现将这两个典型例题,供同学们鉴赏:例1、已知二次函数的对称轴为x=1,且图象过点(2,8)和(4,0),求二次函数的解析式。 分析:此题中我们可以按照常规的解法,用二次函数的一般式来解,但运算量会很大,因为我们将会解一个三元一次方程组。 另外,我们还可以利用二次函数的对称性来解决此题。本道题目的特点是给了抛物线的对称轴方程及一个x轴上的点坐标。因此我们

可以依据二次函数的对称性,求出抛物线所过的x轴上的另一个点的坐标为(-2,0),这样的话我们就可以选择用二次函数的交点式来求解析式。设二次函数的解析式为y=a(x+2)(x-4),然后将(2,8)代入即可求出a值,此题得解。 本题利用二次函数的对称性解题减少了大量的运算,既可以准确解题又节省了时间,不失为一种好的方法。 例2、若二次函数y=ax2+b(ab≠0),当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值是____________ 分析:此题我们可以采用常见的将x1、x2代入解析式,由于y 值相等,则可求出x1+x2的值为0,将x=0代入解析式可得函数值为b。 我们也可以用二次函数的对称性来解题。由于二次函数的对称性,当函数值相等时,则两点为对称点,且本题中的二次函数y=ax2+b(ab≠0)的对称轴为y轴(x=0),所以,我们也可以得到x1+x2的值为0,将x=0代入解析式可得函数值为b。 相比较我们可以知道,利用二次函数的对称性解决本题,减少了运算量,但对于知识点的理解和掌握的要求大大增加了。要求学生对二次函数的对称性的把握要进一步理解、深化。 我们还可以将上题中的解析式变为一般式y=ax2+bx+c,其他条件不变,结果为c。 下面仅以a>0时为例进行解答。当a<0时也是成立的。 由二次函数的对称性可知,x1+x2在第一个图中为点D的横坐标,

二次函数的对称变换

二次函数的对称变换 学习目标:1.掌握二次函数关于x轴、y轴、原点对称的解析式的确定。 2.会研究二次函数关于某条直线,某个点的对称变换。 一、课前练习 1.点(1,-4)关于x轴对称点坐标,关于y轴对称点,关于原点对称。 2.点(x,y)关于x轴对称点坐标,关于y轴对称点,关于原点对称。 二、新课探究 类型一:二次函数关于x轴、y轴、原点的对称变换 问题一:画出y=x2-2x-3的草图方法: 问题二:画出y=x2-2x-3关于x轴对称的图像 方法: 问题三:请确定新抛物线的解析式 方法一:一般式 方法二:顶点式 问题四:观察两个解析式的区别与联系 角度一:一般式 角度二:顶点式

问题五:请用同样的方法研究二次函数y=x2-2x-3关于y轴和原点的对称变换 总结:一般式y=ax2+bx+c (a≠0)关于x轴对称的解析式为: 关于y轴对称的解析式为: 关于原点对称的解析式为: 顶点式:y=a(x-h)2+k(a≠0) 关于x轴对称的解析式为: 关于y轴对称的解析式为: 关于原点对称的解析式为: 练习:1.y=2x2-3x关于y轴对称的解析式为, 2.y=-(x-3)2+3关于原点对称的解析式为, 3已知y=-2x2+x+1与y=ax2+bx+c关于x轴对称,则a= b= c= 类型二:二次函数关于某条直线或某个点的对称变换(给个开口向上的图像) 问题一:选取关于某条直线对称 问题二:选取关于某一点对称

总结:研究对称变换的方法 二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y 轴对称 2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°) 2y a x b x c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n , 对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

超经典二次函数图象的平移和对称变换总结

二次函数图象的几何变换 内容基本要求略高要求较高要求二次函数 1.能根据实际情境了解二次函数 的意义; 2.会利用描点法画出二次函数的 图像; 1.能通过对实际问题中的情境分 析确定二次函数的表达式; 2.能从函数图像上认识函数的性 质; 3.会确定图像的顶点、对称轴和 开口方向; 4.会利用二次函数的图像求出二 次方程的近似解; 1.能用二次函数 解决简单的实际 问题; 2.能解决二次函 数与其他知识结 合的有关问题; (1)具体步骤: 先利用配方法把二次函数化成2 () y a x h k =-+的形式,确定其顶点(,) h k,然后做出二次函数 2 y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,) h k.具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”. 二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x轴对称 2 y ax bx c =++关于x轴对称后,得到的解析式是2 y ax bx c =---; ()2 y a x h k =-+关于x轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y轴对称 2 y ax bx c =++关于y轴对称后,得到的解析式是2 y ax bx c =-+; ()2 y a x h k =-+关于y轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2 y ax bx c =++关于原点对称后,得到的解析式是2 y ax bx c =-+-; ()2 y a x h k =-+关于原点对称后,得到的解析式是()2 y a x h k =-+-;

二次函数对称性的专题复习

二次函数图象对称性的应用 一、几个重要结论: 1、抛物线的对称轴是直线__________。 2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。 3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。 4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。 5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则?ABC是____三角形,且?ABC的外接圆与内切圆的圆心都在抛物线的_______上。 二、在解题中的应用: 例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。 例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足 . (1)求抛物线的解析式; (2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。 例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。 例4已知抛物线的顶点A在直线上。 (1)求抛物线顶点的坐标; (2)抛物线与轴交于B、C两点,求B、C两点的坐标; (3)求?ABC的外接圆的面积。

y O x -1 -2 1 2 - 3 3 -1 1 2 -2 二次函数专题训练——对称性与增减性 一、选择 1、若二次函数 ,当x 取 , ( ≠ )时,函数值相等,则 当x 取+时,函数值为( ) (A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )( 2 1 ,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2 (1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A.1 B.2 C.3 D.4 4、抛物线c bx x y ++-=2 的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-x C. 4-x D.3-x 5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0; 那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m 6、抛物线y=ax 2 +2ax+a 2 +2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0) C .(2,0) D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( ) A .1个 B .2个 C .3个 D .4个 8、若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x + 时,函数值为( ) A.a c + B.a c - C.c - D.c 9、二次函数 c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。 10、已知关于x 的方程32 =++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2 的对称轴直线是x =2,则抛物线的顶点坐标是( ) A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2) 11、已知函数215 322 y x x =- --,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2

函数图象的对称变换

课题:函数图像的对称变换(2课时) 学情分析:相对于函数图象的平移变换,对称变换是学生的难点,对于具体函数,学生还有一定的思路,但结论性的结果,学生掌握的不是很好。 教学目标: (1) 通过具体实例的探讨与分析,得到一些对称变换的结论。 (2) 通过一定的应用,加强学生对对称变换结论的理解。 (3) 能数形结合解决想过题目。 教学过程: 欣赏图片,感受对称 一、师生共同分析讨论完成下列结论的形成。 1、(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于 对称; (3)函数()y f x =--与()y f x =的图像关于 对称. 2、奇函数的图像关于 对称,偶函数图像关于 对称. 3、(1)若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则 ()y f x =的图像关于直线 对称.

(2)若对于函数()y f x =定义域内的任意x 都有()2()f a x b f a x +=--,则()y f x =的图像关于点 对称. 4、对0a >且1a ≠,函数x y a =和函数log a y x =的图象关于直线 对 称. 5、要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以 为轴翻折到x 轴上方,其余部分不变. 6、要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于 的对称性,作出(),0x ∈-∞时的图像. 二、学生先独立完成,再分析点评 2 3、函数x y e =-的图象与函数 的图象关于坐标原点对称. 4、将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 . 5、设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6、若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、典例教学 【例1】填空题: (1 (2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为 . ①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有

函数的对称性82459

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。

2020最新函数图像的对称问题(小结)

解填空题常用到的几个公式 1. AB 和平面M 所成的角为α,AC 在平面M 内,AC 和AB 在平面M 内的射影AB 1所成 的角是β,设∠BAC=θ,则βαθcos cos cos = 2. 在二面角N l M --的面M 内,有直角三角形ABC,斜边BC 在棱上,若A 在平面内N 的射影为D,且∠ACD=1θ,∠ABD=2θ,二面角为θ,则22 122sin sin sin θθθ+= 3. 设F 1,F 2为椭圆122 22=+b y a x (a>b>0)的焦点,M 是椭圆上一点,若∠F 1MF 2=θ 则21MF F S ?=2tan 2θ b , 21e a b -= . 4. 设F 1,F 2为双曲线122 22=-b y a x (a>b>0)的焦点,M 是双曲线上一点,若∠F 1MF 2=θ,则21MF F S ?=2cot 2θ b , 12-=e a b . 5.已知椭圆122 22=+b y a x (a>b>0)上一点,F 1,F 2为左右两焦点,∠PF 1F 2=α, ∠P F 2F 1=β,则2 cos 2cos βαβα-+==a c e . 6.设直线b kx y +=与椭圆12222=+b y a x (双曲线122 22=-b y a x )相交于不同的两点A ),(11y x ,B ),(22y x ,AB 的中点为M ),(00y x ,则0202y a x b k -=(0 202y a x b k =). 7.过抛物线两点,的直线交抛物线于作倾斜角为的焦点B A F p px y ,)0(22θ>= 函数图像的对称问题(小结) 函数问题的对称性问题是函数性质的一个重要方面,也是历年高考热点问题之一,除了常见的自身对称(奇偶函数的对称性),两函数图像对称(原函数与反函数的对称性)以外,函数图象的对称性还有一些图像关于点对称和关于直线对称的两类问题,在这里,两函..数图象关于某直线对称或关于某点...............成.中心对称....与函数自身的对称轴或对称中心............. 是有本质区别的,注意不要把它们相混淆。造成解题失误,下面就这些问题给出一般结论,希望对同学们有帮助。 一、 同一个函数图象关于直线的对称

三次函数性质总结

三次函数性质的探索 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在 最大值与最小值,在某一闭区间取得最大值与最小值.那么,是什么决定函数的单调性呢? 利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 其中运用的较多的一次函数不等式性质是: 在上恒成立的充要条件 接着,我们同样学习了二次函数, 利用已学知识归纳得出:当时(如图1) ,在对称轴的左侧单调递减、右侧单调递增, 对称轴 上取得最小值; 当时(图2) ,在对称轴的左侧单调递增、右侧单调递减, 对称轴 上取得最大值. 在某一区间取得最大值与最小值. 其中决定函数的开口方向,同时决定对称轴,决定函数与轴相交的位置. 总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢? 三次函数专题 一、定义 定义1 形如的函数,称为“三次函数”(从函数解析式的结构上命名)。 定义 2 三次函数的导数 ,把叫做三次函数导函数的判 别式。 由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。 系列探究1: 从最简单的三次函数开始 反思1 :三次函数的相关性质呢? 反思2 :三次函数的相关性质呢? x y O

反思3 :三次函数的相关性质呢? 例题 1.(2012天津理4) 函数在区间内的零点个数是( ) (A)0 (B)1 (C)2 (D)3 探究一般三次函数的性质: 先求导 1、单调性: (1 )若,此时函数() f x在R上是增函数; (2 )若 ,令两根为 12 ,x x 且, 则 在 上单调递增,在上单调递减。 导函数 图 象 极值点 个数 2 0 2 0 2、零点 (1) 若0 3 2≤ -ac b,则恰有一个实根; (2) 若,且,则恰有一个实根; (3) 若,且,则有两个不相等的实根; (4) 若,且,则有三个不相等的实根. 说明: (1)(2) 有一个实根的充要条件是曲线与轴只相交一次,即在上为单调函数或两极值 同号. x x1x 2 x0x x1x2 x x0 x

三次函数的对称性中心问题

三次函数的对称性中心问题

而)3()3()3()3]()3( 3[) 3(2323 a b c a b b d a b a a b c a b a d a b a -++-=-++-)3(a b f -= ) 0()(23≠+++=a d cx bx ax x f 的图象关于))3(,3(a b f a b --对称。 证明3:设函数) 0()(23 ≠+++=a d cx bx ax x f 的对称中心为 (m ,n )。 按向量),(a n m --=将函数的图象平移,则所得函数n m x f y -+=)(是奇函数,所以 2)()(=-+-++n m x f m x f +++++++d m x c m x b m x a )()()(23d m x c m x b m x a ++-++-++-)()()(23-2n =0 化简得: 上式对 恒成立,故 ???=-+++=+0 032 3n d cm bm am b am 得 , 。 所以,函数的对称中心是 ( )。 定理3:若三次函数 有极值,则它的对称中心 是两个极值点的中点

证明:不妨设0232 =++c bx ax 为)(x f 的导方程,判别式01242 >-=?ac b ,设)(x f 两极值点为))(,()),(,(2 211x f x B x f x A [][] a c x x a b x x d x x c x x x x b x x x x x x a d x x c x x b x x a d cx bx ax d cx bx ax x f x f 3,322)(2)(3)()(2)()()()()(212121212212122121212 22 13 23 122 2321213121=-=++++-++-++=++++++=+++++++=+∴ 又 d a b c a b b a b a d a b c a c b a b b a c a b a a b a x f x f 2)3(2)3(2)3(22)32(32323)32(332)()(232 3 21+-+-+-=+-+-??? ??-+--?? ? ??-=+∴ )3(2)(21a b f x x f -=+∴ 所以此时的对称中心是两个极值点的中点,同时也是函数)(x f 的拐点。 定理4:)(x f y =是可导函数,若)(x f y =的图像关于点),(n m A 对称,则)('x f y =的图像关于直线m x =对称 证明:)(x f y =的图像关于),(n m A 对称,则n x m f x f 2)2()(=-+ 由x x f x x f x f x ?-?+=→?) ()()(lim 0 ' )()()(lim )()(lim ) (2)(2lim )2()2(lim )2('0000'x f x x f x x f x x x f x f x x f n x x f n x x m f x x m f x m f x x x x =?--?-=??--=?+-?--=?--?+-=-→?→?→?→?

一次函数图象的变换对称.doc

一次函数图象的变换——对称求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。 知识点: 1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。 2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。下面我们通过例题的讲解来反馈知识的应用: 例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。 分析:关于x轴对称时,横坐标不变纵坐标互为相反数; 关于y轴对称时,纵坐标不变横坐标互为相反数; 关于某条直线(垂直坐标轴)对称时,则相关点 解:1、关于x轴对称 设点(x , y )在直线l上,则点(x , -y )在直线y=2x+6上。 即:-y=2x+6 y=-2x-6 所以关于x轴对称的直线l的解析式为:y=-2x-6. 关于直线对称。 2、关于y轴对称 设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。 即:y=2(-x) +6 y=-2x+6 所以关于y轴对称的直线l的解析式为:y=-2x+6.

3、关于直线x=5对称(作图) 由图可知:AB=BC则C点横坐标:-x+5+5=-x+10 所以点C (-x+10, y) 设点(x,y)在直线l上, 则点(-x+10, y)在直线y=2x+6上。 即:y=2(-x+10)+6 y=-2x+26 所以关于直线x=5对称的直线l的解析式为:y=-2x+26. 总结:根据对称求直线的解析式关键在找对称的坐标点。 关于x轴对称,横坐标不变纵坐标互为相反数; 关于y轴对称,纵坐标不变横坐标互为相反数; 关于某条直线(垂直对称轴)对称,可见例题 中分析的方法去求对称点。 练习:1、和直线y=5x-3关于y轴对称的直线解析式为,和直线y=-x-2关于x轴对称的直线解析式为。 2、已知直线y=kx+b与直线y= -2x+8关于y轴对称, 求k、b的值。 答案:1、y=-5x-3;y=x+2 分析:设点(x,y)在直线上,则点(-x,y)在关于y轴对称的直线y=5x-3上,所以直线为y=-5x-3;设点(x,y)在直线上,则点(x,-y)在

三次函数的对称中心与切线条数

三次函数的对称中心与切线条数问题 证明:三次函数32()(0)f x ax bx cx d a =+++≠一定有对称中心。 提示:可根据奇函数图像的平移得到。 分析:我们知道奇函数的图像关于原点对称,所以要证结论成立,只需证任意一个三次函数都可以由关于原点对称的三次函数(奇函数)平移得来,也即任意的三次函数都可以写成3()()y a x m k x m n =-+-+的形式,因为上述函数图像可以看成奇函数3y ax kx =+按向量(,)m n 平移之后的结果,一定是中心对称图形 展开得:32233(3)()y ax amx am k x n km am =-+++-- 与32y ax bx cx d =+++比较系数得:23 33am b am k c n km am d -=?? +=??--=? 容易发现,上述方程组一定是有解的,解得:3b m a =- 故三次函数一定是中心对称图形,且对称中心为(,())33b b f a a - - 问题:过三次函数图像上一点00(,)P x y 能作三次函数图像多少条切线? 分析:由于三次函数有对称中心,可假设其对称中心在原点,设3()f x ax bx =+,则2()3f x ax b '=+ 设11(,)Q x y 为函数图像上任意一点,则以Q 为切点的切线为21111(3)()y y ax bx x x -=+- 将点00(,)P x y 代入得:201101(3)()y y ax b x x -=+-,即3 320 011101()(3)()ax bx ax bx ax b x x +-+=+- 整理得:3231010 230x x x x -+=,问题转化为关于1x 的方程323 1010230x x x x -+=有几个实根的问题 为了看起来习惯,我们将上述方程中的1x 换成x ,即323 00 230x x x x -+= ① 显然当00x =时,方程①即为30x =,解得:0x =,故过(0,0)能作函数图像的一条切线 当00x ≠时,由方程①解得:0x x =或02x -,故过00(,)x y 能作函数图像的两条切线 问题:过三次函数图像外任意一点能作三次函数图像多少条切线? 分析:根据三次函数中心对称的特征,我们知道一定可以将函数图像平移至关于原点对称,而本问题的结论显然只与点P 与三次函数图像的相对位置有关,故可简单地考虑三次函数对称中心在坐标原点的情形,设三次函数的解析式为3()f x ax bx =+,并且不妨设0a >,这两个假设并不会影响本结论的一般性。 设点00(,)P x y 为平面上任意一点,易求得函数在坐标原点(对称中心)处的切线方程为y bx = 设3111(,)x ax bx +为()y f x =上任意一点,则该点处的切线方程为:321111()(3)()y ax bx ax b x x -+=+- 将点P 代入得:32011101()(3)()y ax bx ax b x x -+=+- 问题转化为讨论方程3200()(3)()y ax bx ax b x x -+=+-有几个解的问题 将上述方程化简得:32000230ax ax x y bx -?+-= 令32000()23g x ax ax x y bx =-?+-,则:0()6()g x ax x x '=- 注意到000()()g x y f x =-,00(0)g y bx =-,下面讨论函数()g x 的零点个数

应用导数研究三次函数图像的对称性及切线条数

应用导数研究三次函数图像的对称性及切线条数 [教学目标] 知识与技能:(1)掌握三次函数对称中心的求法;(2)掌握三次函数切线方程的求法;(3) 了解过一点作三次函数图像切线条数的结论. 过程与方法:(1)应用导数研究三次函数的方法;(2)由特殊实例猜想一般结论,然后证 明的思想;(3)利用函数对称性,多种情形通过分析减少讨论种类. 情感与态度:(1)通过自主深入探究,增强学生学生学习数学的兴趣,独立思考的能力; (2)让学生感数学结论的完整美,数形结合的统一美. [教学重点]三次函数图像的对称中心、切线条数的探究,三次函数切线方程的求法. [教学难点]特殊到一般的归纳方法,切线条数的判断方法. [教学方法]探究式教学. [教学手段]多媒体辅助教学. [教学过程] 1 三次函数图像的对称性 1.1 创设情景,提出问题 三次函数3()f x x =是奇函数,它的图像的对称中心是(0,0)(几何画板展示),那么一般的三次函数是否有对称中心呢? 观察函数32()321g x x x x =-++的图像(几何画板展示),它也有对称中心(1,1),那么怎样求三次函数的对称中心? 1.2 回归通法,探究发现 研究三次函数我们最常用的就是通过研究其导函数来研究它本身,我们分别画出(),()f x g x 的导函数图像(几何画板展示),和原函数的对称性联系起来,通过归纳得到,三次函数有唯一的对称中心,对称中心的横坐标与其导函数顶点的横坐标相同. 1.3 追根索源,理解本质 为什么会有这样的结论?因为三次函数在两个相互对称的点处的切线是平行的(几何画板展示),所以对于任意三次函数32()(0)f x ax bx cx d a =+++≠,它的图像有唯一的对称中心(,())33b b f a a --.i 2 过一点作三次函数图像切线条数的探究 2.1 因势利导,引出问题 三次函数过对称中心(,())33b b f a a - -的切线是如何的?通过实例来探究.32()321g x x x x =-++在对称中心(1,1)处的切线方程为20x y +-=,这和我们以前形成的切线的印象不同,但它就是三次函数的切线,因为它符合切线的定义.我们注意这样的切线只有一条,那么当这一点在别的地方,切线有多少条? 2.2 恰当分类,实例探索 因为三次函数是中心对称图形,因此对称部分的情形应该是一样的,过对称中心的切线和三次函数的图像把平面分成四部分,所以上下是一种情形,左右是一种情形,三次函数图

关于函数图像对称性问题

关于函数图像对称性的问题 胡春林 指导老师:刘荣玄 【摘要】函数图象的对称性反映了函数的特性,是研究函数性质的一个重要方面,函数图象的对称性包括一个函数图象自身的对称性与两个函数图象之间的对称性。 【关键词】函数图像对称性轴对称中心对称 一、函数自身的对称性的问题 函数是中学数学教学的主线,是中学数学的核心内容,也是一个高中数学的基础。函数的性质是高考的重点与热点,函数的对称性是函数的一个基本性质,也是难点,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质的一些思考。 例题1. 函数y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P ‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。例题2 ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对 (a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数, 且2| a-b|是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4| a-b|是其一个周期。 ①②的证明留给读者,以下给出③的证明:

函数的对称性知识点讲解及典型习题分析

函数的对称性知识点讲解及典型习题分析 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连 续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角 函数的对称性,因而考查的频率一直比较高。 对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称, 该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的 中心对称,该点称为该函数的对称中心。 常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为 a b x2。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0 )是它的对称中心,2kx是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不 会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,) 0,2 (k是它的对称中心。 (11 )正切函数:不是轴对称,但是是中心对称,其中)0,2 ( k是它的对称中心,容易犯错误的是可能有的同学会误以为对 称中心只是(kπ,0)。 对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能 误以为最值处是它的对称轴。 三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。 绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx│就没有对称性,而y=│sinx│却仍然是轴对称。 二、函数的对称性猜测: 具体函数特殊的对称性猜测 ①一个函数一般是不会关于x轴对称,这是由函数定义决定的,因为一个x不会对应两个y的值。但一个曲线是可能关于x 轴对称的。例1、判断曲线xy42 ②函数关于y轴对称例2、判断函数y=cos(sinx)的对称性。 ③函数关于原点对称例3、判断函数xxysin3 ④函数关于y=x对称例4 、判断函数x y1 ⑤函数关于y=-x对称例5 、判断函数x y4 总结为:设(x,y)为原曲线图像上任一点,如果(x,-y)也在图像上,则该曲线关于x轴对称;如果(-x,y)也在图像上,则该曲线关于y轴对称;如果(-x,-y)也在图像上,则该曲线关于原点对称;如果(y,x)也在图像上,则该曲线关 于y=x对称;如果(-y,-x)也在图像上,则该曲线关于y=-x轴对称。2、抽象函数的对称性猜测①轴对称 例6、如果函数y=f(x)满足f(x+1)=f(4-x),求该函数的所有对称轴。(任意取值代入例如x=0有f(1)=f(4),正中间 2.5,从而该函数关于x=2.5对称) 例7、如果函数y=f(x)满足f(x)=f(-x),求该函数的所有对称轴。(按上例一样的方法可以猜出对称轴为x=0,可见偶函数是特殊的轴对称) 例8、如果f(x)为偶函数,并且f(x+1)=f(x+3),求该函数的所有对称轴。(因为f(x+1)=f(-x-3),按上例可以猜出对称轴x=-1,又因为它以2为周期,所以x=k是它所有的对称轴,k∈Z)②中心对称 例9、如果函数y=f(x)满足f(3+x)+f(4-x)=6,求该函数的对称中心。(因为自变量加起来为7时函数值的和始终为6,所以中点固定为(3.5,3),这就是它的对称中心)

相关主题