搜档网
当前位置:搜档网 › 最新高三电磁感应专题复习(附答案)

最新高三电磁感应专题复习(附答案)

最新高三电磁感应专题复习(附答案)
最新高三电磁感应专题复习(附答案)

图3 2015年高考电磁感应专题复习(附答案)

一、选择题

1、(2014上海)如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形。则磁场:( )

A .逐渐增强,方向向外

B .逐渐增强,方向向里

C .逐渐减弱,方向向外

D .逐渐减弱,方向向里

2、(2014·新课标全国卷Ⅰ) 在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是:( )

A .将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化

B .在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化

C .将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化

D .绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化

3、如图3所示,小灯泡正常发光,现将一与螺线管等长的软铁棒沿

管的轴线迅速插入螺线管内,小灯泡的亮度如何变化:( ) A .不变 B .变亮 C .变暗 D .不能确定 4、(2014·江苏卷)如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为:( )

A.Ba 22Δt

B.nBa 22Δt

C.nBa 2Δt

D.2nBa 2

Δt

5、(2014·山东卷)如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好,在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是:( )

A .F M 向右

B .F N 向左

C .F M 逐渐增大

D .F N 逐渐减小 6、(2014·四川卷) 如图所示,不计电阻的光滑U 形金属框水平放置,光滑、竖直玻璃挡板H 、P 固定在框上,H 、P 的间距很小.质量为0.2 kg 的细金属杆CD 恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m 的正方形,其有效电阻为0.1 Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B =(0.4-0.2t ) T ,图示磁场方向为正方向.框、挡板和杆不计形变.则:( ) A .t =1 s 时,金属杆中感应电流方向从C 到D B .t =3 s 时,金属杆中感应电流方向从D 到C C .t =1 s 时,金属杆对挡板P 的压力大小为0.1 N D .t =3 s 时,金属杆对挡板H 的压力大小为0.2 N

7、(2014·安徽卷)英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如

图所示,一个半径为r

磁场B,环上套一带电荷量为+q的小球.已知磁感应强度B随时间均

匀增加,其变化率为k,若小球在环上运动一周,则感生电场对小球的

作用力所做功的大小是:()

A.0 B.

1

2

r2qk C.2πr2qk D.πr2qk

8、(2014·全国卷)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率:()

A.均匀增大 B.先增大,后减小

C.逐渐增大,趋于不变 D.先增大,再减小,最后不变

9、(2014·广东卷)如图8所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,

小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块:()

A.在P和Q中都做自由落体运动 B.在两个下落过程中的机械能都守恒

C.在P中的下落时间比在Q中的长 D.落至底部时在P中的速度比在Q中的大

10、(2014·江苏卷)如图所示,在线圈上端放置一盛有冷水的金属杯,现接通

交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措

施可行的有:()

A.增加线圈的匝数 B.提高交流电源的频率

C.将金属杯换为瓷杯 D.取走线圈中的铁芯

11、(2013大纲理综)纸面内两个半径均为R的圆相切于O

直纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化。一长为2R的导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t=0时,OA恰好位于两圆的公切线上,如图所示。若选取从O指向A的电动势为正,下列描述导体杆中感应电动势随时间变化的图像可能正确的是:()

12、(2013新课标1)如图,在水平面(纸面)内有三报相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨。空间存在垂直于纸面的均匀磁场。用力使MN 向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触。下列关于回路中电流i与时间t的关系图线,可能正确的是:()

A.B.C.D.13、(2013新课标2)如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区时导线框的的右边恰与磁场的左边界

()重合,随后导线框进入并通过磁场区域。下列v-t图像中可能正确描述上述过程的是:

14、(2010安徽理综)如图所示,水平地面上方矩形区域内存在垂直纸面向里

的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,

不同粗细的导线绕制(Ⅰ为细导线)。两线圈在距磁场上界面h高处由静止开始

自由下落,再进入磁场,最后落到地面。运动过程中,线圈平面始终保持在竖

直平面内且下边缘平行于磁场上边界。设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2。不计空气阻力,则:()

A.v1

C.v1Q2D.v1=v2,Q1< Q2

15、(2008山东理综)两根足够长的光滑导轨竖直放置,间距为L,底

端接阻值为R的电阻. 将质量为m的金属棒悬挂在一个固定的轻弹簧下

端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁

场垂直,如图所示. 除电阻R外其余电阻不计. 现将金属棒从弹簧原长

位置由静止释放,则:()

A. 释放瞬间金属棒的加速度等于重力加速度g

B. 金属棒向下运动时,流过电阻R的电流方向为a→b

C. 金属棒的速度为v时,所受的安培力大小为F=

D. 电阻R上产生的总热量等于金属棒重力势能的减少

二、计算题

16、(2014·新课标Ⅱ卷)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下.在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小g.求

(1)通过电阻R的感应电流的方向和大小:

(2)外力的功率.

17、(2014·安徽卷)如图1所示,匀强磁场的磁感应强度B为0.5 T,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“A”形状的光滑金属导轨的MPN(电阻忽略不计),MP和NP长度均为2.5 m,MN连线水平,长为3 m.以MN中点O为原点、OP为x轴建立一维坐标系Ox.一根粗细均匀的金属杆CD,长度d为3 m,质量m为1 kg、电阻R为0.3 Ω,在拉力F的作用下,从MN处以恒定速度v=1 m/s在导轨上沿x轴正向运动(金属杆与导轨接触良好).g取10 m/s2.

图1 图2

(1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8 m处电势差U CD;

(2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图2中画出Fx关系图像;

(3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热.

18、(2014·江苏卷)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,

长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层.匀

强磁场的磁感应强度大小为B,方向与导轨平面垂直.质量为m的导体棒从导轨的顶端由静

止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度

为g.求:

(1)导体棒与涂层间的动摩擦因数μ;

(2)导体棒匀速运动的速度大小v;

(3)整个运动过程中,电阻产生的焦耳热Q.

19、(2014·天津卷)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的

交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁

场的磁场感应度大小均为B=0.5 T.在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的

金属条ab放在导轨上,ab刚好不下滑.然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑.cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2,问

(1)cd下滑的过程中,ab中的电流方向;

(2)ab刚要向上滑动时,cd的速度v多大;

(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的

距离x=3.8 m,此过程中ab上产生的热量Q是多少?

20、(2014·浙江卷)某同学设计一个发电测速装置,工作原理如图所示.一个半径为R =0.1 m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端与导轨接触良好,

O 端固定在圆心处的转轴上.转轴的左端有一个半径为r =R

3

的圆盘,圆盘和金属棒能随转轴

一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5 kg 的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5 T .a 点与导轨相连,b 点通过电刷与O 端相连.测量a 、b 两点间的电势差U 可算得铝块速度.铝块由静止释放,下落h =0.3 m 时,测得U =0.15 V .(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷

的电阻均不计,重力加速度g 取10 m/s 2

)

(1)测U 时,与a 点相接的是电压表的“正极”还是“负极”? (2)求此时铝块的速度大小;

(3)求此下落过程中铝块机械能的损失.

21、(2014上海)如图,水平面内有一光滑金属导轨,其MN 、PQ 边的电阻不计,MP 边的电

阻阻值R=1.5Ω,MN 与MP 的夹角为1350

,PQ 与MP 垂直,MP 边长度小于1m 。将质量m=2kg,电阻不计的足够长直导体棒搁在导轨上,并与MP 平行。棒与MN 、PQ 交点G 、H 间的距离L=4m.空间存在垂直于导轨平面的匀强磁场,磁感应强度B=0.5T 。在外力作用下,棒由GH 处以一定的初速度向左做直线运动,运动时回路中的电流大小始终与初始时的电流大小相等。 (1)若初速度v 1=3m/s ,求棒在GH 处所受的安培力大小F A 。

(2)若初速度v 2=1.5m/s ,求棒向左移动距离2m 到达EF 所需时间△t 。

(3)在棒由GH 处向左移动2m 到达EF 处的过程中,外力做功W=7J,求初速度v 3 。

22、(2008上海物理)如图所示,竖直平面内有一半径为r 、内阻为R 1、粗细均匀的光滑半圆形金属环,在M 、N 处与相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻R 2,已知R 1=12R ,R 2=4R 。在MN 上方及CD 下方有水平方向的匀强磁场I 和II ,磁感应强度大小均为B 。现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A 处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道中够长。已知导体棒ab 下落r /2时的速度大小为v 1,下落到MN 处的速度大小为v 2。

(1)求导体棒ab 从A 下落r /2时的加速度大小。

(2)若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁场I 和II 之间的距离h 和R 2上的电功率P 2。

(3)若将磁场II 的CD 边界略微下移,导体棒ab 刚进入磁场II 时速度大小为v 3,要使其在外力F 作用下做匀加速直线运动,加速度大小为a ,求所加外力F 随时间变化的关系式。

2015年高考电磁感应专题复习参考答案

一、选择题

1、CD

2、D

3、C

4、B

5、BCD

6、AC

7、D

8、C

9、C 10、AB 11、C 12、A 13、D 14、D 15、AC

二、计算题

16、[解析] (1)在Δt 时间内,导体棒扫过的面积为

ΔS =12

ωΔt [(2r )2-r 2

]①

根据法拉第电磁感应定律,导体棒上感应电动势的大小为

ε=B ΔS Δt

根据右手定则,感应电流的方向是从B 端流向A 端.因此,通过电阻R 的感应电流的方向是从C 端流向D 端.由欧姆定律可知,通过电阻R 的感应电流的大小I 满足

I =εR

联立①②③式得

I =3ωBr 2

2R

.④

(2)在竖直方向有

mg -2N =0⑤

式中,由于质量分布均匀,内、外圆导轨对导体棒的正压力大小相等,其值为N ,两导轨对运行的导体棒的滑动摩擦力均为

f =μN ⑥

在Δt 时间内,导体棒在内、外圆轨上扫过的弧长为

l 1=rωΔt ⑦

l 2=2rωΔt ⑧

克服摩擦力做的总功为

W f =f (l 1+l 2)⑨

在Δt 时间内,消耗在电阻R 上的功为

W R =I 2R Δt ⑩

根据能量转化和守恒定律知,外力在Δt 时间内做的功为

W =W f +W R ?

外力的功率为

P =

W Δt

? 由④至12式得

P =32μmg ωr +9ω2B 2r 4

4R

?

17、[解析] (1)金属杆C D 在匀速运动中产生的感应电动势

E =Blv (l =d ),E =1.5 V(D 点电势高)

当x =0.8 m 时,金属杆在导轨间的电势差为零.设此时杆在导轨外的长度为l 外,则

l 外=d -OP -x

OP d

OP =

MP 2

-? ??

??MN 22

得l 外=1.2 m

由楞次定律判断D 点电势高,故CD 两端电势差 U CB =-Bl 外v, U CD =-0.6 V

(2)杆在导轨间的长度l 与位置x 关系是

l =OP -x OP d =3-32

x

对应的电阻R 1为R 1=l

d R ,电流I =

Blv R 1

杆受的安培力F 安=BIl =7.5-3.75x 根据平衡条件得F =F 安+mg sin θ F =12.5-3.75x (0≤x ≤2) 画出的Fx 图像如图所示.

(3)外力F 所做的功W F 等于Fx 图线下所围的面积,即

W F =

5+12.5

2

×2 J =17.5 J 而杆的重力势能增加量ΔE p =mg sin θ 故全过程产生的焦耳热Q =W F -ΔE p =7.5 J

18、[解析] (1)在绝缘涂层上

受力平衡 mg sin θ=μmg cos θ 解得 μ=tan θ. (2)在光滑导轨上

感应电动势 E =Blv 感应电流 I =E R

安培力 F 安=BLI 受力平衡 F 安=mg sin θ 解得 v =

mgR sin θ

B 2L 2

(3)摩擦生热 Q T =μmgd cos θ

能量守恒定律 3mgd sin θ=Q +Q T +12

mv 2

解得 Q =2mgd sin θ-m 3g 2R 2sin θ

2B 4L

4

.

19、[解析] (1)由右手定则可以直接判断出电流是由a 流向b .

(2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F max ,有

F max =m 1g sin θ①

设ab 刚好要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有

E =BLv ②

设电路中的感应电流为I ,由闭合电路欧姆定律有

I =E R 1+R 2

③ 设ab 所受安培力为F 安,有

F 安=ILB ④

此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有

F 安=m 1g sin θ+F max ⑤

综合①②③④⑤式,代入数据解得

v =5 m/s ⑥

(3)设cd 棒的运动过程中电路中产生的总热量为Q 总,由能量守恒有

m 2gx sin θ=Q 总+12

m 2v 2⑦

Q =R 1

R 1+R 2

Q 总⑧ 解得Q =1.3 J

20、[解析] 本题考查法拉第电磁感应定律、右手定则等知识和分析综合及建模能力.

(1)正极

(2)由电磁感应定律得U =E =ΔΦ

Δt

ΔΦ=12BR 2Δθ U =12

B ωR 2

v =rω=13

ωR

所以v =2U

3BR =2 m/s

(3)ΔE =mgh -12mv 2

ΔE =0.5 J

21、[解析](1)棒在GH 处速度为v 1 ,因此根据法拉第电磁感应定律有: E 1=BLv 1…① ,

由闭合电路欧姆定律得I 1=BLv 1/R …② , 棒在GH 处所受安培力为F A =BI 1L …③,

解①②③式且代入数据得:F A =B 2L 2

v 1/R = 8N …④

(2)设棒移动距离为a =2m ,由几何关系可得EF 间距也为a ,向左移动整个过程中磁通量的变化量△φ=Ba(a+L)/2 ,题设运动时回路中电流保持不变,即感应电动势E 2不变, 开始移动时有E 2=BLv 2…⑤ ,

又整个过程中E 2=△φ/△t =Ba(a+L)/(2△t) …⑥ , 解以上两式并代入数据得△t =a(a+L)/(2Lv 2)=1s …⑦.

(3)设外力做功为W=7J ,克服安培力做功为W A ,导体棒在EF 处的速度为v 4 ,

由动能定理得:W -W A =mv 42/2-mv 32

/2 …⑧

运动时回路中电流保持不变,即感应电动势E 2不变,同(2)理有:E 3=BLv 3 =Bav 4 …⑨, E 3=△φ/△t 1=Ba(a+L)/(2△t 1) …⑩ ,

得△t 1=a(a+L)/(2Lv 3) …○

11 I 3=BLv 3/R …○

12, 由功能关系得W A =Q =I 32

R △t 1 …○

13 解○8○9○10○11○12○13且代入数据得:v 3=1m/s …○14

22、解析:(1)以导体棒为研究对象,棒在磁场I 中切割磁感线,棒中产生产生感应电动势,导体棒ab 从A 下落r /2时,导体棒在策略与安培力作用下做加速运动,由牛顿第二定律,

得: mg -BIL =ma ,式中l

1

Blv I R

式中 844844R R R R R R R ?总(+)

+(+)

=4R

由以上各式可得到221

34B r v a g mR

=-

(2)当导体棒ab 通过磁场II 时,若安培力恰好等于重力,棒中电流大小始终不变,即

222422t t

B r v B r v mg BI r B r R R ??=?=??=

并并

式中 1243124R R

R R R R

?并==+

解得

22

22

344t mgR mgR

v B r B r =

=

导体棒从MN 到CD 做加速度为g 的匀加速直线运动,有

22

22t v v gh -=

得 2222

449322v m gr h B r g

=-

此时导体棒重力的功率为

222234G t m g R

P mgv B r ==

根据能量守恒定律,此时导体棒重力的功率全部转化为电路中的电功率,即

12G P P

P P =+=电=2222

34m g R

B r

所以,23

4

G P P ==2222

916m g R B r

(3)设导体棒ab 进入磁场II 后经过时间t 的速度大小为t v ',此时安培力大小为

2243t B r v F R '

'=

由于导体棒ab 做匀加速直线运动,有3t v v at '=+ 根据牛顿第二定律,有:F +mg -F ′=ma

即 2234()

3B r v at F mg ma R

++-

=

由以上各式解得: 22222233444()()333B r v B r B r a

F at v m g a t ma mg R R R

=

+--=++-

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

高考专题复习-电磁感应专题

电磁感应专题 1. (20分)(电磁感应)如图甲所示,光滑且足够长的平行金属导轨 MN PQ 与水平面间的倾 角二=30°,两导轨间距L=0.3m 。导轨电阻忽略不计, 开始时,导轨上固定着一质量 m=0.1kg 、电阻r=0.2 Q 的金属杆ab ,整个装置处于磁感应强 度B=0.5T 的匀强磁场中,磁场方向垂直导轨面向下。 现拆除对金属杆ab 的约束,同时用一 平行金属导轨面的外力 F 沿斜面向上拉金属杆 ab ,使之由静止开始向上运动。电压采集器 可将其两端的电压 U 即时采集并输入电脑,获得的电压 U 随时间t 变化的关系如图乙所示。 2. (20分)(电磁感应?改编) 如图所示,相距0.5m 足够长的两根光滑导轨与水平面成 37° 角,导轨电阻不计,下端连接阻值为 2 Q 的电阻R,导轨处在磁感应强度 B =2T 的匀强 磁场中,磁场方向垂直导轨平面斜向上. ab 、cd 为水平金属棒且与导轨接触良好,它 们的质量均为0.5kg 、电阻均为2Q . ab 棒与一绝缘水平细绳相连处于静止状态,现让 cd 棒从 静止开始下滑,直至与 ab 相连的细绳刚好被拉断,在此过程中电阻 R 上产生的 热量为0.5J ,已知细线能承受的最大拉力为 5N.求细绳被 拉断时:(g =10m/s 2, sin37 ° =0.6) (1) ab 棒中的电流大小; (2) cd 棒的速度大小;(3) cd 棒下滑的距离. 其间连接有阻值R=0.4 Q 的固定电阻。 求: (1 )在t=2.0s 时通过金属杆的感 应电流的大小和方向; (2) 金属杆在2.0s 内通过的位移; (3) 2s 末拉力F 的瞬时功率。

2020高考物理 专题9电磁感应热点分析与预测 精品

2020高考物理热点分析与预测专题9·电磁感应 一、2020大纲解读 本专题涉及的考点有:电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则、自感现象、日光灯等.《2020考试大纲》对自感现象等考点为Ⅰ类要求,而对电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则等考点为Ⅱ类要求. 电磁感应是每年高考考查的重点内容之一,电磁学与电磁感应的综合应用是高考热点之一,往往由于其综合性较强,在选择题与计算题都可能出现较为复杂的试题.电磁感应的综合应用主要体现在与电学知识的综合,以导轨+导体棒模型为主,充分利用电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等多个知识点,可能以图象的形式进行考查,也可能是求解有关电学的一些物理量(如电量、电功率或电热等).同时在求解过程中通常也会涉及力学知识,如物体的平衡条件(运动最大速度求解)、牛顿运动定律、动能定理、动量守恒定理(双导体棒)及能量守恒等知识点.电磁感应的综合应用突出考查了考生理解能力、分析综合能力,尤其是考查了从实际问题中抽象概括构建物理模型的创新能力. 二、重点剖析 电磁感应综合应用的中心是法拉第电磁感应定律,近年来的高考中,电磁感应的考查主要是通过法拉第电磁感应定律再综合力、热、静电场、直流电路、磁场等知识内容,有机地把力与电磁结合起来,具体反映在以下几个方面: 1.以电磁感应现象为核心,综合应用力学各种不同的规律(如牛顿运动定律、动量守恒定律、动能定理)等内容形成的综合类问题.通常以导体棒或线圈为载体,分析导体棒在磁场中因电磁感应现象对运动情况的影响,解决此类问题的关键在于运动情况的分析,特别是最终稳定状态的确定,利用物体的平衡条件可求最大速度之类的问题,利用动量观点可分析双导体棒运动情况. 2.电磁感应与电路的综合问题,关键在于电路结构的分析,能正确画出等效电路图,并结合电学知识进行分析、求解.求解过程中首先要注意电源的确定.通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源.若产生感应电动势是由几个相互联系部分构成时,可视为电源的串联与并联.其次是要能正确区分内、外电路,通常把产生感应电动势那部分电路视为内电路.最后应用全电路欧姆定律及串并联电路的基本性质列方程求解. 3.电磁感应中的能量转化问题 电磁感应过程实质是不同形式的能量转化的过程,而能量的转化则是通过安培力做功的形式而实现的,安培力做功的过程,是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.求解过程中主要从以下三种思路进行分析:①利用安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.注意安培力应为恒力.②利用能量守恒求解,开始的机械能总和与最后的机械能总和之差等于产生的电能.适用于安培力为变力.③利用电路特征来求解,通过电路中所产生的电能来计算. 4.电磁感应中的图象问题 电磁感应的图象主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.一般又可把图象问题分为两类:①由给定的电磁感应过程选出或画出正确的图象.②由给定的有关图象分析电磁感应过程,求解相应的物理量.解答电磁感应中的图象问题的基本方法是利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解答. 三、高考考点透视 1.电磁感应中的力和运动 例1.磁悬浮列车是一种高速低耗的新型交通工具。它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l,平行于y轴,宽为d的NP边平行于x轴,如图1所示。列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

电磁感应高考试题

2006年高考 电磁感应 1.[重庆卷.21] 两根相距为L 的足够长的金属直角导轨如题21图所示放置,它们各有一边在同一水平 面内,另一边垂直于水平面。质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数为μ,导轨电阻不计,回路总电阻为2R 。整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中。当ab 杆在平行于水平导轨的拉力F 作用下以速度V 1沿导轨匀速运动时,cd 杆也正好以速率向下V 2匀速运动。重力加速度为g 。以下说法正确的是 A .ab 杆所受拉力F 的大小为μmg +221 2B L V R B .cd 杆所受摩擦力为零 C . 回路中的电流强度为 12() 2BL V V R D .μ与大小的关系为μ=221 2Rmg B L V 2.[全国卷II .20] 如图所示,位于同一水平面内的、两根平行的 光滑金属导轨,处在匀强磁场中,磁场方向垂直于导轨所在 平面,导轨的一端与一电阻相连;具有一定质量的金属杆ab 放在导轨上并与导轨垂直。现用一平行于导轨的恒力F 拉杆ab ,使它由静止开始向右运动。杆和导轨的电阻、感应电流产生的磁场均可不计。用E 表示回路中的感应电动势,i 表示回路中的感应电流,在i 随时间增大的过程中,电阻消耗的功率等于 A .F 的功率 B .安培力的功率的绝对值 C .F 与安培力的合力的功率 D .iE 3.[上海物理卷.12] 如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F .此时 (A )电阻R 1消耗的热功率为Fv /3. (B )电阻 R 。消耗的热功率为 Fv /6. (C )整个装置因摩擦而消耗的热功率为μmgvcosθ. (D )整个装置消耗的机械功率为(F +μmgcosθ)v· 4、[天津卷.20] 在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B 随时间t 如图2变化时,图3中正确表示线圈 感应电动势E 变化的是 图1 图2

高三物理电磁感应1

电磁感应 一. 典例精析 题型1.(楞次定律的应用和图像)如图甲所示,存在有界匀强磁场,磁感应强度大小均为B ,方向分别垂直纸面向里和向外,磁场宽度均为L ,在磁场区域的左侧相距为L 处,有一边长为L 的形导体线框,总电阻为R ,且线框平面与磁场方向垂直. 现使线框以速度v 匀速穿过磁场区域. 以初始位置为计时起点,规定电流逆时针方向时的电流和电动势方向为正,B 垂直纸面向里时为正,则以下关于线框中的感应电动势、磁通量、感应电流、和电功率的四个图象描述不正确的是 ( ) 解析:在第一段时间,磁通量等于零,感应电动势为零,感应电流为零,电功率为零。 在第二段时间,BLvt BS ==Φ,BLv E =,R BLv R E I = =,R BLv P 2)(=。 在第三段时间, BLvt BS 2==Φ,BLv E 2=,R BLv R E I 2==,R BLv P 2)2(= 在第四段时间, BLvt BS ==Φ,BLv E =,R E I =,R BLv P 2)(=。此题选B 。 规律总结:对应线圈穿过磁场产生感应电流的图像问题,应该注意以下几点:

⑴要划分每个不同的阶段,对每一过程采用楞次定律和法拉第电磁感应定律进行分析。 ⑵要根据有关物理规律找到物理量间的函数关系式,以便确定图像的形状。 ⑶线圈穿越方向相反的两磁场时,要注意有两条边都切割磁感线产生感应电动势。 题型2.(电磁感应中的动力学分析)如图所示,固定在绝缘水平面上的的金属框架cdef 处于竖直向下的匀强磁场中,金属棒ab 电阻为r ,跨在框架上,可以无摩擦地滑动,其余电阻不计.在t =0时刻,磁感应强度为B 0,adeb 恰好构成一个边长为L 的形.⑴若从t =0时刻起,磁感应强度均匀增加,增加率为k (T/s),用一个水平拉力让金属棒保持静止.在t =t 1时刻,所施加的对金属棒的水平拉力大小是多大?⑵若从t =0时刻起,磁感应强度逐渐减小,当金属棒以速度v 向右匀速运 动时,可以使金属棒中恰好不产生感应电流则磁感应强度B 应怎样随时间t 变化?写出B 与t 间的函数关系式. 解析: 规律总结: 题型3.(电磁感应中的能量问题)如图甲所示,相距为L 的光滑平行金属导轨水平放置,导轨一部分处在以OO ′为右边界匀强磁场中,匀强磁场的磁感应强度大小为B ,方向垂直导轨平面向下,导轨右侧接有定值电阻R ,导轨电阻忽略不计. 在距边界OO ′也为L 处垂直导轨放置一质量为m 、电阻r 的金属杆ab . B d c a b e f

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

专题电磁感应高考真题汇编

专题十 电磁感应高考真题汇编(学生版) 1.(单选)(2017?新课标Ⅰ卷T18)扫描对到显微镜(STM)可用来探测样品表面原子尺寸上的形貌.为了有效隔离外界振动对STM 的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示,无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及其左右振动的衰减最有效的方案是( ) 答案:A 解析:当加恒定磁场后,当紫铜薄板上下及其左右振动时,导致穿过板的磁通量变化,从而产生感应电流,感应磁场进而阻碍板的运动,因此只有A 选项穿过板的磁通量变化,A 正确,BCD 错误. 2.(多选) (2017?新课标Ⅱ卷T20)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1m 、总电阻为0.005Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界 平行,如图a 所示.已知导线框一直向右做匀速直线 运动,cd 边于t=0时刻进入磁场.线框中感应电动势 随时间变化的图线如图b 所示(感应电流的方向为顺 时针时,感应电动势取正).下列说法正确的是 ( ) A.磁感应强度的大小为0.5T B.导线框运动速度的大小为0.5m/s C.磁感应强度的方向垂直于纸面向外 D.在t=0.4s 至t=0.6s 这段时间内,导线框所受的安培力大小为0.1N 答案:BC 解析:由图象可以看出,0.2~0.4s 没有感应电动势,说明从开始到ab 进入用时0.2s ,导 线框匀速运动的速度为v=L t =0.10.2m/s=0.5m/s ,由E=BLv 可得B=E Lv =0.010.1×0.5 T=0.2T ,A 错误,B 正确;由b 图可知,线框进磁场时,感应电流的方向为顺时针,由楞次定律可知磁感应强 度的方向垂直纸面向外,C 正确;在0.4~0.6s 内,导线框所受的安培力F=ILB=B 2L 2v R =0.22×0.12×0.50.005 N=0.04N ,D 错误. 3.(单选) (2017?新课标Ⅲ卷,T15)如图所示,在方向垂直于纸面向里的匀强磁场中有一U 形金属导轨,导轨平面与磁场垂直,金属杆PQ 置于导轨上并与导轨形成闭合回路PQRS ,一圆环形金属框T 位于回路围成的区域内,线框与导轨共面.现让金属杆PQ 突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( ) A.PQRS 中沿顺时针方向,T 中沿逆时针方向 B.PQRS 中沿顺时针方向,T 中沿顺时针方向 C.PQRS 中沿逆时针方向,T 中沿逆时针方向 D.PQRS 中沿逆时针方向,T 中沿顺时针方向 答案:D 解析:PQ 向右运动,导体切割磁感线,由右手定则可知电流由Q 流向P ,即逆时针方向,再

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

高三物理电磁感应

高三物理电磁感应 (时间:60分钟总分:100分) 一、选择题(每小题5分,共35分) 1.要使b线圈中产生图示I方向的电流,可采用的办法有 [ ] A.闭合K瞬间 B.K闭合后把R的滑动片向右移 C.闭合K后把b向a靠近 D.闭合K后把a中铁芯从左边抽出 2.如图所示,一个闭合线圈放在匀强磁场中,线圈的轴线与磁场方向成30°角,磁感应强度B,随时间均匀变化,线圈导线电阻率不变,用下述哪个方法可使线圈上感应电流增加一倍[ ] A.把线圈匝数增加一倍 B.把线圈面积增加一倍 C.把线圈的半径增加一倍 D.改变线圈轴线对于磁场的方向 3.如图,与直导线AB共面的轻质闭合金属圆环竖直放置,两者彼此绝缘,环心位于AB的上方.当AB中通有由A至B的电流且强度不断增大的过程中,关于圆环运动情况以下叙述正确的是[ ]

A.向下平动 B.向上平动 C.转动:上半部向纸内,下半部向纸外 D.转动:下半部向纸内,上半部向纸外 4.如图所示,两个相互连接的金属环,已知大环电阻是小环电阻的1/4;当通过大环的磁通量变化率为△φ/△t时,大环的路端电压为U.,当通过小环的磁通量的变化率为△φ/△t时,小环的路端电压为(两环磁通的变化不同时发生)[ ] 5 如图所示,把线圈从匀强磁场中匀速拉出来,第一次以速率v拉出,第二 次以2v的速率拉出.如果其它条件都相同.设前后两次外力大小之比F1:F2=K;产生的热量之比Q1:Q2=M;通过线框导线截面的电量之比q1:q2=N.则 [ ] A. K=2:1,M=2:1,N=1:1 B. K=1:2,M=1:2,N=1:2 C. K=1:1,M=1:2,N=1:1 D. 以上结论都不正确 6 如图所示,要使金属环C向线圈A运动,导线AB在金属导轨上应 [ ]

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

电磁感应高考题大题综合

电磁感应电路问题 一、平行导轨,匀强磁场 (1990年全国) 32.参考解答:把PQ作为电源,内阻为R,电动势为ε ε=Blv……………1. 评分标准:全题7分.正确列出1.式得1分.正确得出2.、3.、4.、5.式各得1分.正确得出aP段中电流的大小和流向再各得1分. (2005年江苏)34.(7分)如图所示,水平面上有两根相距0.5m的足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和 P之间接有阻值为R的定值电阻,导体棒ab长l=0.5m,其电阻为r,与导轨接触良好.整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=0.4T.现使ab以v=10m /s的速度向右做匀速运动. (1)ab中的感应电动势多大? (2)ab中电流的方向如何? (3)若定值电阻R=3,OΩ,导体棒的电阻r=1.O Ω,,则电路电流大? 34.(共7分) (1)ab中的感应电动势为:① 代入数据得:E=2.0V ② (2)ab中电流方向为b→a (3)由闭合电路欧姆定律,回路中的电流E I R r = + ③ 代入数据得:I=0.5A ④ 评分标准:本题7分,其中第(1)问2分,第二问2分,第三问3分。 第(1)问中①、②各1分。第(2)问中,正确得出ab中电流的方向给2分。第(3)问中,③式给2分,④式给1分。 (2008年全国2卷)24.(19分)如图,一直导体棒质量为m、长为l、电阻为r,其两端放在位于水平面内间距也为l的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面。开始时,

2020高考物理专题十 电磁感应

专题十电磁感应 挖命题 【考情探究】 分析解读导体棒切割磁感线的计算限于导线方向与磁场方向、运动方向垂直的情况。本专题主要研究电磁感应现象的描述、感应电流的方向的判断(楞次定律、右手定则)、感应电动势的大小的计算、自感现象和涡流现象等。这部分是高考考查的重点内容,近几年多放在第一道计算题考查。在高考中电磁感应现象多

与磁场、电路、力学、能量等知识结合,综合性较高,因此在复习时应深刻理解各知识点内容、注重训练和掌握综合性题目的分析思路,要研究与实际生活、生产科技相结合的实际应用问题。命题趋势:(1)楞次定律、右手定则、左手定则的应用。(2)与图像结合考查电磁感应现象。(3)通过“杆+导轨”模型,“线圈穿过有界磁场”模型,考查电磁感应与力学、电路、能量等知识的综合应用。 【真题典例】 破考点 【考点集训】 考点一电磁感应现象、楞次定律 1.(2018江苏海安高级中学阶段检测,8)(多选)如图所示,A为一固定的圆环,条形磁铁B从左侧无穷远处以初速度v0沿圆环轴线移向圆环,穿过后移到右侧无穷远处。下列说法中正确的是( )

A.若圆环A是电阻为R的线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 B.若圆环A是一超导线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 C.若圆环A是电阻为R的线圈,磁铁的中点通过环面时,圆环中电流为零 D.若圆环A是一超导线圈,磁铁的中点通过环面时,圆环中电流为零 答案AC 2.(2018江苏泰州、宜兴能力测试,3)如图所示,螺线管与灵敏电流计相连,磁铁从螺线管的正上方由静止释放,向下穿过螺线管。下列说法正确的是( ) A.电流计中的电流先由a到b,后由b到a B.a点的电势始终低于b点的电势 C.磁铁减少的重力势能等于回路中产生的热量 D.磁铁刚离开螺线管时的加速度小于重力加速度 答案D 3.(2017江苏扬州中学月考,7)(多选)一个水平固定的金属大圆环A,通有恒定的电流,方向如图所示,现有一小金属环B自A环上方落下并穿过A环,B环在下落过程中保持水平,并与A环共轴,那么在B环下落过程中( )

高考电磁感应三类题型总结

高考电磁感应中的三类常见问题的解题思路 一、与力学问题相关的电磁感应问题 近年来,与安培力相关的平衡问题多次在高考中出现,需要做好“源”、“路”、“力”的分析,解决这类问题的一般思路如下: 例题1、不计电阻的平行金属导轨与水平面成某角度固定放置,两完全相同的金属导体棒a、b 垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面,如图所示,现用一平 行于导轨的恒力F拉导体棒a,使其沿导轨向上运动,在a运动过程中,b始终保持静止,则 以下说确的是() A.导体棒a做匀变速直线运动 B.导体棒b所受摩擦力可能变为0 C.导体棒b所受摩擦力可能先增大后减小 D.导体棒b所受摩擦力方向可能沿导轨向下 【题型点津】题目较为容易,仔细体会一般步骤 例题2、如图所示,DEF、XYZ为处于竖直向上匀强磁场中的两个平行直角导轨,DE、XY水平, EF、YZ竖直.MN和PQ是两个质量均为m、电阻均为R的相同金属棒,分别与水平和竖直导

轨良好接触,并垂直导轨,且与导轨间的动摩擦因数均为μ.当MN棒在水平恒力的作用下向右匀速运动时,PQ棒恰好匀速下滑.已知导轨间距为L,磁场的磁感应强度为B,导轨电阻不计,重力加速度为g,试求: (1)作用在MN棒上的水平恒力的大小; (2)金属棒MN的运动速度大小. 【题型点津】解决此类问题的关键是:根据右手定则或楞次定律判断感 应电流方向,再根据左手定则判断安培力的方向,进行受力分析,确定 物体的运动情况,由动力学方程结合物体的运动状态进行求解。 二、与能量问题相关的电磁感应问题 能量转化和守恒定律在电磁感应现象中的体现非常明显,是高考题命题关注的热点之一。主要包括以下两个方面: ①由有效面积变化引起的电磁感应现象中,由于磁场本身不发生变化,一般认为磁场并不输出能量,而是其他形式的能量借助安培力做功来实现能量的转化。 ②由磁场变化引起的电磁感应现象中,无论磁场增强还是减弱,在回路闭合的情况下,磁场通过感应导体对外输出能量。 解题思路如下:

相关主题