搜档网
当前位置:搜档网 › 对称性原理

对称性原理

对称性原理
对称性原理

物理学中的对称性

物理学中的对称性 摘要:物理学中关于对称性探索的一个重要进展就是建立诺特定理,定理指出,如果运动定律在某一变换下具有不变性,必然相应地存在着一条守恒定律。守恒定律与对称性之间也存在着莫大的联系,各种守恒定律的出现不是偶然的,是物理规律具有多种对称性的必然结果。 关键词:物理学、对称性、守恒定律 对称现象遍布于自然界中,人体的左右对称,平面镜成像的对称,正方形的中心对称等等。对称现象是物质世界某种本质和内在规律的体现,物理学以研究物理世界规律为对象,是研究自然界中物体运动变化规律的一门科学,它是自然科学中的一个重要的组成部分,那么物理中蕴含着对称性也是必然的。例如:宏观物质世界中的时空对称性,微观物质世界中的对称性,物理量之间的对称性,物理学中的形体对称性等。物理学是美的,这些对称性都完美的体现出了物理学之美。本文将分别从四个方面来研究物理学中的对称性。前三个方面主要讲解物理学中对称性的概念、对称性与守恒定律以及物理学中的形体对称,第四个方面是通过对电与磁的对称性分析,用更直观的对比来认识物理学中的对称性。一、什么是对称性? 按照对称的定义来讲,对称就是指物体相对而又相称,或者说它们相仿,相等。所谓对称性是指:某种变化下的不变性。自然界中的事物的对称性表现在两方面。第一:物体的形状或几何形体的对称性。例如:五角星的旋转对称,正方体的中心对称性。这是根据对称性的定义,我们使五角星和正方体都绕它们的中心旋转180°,在这样的变换下,变换后图形具有不变性。第二:事物进程或物理规律的对称性。所谓物理规律的对称性是指:物理规律在某种变换下的不变性。例如:一个物体做平抛运动,水平初速度为V,抛出时离水平地面的高度为H,空气阻力忽略不计。在其他外部条件都相同的情况下,在不同的地方使该物体做如上所述的运动,该物体的运动状况是否相同呢?我们知道,平抛运动可以看成

高中物理中及对称性模型

对称性模型 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中,应用这种对称性它不仅能帮助我们认识和探索物质世界的某些规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中为对称法,利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快捷简便地解决问题。 对称法作为一种具体的解题方法,虽然高考命题没有单独正面考查,但是在每年的高考命题中都有所渗透和体现。从侧面体现考生的直观思维能力和客观的猜想推理能力。所以作为一种重要的物理思想和方法,相信在今后的高考命题中必将有所体现。 在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性. 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。(从某点到达最大位置和从最大位置再回到这一点所需要的时间相等、从某点向平衡位置运动的时间和它从平衡位置运动到这一点的对称点所用的时间相等). 现将对称模型分为空间对称模型和时间对称模型 1、空间对称模型 例1:如图1所示:在离地高度是h,离竖直光滑的墙是 s处,有一个弹性小 1 球以初速度 v正对着墙水平抛出,与墙发生弹性碰撞后落到地面上,求小球落地 点与墙的距离。 【解析】:小球与墙的碰撞是弹性碰撞,碰撞前后 的动量对于墙面的的法线是对称的。如墙的另一面同一高 度有一个弹性小球以相同的速度与墙碰撞,由于对称性, 它的轨迹与小球的实际轨迹是对称的。因此碰前的轨迹与碰

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质就是旧键的断裂与新建的形成,参与成键原子的电子壳层重新组合就是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似与关于分子波函数的方程形成计算量子化学的数学基础。 2、1 SCF-MO 方法的基本原理 分子轨道的自洽场计算方法 (SCF-MO)就是各种计算方法的理论基础与核心部分,因此在介绍本文计算工作所用方法之前,有必要对其关键的部分作一简要阐述。 2、1、1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献与教材中对这些方程已有系统的推导与阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构与性质,在非相对论近似下,须求解 R AB =R 图2-1分子体系的坐标

定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ (2、1) 其中分子波函数依赖于电子与原子核的坐标,Hamilton 算符包含了电子p 的动能与电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2、2) 以及原子核的动能 ∑?-=A A A N M H 2121? (2、3) 与电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2、4) 式中Z A 与M A 就是原子核A 的电荷与质量,r pq =|r p -r q |,r pA =|r p -R A |与R AB =|R A -R B |分别就是电子p 与q 、核A 与电子p 及核A 与B 间的距离(均以原子单位表示之)。上述分子坐标系如图2、1所示。可以用V(R,r)代表(2、2)-(2、4)式中所有位能项之与 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2、5) 原子单位 上述的Schrodinger 方程与Hamilton 算符就是以原子单位表示的,这样表示的优点在于简化书写型式与避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位就是Bohr 半径

群表示的理论基础和分子对称性

4.群表示的理论基础和分子对称性 教学目标与学习指导 1.本章第1节讨论分子对称性。要求掌握五种对称元素和对称操作的乘积的概念。 2.本章第2节介绍群的基本知识。要求对群的基本知识有一般的了解。3.本章第3节讨论分子点群。要求掌握分子点群的确定。 4.本章第4节讨论分子对称操作的矩阵表示。要求掌握五种对称操作的矩阵表示法。 5.本章第5节讨论群表示的基及群的表示。要求对群表示的一般性质有所了解。要求掌握不可约表示和可约表示的概念以及可约表示的约化,了解特征标表。 4-1分子对称性 4-2群的基本知识 4-3分子对称操作群 4-4分子对称操作的矩阵表示(选修) 4-5群表示的基及群的表示(选修)

RPbPbR的键合性质 Y u Chen,Michael Hartmann,Michael Diedenhofen,and Gernot Frenking* Angew.Chem.Int.Ed.2001,40,No.11,2052 群论是从实践中发展起来的一门比较抽象的数学。但把它的基本理论与物质结构的具体对称性相结合之后,群论就成为研究物质微粒运动规律的一种有力工具。在有关基本粒子、核结构、原子结构、分子结

构以及晶体结构等问题的理论研究和计算中经常用到群论方法。由于自然学科彼此间的交叉、渗透,在近代化学领域内,研究化学键理论和分子动力学,应用各种波谱技术等方面,群论已成为重要的工具。4-1分子对称性 对称性是物体所具有的,实施对称操作之前后不可分辨的性质。通过研究分子的对称性,一方面可以把握分子结构的特点及说明分子的有关性质;另一方面,也可借助于分子对称性,使求解薛定谔方程的过程大为简化。原子轨道、分子轨道及分子的几何构型的对称性,是电子运动状态及分子结构特点的内在反映。 4-1-1对称操作与对称元素 4-1-2对称操作的乘积 4-1-1对称操作与对称元素 对称操作:每一次操作都能够产生一个与原来图形等价的图形。也就是,当一个操作作用于一个分子上,所产生的新分子几何图形和作用前的图形如不借助于标号是无法区分的。

物理学中的对称性

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 对称性 (1) 2.1镜像对称 (2) 2.2 转动对称 (2) 2.3平移对称 (2) 2.4置换对称性 (2) 3 物理定律的对称性 (3) 3.1物理定律的空间平移对称性 (3) 3.2物理定律的转动对称性 (3) 3.3物理定律对时间的平移对称性 (3) 3.4物理定律对于匀速直线运动的对称性 (3) 4 对称性与物理定律的关系 (3) 5 对称性在物理学中的应用 (4) 6结论 (5) 参考文献 (5)

物理学中的对称性 摘要:从自然界中的对称性开始,讲解了物理学中转动对对称性开始称,平移对称,置换对称;还讲解了物理定律中的空间平移对称性,转动对称性,时间平移对称性,匀速直线运动的对称性;进而说明了物理定律与对称性的关系和对称性在物理学中的应用,以及对称性导致物理问题发生和解决。 关键词:对称性;物理定律;守恒 Discuss the Symmetry Secondary Physics Abstract:From the nature of the symmetry of the begining, explain the physics rotation on symmetry started to call, translational symmetry, permutation symmetry; also explained the laws of physics in the spatial translational symmetry, rotational symmetry, time translation symmetry, the symmetry uniform motion in a straight line; then describes the physical laws and symmetry and symmetry in the application of Physics, as well as symmetry leads to physical problems and solutions. Key words:symmetrical; the laws of physicsl; conservation 1引言 对称性是自然界最普遍、最重要的特性[1]。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物和工程技术。 2对称性 什么是对称性?对称性首先来源于生活,对称式自然界中十分普片的现象,从总星系到星系团,从银河系到太阳系,地球,从原生物到各种动植物,都具有不同程度

第一性原理计算原理和方法精编

第一性原理计算原理和 方法精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似和关于分子波函数的方程形成计算量子化学的数学基础。 SCF-MO 方法的基本原理 分子轨道的自洽场计算方 法(SCF-MO)是各种计算方法的理论基础和核心部分,因此在介绍本文计算工作所用方法之 前,有必要对其关键的部分作 一简要阐述。 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本 R AB =R 图2-1分子体系的坐标

近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ () 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 以及原子核的动能 ∑?-=A A A N M H 2121? 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图所示。可以用V(R,r)代表-式中所有位能项之和 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,12121),( 原子单位

物理知识结构的对称美

物理知识结构的对称美 句容市后白中学陈国军212400 【摘要】:正确发现知识体系间的联系,不但有助于理解掌握知识,也有利于加深对知识本身的认识。哲学的辩证统一教会我们物体现象之间都是联系的。指导我们认识事物及规律的本质。 【关键词】:对称性、最小作用原理、诺特定理 高中物理的各个板块中都会不同程度的出现应用对称性。正确的观察、理解有利于发现深层次的对称。正确的使用对称规律会使问题得以简化,使得某些颇难解的问题迎刃而解。法拉第跟据电和磁的对称,成功的得到了法拉第电磁感应定律,德布罗意跟据逆向对称思想得到了物质波假说,而且还获得诺贝尔物理学奖。 一、形体上的对称性 形体上的对称是最直接的对称,常常使得我们可以不必精确地去求解就可以获得一些结论。例如:上抛一个自由运动的小球,小球的上升和下降是对称的,其运动特征也高度对称,位置、速度大小、能量的对称,不用解就知道是对称的。再如一个无阻力的摆球摆动起来,左右是对称的,向左边摆动的高度与右边摆边的高度一定是相等的,从中间平衡位置向左摆到最高点的时间一定等于从中间平衡位置向右摆到最高点的时间,平衡位置两边等当位置处摆球的速度和加速度的大小必定是相等的,等等。再例如一张无限大平面方格子的导体网络,方格子每一边的电阻是r,在这张方格子网络的中间相邻格点连出两条导线,问这两条导线之间的等效电阻是多少?这个问题涉及到

无穷多个回路和无穷多个节点,要用直流电路中普遍的基尔霍夫方程组将得到无穷多个方程,难以求解。然而这一无穷的方格子网络具有形体上的对称性,利用对称性分析,求解变得相当简单。在高中阶段只能利用对称性,设想用一根导线连接到一个格点,通以电I,电流从网络的边缘流出,由于从该格点向四边流过的电流具有对称性,因此流过与该可知点连接的每一边的电流必定是I/4。再设想电流I从网络的边缘流入,再从网络中心的一个格点上连接的一条导线从上流出,根据同样的对称性分析,流过与该格点连接的每一边的电流也必定是I/4。我们要求解的情形正是这两种情形的叠加,电流I从连接到一个格点的导线流入,从连到相邻格点的导线流出,而在网络边缘,两种情形流出和流入的电流相互抵消。结果在连接导线的两相邻格点之间的那条边上通过的电流是上述两种情形的叠加,即为I/2,这条边的电阻是r,这意味剩下的电流I/2通过其它边,它相应的电阻应是r,换句话说,从相邻格点来看,这一无穷方格子网络的等效电阻是两个阻值为r 的并联,其等效电阻为r/2。由此可以看出,对称性分析在物理学中非常有用,一旦明确了具有对称性,问题常常变得简单可解。 二、物理量及物理规律的对称性 以上谈到对称性的时候,提到的“事物”不一定限指一个具体物件的形体,物理学家更注意到物理规律的对称性。直线运动中的位移、速度、动量、加速度,和曲线运动的角位移、角速度、角动量、角加速度对称,还有力和力矩对称。直线的规律速度时间规律、速度位移

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似, 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122 ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??? ?????-++?-?-∑∑∑∑∑∑≠≠ (2.1) 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p

与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2.2) 以及原子核的动能 ∑?-=A A A M H 2? (2.3) 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图2.1所示。可以用V(R,r)代表(2.2)-(2.4)式中所有位能项之和 ∑∑∑-+= ≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2.5) 原子单位 上述的Schrodinger 方程和Hamilton 算符是以原子单位表示的,这样表示的优点在于简化书写型式和避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位是Bohr 半径 能量是以Hartree 为单位,它定义为相距1Bohr 的两个电子间的库仑排斥作用能 质量则以电子制单位表示之,即定义m e =1 。

(整理)对称性原理在物理学中的重要性.

6、对称性原理在物理学中的重要性 《自然杂志》19卷4期的‘探索物理学难题的科学意义'的97个悬而未决的难题:23.自然界是否存在七种对称性晶体?77.CP不守恒难题只能在中性K介子衰变中见到吗?78.引起CP对称性破坏的力是什么?87.是否存在中性,稳性,质量至少大于40GeV的超对称粒子?美籍华人著名的物理学家、诺贝尔奖金获得者李政道把“一些物理现象理论上对称,但实验结果不对称”、“暗物质问题、暗能量问题”、"类星体的发能远远超过核能,每个类星体的能量竟然是太阳能量的1015倍"、“夸克禁闭”称为是21世纪科技界所面临的四大难题。这些问题都于对称性原理存在着密切的联系。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。 对称美在于:在杂乱中形成规律,在无序中引入秩序。物理学的第三个特点是它的和谐性和统一性。自然界本身就是和谐统一的,自然美反映到物理学理论中,就显示出统一与和谐的物理学美的规范。物理学规律的统一、有序与神秘的和谐、自恰常常使一些物理

学家感到狂喜和惊奇。而物理学家们创造出来的系统的思想所表现的统一与和谐之美又使更多的人感到愉快。我们可在门捷列夫的元素周期表中感到这一体系结构的“诗意”。在牛顿对天地间运动规律的统一之中;在焦耳迈尔对热功的统一之中;在法拉第、麦克斯韦对电与磁的统一之中;在E=MC2所表示的质能统一之中;在广义相对论的引力、空间、物质的统一之中;我们都会感到一种和谐的满足。守恒与对称和统一、和谐的观念紧密相连。守恒和对称会给人一种圆满、完整、均匀的美感。从阿基米德的杠杆原理到开普勒第二定律表现的角动量守恒,以及动量守恒、能量守恒等,都符合守恒的审美标准。在数学中,方程与图形的对称处处可见,这也是数学美的重要标志。中心对称、轴对称、镜像对称等,都是诗人愉悦的形式。笛卡尔建立的解析几何学是在数学方程与几何图形之间建立的一种对称。爱因斯坦于1905年提出了具有革命性意义的狭义相对论,从其新思想的来源看,不仅是逻辑的,而且具有美学的性质,是一种对称美的追求。电磁场的基本方程――麦克斯韦方程组就具有一定程度的优美的数学对称性。它确定了电荷、电流、电场、磁场的普遍规律与联系,用完美而对称的数学形式奠定了经典电动力学的基础。对称性原理简单说就是从不同角度看某个事物都是一样的。在所有这样的对称中,最简单的是左右对称。例如:从镜子里看左右颠倒了的脸,它都是一样的。有些事物比人脸有着更大的对称性。立方体从六个相互垂直的不同方向看,或者颠倒它的左右来看,都是一样的。球从任何方向来看都是相同的。这样的对称性千百年来愉悦和激发着艺术家和科学家。但对

对称性破缺

对称性破缺 对称性破缺是一个跨物理学、生物学、社会学与系统论等学科的概念,狭义简单理解为对称元素的丧失;也可理解为原来具有较高对称性的系统,出现不对称因素,其对称程度自发降低的现象。对称破缺是事物差异性的方式,任何的对称都一定存在对称破缺。对称性是普遍存在于各个尺度下的系统中,有对称性的存在,就必然存在对称性的破缺。对称性破缺也是量子场论的重要概念,指理论的对称性为真空所破坏,对探索宇宙的本原有重要意义。它包含“自发对称性破缺”和“动力学对称性破缺”两种情形。 中文名 对称性破缺 外文名 Symmetry Breaking 目录 1. 1简介 2. 2系统 3. 3物理 4. ?超对称 5. ?弱作用规范 6. ? 11维空间 1. 4生物 2. ?手性破缺 3. ? Salam 假说 4. ?局限性 5. 5耗散分岔 6. 6反馈机制 1. 7举例 2. ?宇称不守恒 3. ?贝纳德对流 4. ?意大利怪钟 5. ?重子与反重子 6. ?生物界应用 1. ?真空不空 2. ?对称性破缺也叫CP破缺 3. 8社会 简介 李政道认为对称性原理均根植于“不可观测量”的理论假设上;不可观测就意味着对称性,任何不对称性的发现必定意味着存在某种可观测量。李政道说:“这些‘不可观测量’中,有一些只是由于我们目前测量能力的限制。当我们的实验技术得到改进时,我们的观测范围自然要扩大。因而,完全有可能到某种时候,我们能够探测到某个假设的‘不可观测量’,而这正是对称破坏的根源。 这和“对称性破缺则是由‘宏观’走向‘微观’而展现事物差异性的方式”哲学观点是一致的。 假如没有对称性破缺,这个世界将会失去活力,也将是单调、黯淡的,也不会有生物。自然界同样也存在着诸多对性破缺的例子。 比如:弱作用力下的宇称不守恒、粒子与反粒子的不对称、手性分子的对称性破缺等等。 系统 耗散理论在解释生命分子手性起源中取得了较大成功,这也是本书所拥护的观点;近些年也得到更多的实验支持。普利高津(Prigogine)认为,在远离平衡的条件下,一个开放的物理化学体系可以通过分支现象,从原先空间均匀的各向同性状态发展到集中都是稳定的但时空特性可能不同的有序状态,即由无序中产生有序。这两种空间有序状态唯一的差别可能仅仅在于其对称性,体系远离平

模型组合讲解——对称性模型

模型组合讲解一一对称性模型 马秀红王世华 [模型概述] 对称法作为一种具体的解题方法,虽然高考命题没有单独正面考查,但是在每年的高考 命题中都有所渗透和体现。从侧面体现考生的直观思维能力和客观的猜想推理能力。所以作 为一种重要的物理思想和方法,相信在今后的高考命题中必将有所体现。 [模型讲解] 1.简谐运动中的对称性 例1.劲度系数为k的轻质弹簧,下端挂一个质量为m的小球,小球静止时距地面的高 度为h,用力向下拉球使球与地面接触,然后从静止释放小球(弹簧始终在弹性限度以内)则: A.运动过程中距地面的最大高度为2h B.球上升过程中势能不断变小 C.球距地面高度为h时,速度最大 D.球在运动中的最大加速度是kh/m 解析:因为球在竖直平面内做简谐运动,球从地面上由静止释放时,先做变加速运动, 当离地面距离为h时合力为零,速度最大,然后向上做变减速运动,到达最高点时速度为零,最低点速度为零时距平衡位置为h,利用离平衡位置速度相同的两点位移具有对称性,最高 点速度为零时距平衡位置也为h,所以球在运动过程中距地面的最大高度为2h,由于球的振 k k 幅为h,由a x可得,球在运动过程中的最大加速度为 a h,球在上升过程中动 m m 能先增大后减小,由整个系统机械能守恒可知,系统的势能先减小后增大。所以正确选项为 ACD。 2.静电场中的对称性 例2. (2005上海高考)如图1所示,带电量为+ q的点电荷与均匀带电薄板相距为2d, 点电荷到带电薄板的垂线通过板的几何中心。若图中b点处产生的电场强度为零,根据对称 性,带电薄板在图中b点处产生的电场强度大小为多少,方向如何?(静电力恒量为k)。 解析:在电场中a点:图1

第一节第一性原理计算方法综述

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT软件包。 1.1 第一性原理 第一性原理计算( 简称从头计算,the abinitio calculation) ,指 从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。【1】第一性原理计算就只需要用到五个最基本的物理常量即( m o.e.h.c.k b ) 和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。

第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT。 1.2量子力学与Born-Oppenheimer 近似固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系【2】,相应的体系哈密顿量可以写成如下形式: H (r,R) E H(r ,R) (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子( 原子核和电子) 的动能和粒子之间的相互作用能,即 H H e H N H e N (1-2) 其中,以是电子部分的哈密顿量,形式为: 22 1 e2 H e(r) r2i 1 e(1-3)

最新对称性原理在物理学中的重要性

对称性原理在物理学中的重要性

6、对称性原理在物理学中的重要性 《自然杂志》19卷4期的‘探索物理学难题的科学意义' 的97个悬而未决的难题:23.自然界是否存在七种对称性晶体?77.CP不守恒难题只能在中性K介子衰变中见到吗?78.引起CP对称性破坏的力是什么?87.是否存在中性,稳性,质量至少大于40GeV的超对称粒子?美籍华人著名的物理学家、诺贝尔奖金获得者李政道把“一些物理现象理论上对称,但实验结果不对称”、“暗物质问题、暗能量问题”、"类星体的发能远远超过核能,每个类星体的能量竟然是太阳能量的1015倍"、“夸克禁闭”称为是21世纪科技界所面临的四大难题。这些问题都于对称性原理存在着密切的联系。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。 对称美在于:在杂乱中形成规律,在无序中引入秩序。物理学的第三个特点是它的和谐性和统一性。自然界本身就是和谐统一的,自然美反映到物理学理论中,就显示出统一与和谐的物理学美的规范。物理学规律的统一、有序与神秘的和谐、自恰常常使一些物理学家感到狂喜和惊奇。而物理学家们创造出来的系统的思想

所表现的统一与和谐之美又使更多的人感到愉快。我们可在门捷列夫的元素周期表中感到这一体系结构的“诗意”。在牛顿对天地间运动规律的统一之中;在焦耳迈尔对热功的统一之中;在法拉第、麦克斯韦对电与磁的统一之中;在E=MC2所表示的质能统一之中;在广义相对论的引力、空间、物质的统一之中;我们都会感到一种和谐的满足。守恒与对称和统一、和谐的观念紧密相连。守恒和对称会给人一种圆满、完整、均匀的美感。从阿基米德的杠杆原理到开普勒第二定律表现的角动量守恒,以及动量守恒、能量守恒等,都符合守恒的审美标准。在数学中,方程与图形的对称处处可见,这也是数学美的重要标志。中心对称、轴对称、镜像对称等,都是诗人愉悦的形式。笛卡尔建立的解析几何学是在数学方程与几何图形之间建立的一种对称。爱因斯坦于1905年提出了具有革命性意义的狭义相对论,从其新思想的来源看,不仅是逻辑的,而且具有美学的性质,是一种对称美的追求。电磁场的基本方程――麦克斯韦方程组就具有一定程度的优美的数学对称性。它确定了电荷、电流、电场、磁场的普遍规律与联系,用完美而对称的数学形式奠定了经典电动力学的基础。对称性原理简单说就是从不同角度看某个事物都是一样的。在所有这样的对称中,最简单的是左右对称。例如:从镜子里看左右颠倒了的脸,它都是一样的。有些事物比人脸有着更大的对称性。立方体从六个相互垂直的不同方向看,或者颠倒它的左右来看,都是一样的。球从任何方向来看都是相同的。这样的对称性千百年来愉悦和激发着艺术家和科学家。但对称性在物理学

对称性原理在物理学中的表现形式

对称性原理在物理学中的表现形式 在近代科学的开端,哥白尼对日心说的数学结构做了美学说明和论证,他从中看到令人惊异的“对称性”与“和谐联系”——这可以说是科学美学的宣言书.开普勒醉心于宇宙的和谐,他在第谷的庞杂数据中清理出具有美感的行星运动三定律,并由衷地感到难以置信的狂喜和美的愉悦.伽利略对落体定律的揭示,在纷繁的事实多样性中求得统一的定律.牛顿的严整而简单的力学体系把天地间的万物运动统摄在一起,他推崇和倡导节约原理,并认为上帝最感兴趣的事情是欣赏宇宙的美与和谐.这一切,谱写了近代科学的美的协奏曲.以相对论和量子力学为代表的现代科学,更是把科学审美发挥到了极致.撇开这些理论的抽象的理性美和雅致的结构美不谈,令人叫绝的是,数学实在和物理实在之间的(神秘的)一致是由群的关系保证的,科学理论中审美要素的存在是由群的真正本性决定的——对称性或不变性(协变性,invariance)之美跃然纸上! (1)经典物理学中的对称性原理 在原始的意义上,对称是指组成某一事物或对象的两个部分的对等性.物理是研究客观世界的最基本规律的一美科学,而它们在很多方面存在着对等性,例如:正电荷和负电荷、电荷的负极与正极、光速的可逆性、空间与时间、正功与负功、质子与中子、电子与正电子等均具有对称性.万有引力公式F=GMm/r2与静电力公式F=KQ1Q2/r2,弹性势能公式E=0.5kx2与动能公式E=0.5mv2,凸透镜成象公式1/u+1/v=1/f与并联电阻公式1/R1+1/R2=1/R、弹簧串联公式1/k1+1/k2=1/k,欧姆定律公式I=U/R与压强公式P=F/S、密度公式ρ=m/V 、电场强度E=F/Q、电压U=W/Q与电容C=Q/U,安培力F=BIL与电功W=Uit,重量G=ρgV与热量Q=cm Δt等均具有相似性根据这些相似性.开普勒用行星轨道的椭圆对称性代替了古希腊人所坚持的圆形对称性, 开普勒第一定律:每个行星都沿椭圆轨道运行,太阳就在这些椭圆的一个焦点上. 物理学中有一些规律属于基本定律,它们具有支配全局的性质,掌握它们显然是极端重要的.例如力学中的牛顿定律是质点、质点组机械运动(非相对论)的基本定律,电磁学的麦克斯韦方程组是电磁场分布、变化的基本定律,物理学中还有另外一种基本定律的表述形式,这就是最小作用原理(变分原理),它可表述为系统的各种相邻的经历中,真实经历使作用量取极值.可以看出最小作用原理的表述形式与牛顿定律、麦克斯韦方程组的表述形式极不相同.牛顿定律告诉我们,质点此时此刻的加速度由它此时此刻所受的力和它的质量的比值决定;麦克斯韦方程组告诉我们,此时此刻的电场分布由此时此刻的电荷分布以及此时此刻的磁场的变化决定,此时此刻的磁场分布由此时此刻的电流分布以及此时此刻的电场

对称性破缺理论在社会学中的应用

对称性破缺理论在社会学中的应用 反馈机制与社会 对称性破缺是一个跨物理学、生物学、社会学与系统论等学科的概念,狭义简单理解为对称元素的丧失;也可理解为原来具有较高对称性的系统,出现不对称因素,其对称程度自发降低的现象。对称破缺是事物差异性的方式,任何的对称都一定存在对称破缺。 资料上说,生命分子的产生是源于反馈的自催化机制通过循环结构将微小的差距放大,也就是说个体之间的差异是通过小分子物质在外界环境的作用下循环积累导致的。社会也是一个充满张力的循环结构。自然界存在各式各样的不对称差异,能够放大这样差异的则是事物自身选择。 高等动物进化出来的互相扶持以及护幼行为等都是基于群体意识,这也是物种对自身的反馈,简单的说就是“自我选择力”。中国儒家传统思想所尊崇的信条就是以自我完善为基础,在《礼记·大学》中就有“心正而后身修,身修而后家齐,家齐而后国治,国治而后天下平。”这样的思想是符合生物哲学的,人的修身必须从自我反馈开始。这让我想起,美国电视《越狱》中有一句话“欲变世界,先变其身”。然而现今中国的教育,却没有教会人适应和反馈这最重要的东西。引用卡内基梅隆大学教授蓝迪的“最后一课”的演讲中的一句话“一个教育工作者能给的最好礼物,就是让人能自我反省”。 生活中学会总结,是人生自我反馈的开始。社会上每个人都是不同的,自然属性赋予了人差异性的一面,只有自身对自身的反馈来放大这种差异,人生才会精彩(这包括自我修养和自我超越)。自古封建君王们都鼓吹‘君权神授’;也是企图放大,人的的差异,将自我比作神。而现代社会人在置身于物欲世界的同时,忽略了自我对自我的反馈,盛行的却是类似斯宾塞弱肉强食的“社会达尔文主义”。 社会达尔文主义忽略了社会中事物发展自身反馈也是重要重要驱动,具有局限性,因此被后现代主义称为“现代性罪状”。在这样的扭曲的社会结构中,人们追求自我实现,不是通过自我修养和超越的反馈来完成;而以掌握物质财富和社会地位来衡量,力求成为社会“食物链”的顶端。同时,在张力的社会中人们文化的困境与内心的挣扎也是推动其发展的驱动因素。在霍妮的文化心理病理学指出自我的挣扎是人与自我关系的失调。人有天赋的潜能和引导实现潜能的建设性力量,体现为创造和奉献;这种力量的激发则需要人自身的“自催化”,其过程是通过学习、经历、以及自我认识来完成。 同时人的天赋中还具有一种破坏性力量,体现为贪婪、权利与欲望的膨胀等等。为确保社会结构稳定,需要社会机制的约束和自我反馈加以调节,这表现为法律与道德。一些人认为这种破坏的力量归结为人类的本能,其实这是片面的,人类的本性是两种力量的综合,而不是单纯某一方面。就以‘性’来说,弗洛伊德的人性论是性恶论,并持悲观论调;但我们知道‘性’又意味着生命的诞生,意味着创造,意味着美,具有积极的一面。 人能够调节这两种力量的就是自我的反馈,并体现为适应性。生物要适应环境得以生存,就首先要求自身的改变,这个变化过程就是自身反馈机制的体现。反社会人格以及神经症患者内心的挣扎以及自我异化等,在我看来是社会适应力低下的表现,可能是自身反馈出现了问题;按照这个思想,极度自卑或自傲都可能滋生反社会行为;我相信运用这个思想是可以找到减少社会暴力的方法。当然,社会是多元化整体,事物的发展既取决于自身反馈又取决于环境的选择。假如社会环境变化总采取突变式,或者说环境选择的跳跃变化总大于自我反馈的能力,那么这样的反馈机制就可能遭到破坏。所以在社会学中人自我的反馈机制往往具有强烈的环境依赖性。 假如构成社会的人,都具有极强的适应能力,都在不断的变通;那么这个社会是不稳定的,比如可能社会缺乏诚信、缺乏价值判断等等。所以社会本身是人社会适应性与社会稳定性的妥协。而在生态学中生物与环境本身就是一个整体,是协同进化的。一个物种的进化,

第一节第一性原理计算方法综述

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT 软件包。 1.1第一性原理 第一性原理计算(简称从头计算,the abinitio calculation),指从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。【1】第一性原理计算就只需要用到五个最基本的物理常量即(b o k c h e m ....)和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。

第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。 以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT 。 1.2量子力学与Born-Oppenheimer 近似 固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系【2】,相应的体系哈密顿量可以写成如下形式: ),(),(R r E R r H H ψψ= (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子(原子核和电子)的动能和粒子之间的相互作用能,即 N e N e H H H H -++= (1-2) 其中,以是电子部分的哈密顿量,形式为:

现代物理学理论中的非对称性问题

现代物理学理论中的非对称性问题 哥德尔定理指出,在任何公理化形式系统中,总存留着在定义该系统的公理基础上既不能证明也不能证伪的问题,也就是说任何一个理论都有解决不了的问题. 人类原来以为大自然是对称的和完美的.然而,自李政道与杨振宁发现了弱力的宇称不对称以后,自发性破缺就成为了最前沿的一个科学话题,日本科学家还因研究这个获了诺奖.但是,对称的自发破缺问题,一直没有得到质的突破.这一是由于对自然界的来龙去脉与本质没有搞清楚,二是物理学上有一个普适性的定理:热力学的不可逆定律——任何事物的热能都只能由高向低转化,而不可能由低向高转化.这个定律经过了科学的严格检验,确实很符合自然的根本规律.所以,这个规律也造成了对称性的自发破缺:没有了可逆的热力学反应,世界只会由高向低转化,哪来的对称呢?在宏观世界,热力学不可逆定律对对称的自发性破缺问题的影响与决定性作用还不是十分明显.但是,在量子世界,粒子的热力学定律效应就清楚地显示出来了——科学实验证明,粒子与反粒子并不严格遵守PCT联合对称律!实际上,这就是世界对称的自发性破缺的缘由.既然微观世界的粒子与反粒子都不严格遵守对称律,破坏了联合对称律,那么,由微观世界构成的宏观世界的对称破缺的累积效应,当然会造成明显的宏观对称破缺效应.从真空到化学反应式中的极化现象,同样是由于这个原因.平衡是造成对称的原因.但是,由于这种平衡是以动态的非线性方式进行的,所以必然造成对称的破缺.那么,对称的自发破缺与热力学的不可逆定律,真的是全部不可违犯的吗?也不全是.例如,粒子与反粒子的大致对称.甚至,宏观世界也是大致对称的. 这说明事物是可可逆的与可反演的.而在动力学中,这种可逆的反演现象更加明显——你施以一个动力,马上会有一个反动力相对应.但是,无论这种可逆与对应的力如何运动,它们都不是完全对称的,而是存在着自发的对称破缺,而只能保持大致的对称.但是,热力学定律的不可逆反应规律,却制约了人们对世界可逆性的根本性思考.热力学定律的不可逆反应规律,基本上是不可更改的.热力学第二定律作为一个选择原则表明,时间对称破缺意味着存在一个熵垒,即存在不允许时间反演不变态.力学定律对于时间是对称的,但是熵增原理对于时间是不对称的.在经典物理里面,描述热力学第零定律的热传导方程和斯蒂芬-波尔兹曼定律都不具有协变对称性. 在我们的宇宙里,对称的量子数是不守恒的,其中第一个重要发现就是宇称不守恒,现在还有不少东西不守恒.在惯性测量坐标系变换下的某些对称的绝对物理量和某些对称的

相关主题