搜档网
当前位置:搜档网 › 集成电路课程设计 四位加法器 实验报告分解

集成电路课程设计 四位加法器 实验报告分解

集成电路课程设计  四位加法器   实验报告分解
集成电路课程设计  四位加法器   实验报告分解

实验报告

Tanner Pro 集成电路设计与布局

姓名:******

学号:********

班级:********

专业:************

学院:************

日期:2012.05.28

1.使用S-Edit 设计简单逻辑电路1.1反相器

1.1.1电路及符号

1.1.2反相器直流分析:

.include "C:\Users\meng\Desktop\e005_tanner\tanner\TSpice70\models\ml2_125.md" .dc lin source vin 0 5.0 0.02 *Vin 为0到5v 以0.02v增加

.print dc v(OUT) * 观察输出

vin IN Gnd 1.0

vvdd Vdd Gnd 5.0

1.1.3在W-Edit 中观看模拟结果如下:

1.2 与非门:1.

2.1 电路及符号

1.2.2 与非门直流分析

.include "C:\Users\meng\Desktop\e005_tanner\tanner\TSpice70\models\ml2_125.md"

.dc lin source va 0 5.0 0.1

* SPICE netlist written by S-Edit Win32 7.03

* Written on Jan 3, 2004 at 01:02:58

.dc lin source va 0 5.0 0.1 sweep lin param vb 0 5.0 1 %模拟输入电压va 从0V 变动到5V 时(以0.1V 线性增加),vb 从0V 变动5V 时(以1V 线性增加)

.print dc v(OUT) %观察输出

va A Gnd 5.0

vb B Gnd 1.0

vvdd Vdd Gnd 5.0

1.2.3在W-Edit 中观看模拟结果如下:

1.3.三输入与非门:1.3.1电路及符号:

1.3.2三输入与非门直流分析:

Main circuit: nand3

M1 out ina N2 Gnd NMOS L=2u W=4u AD=66p PD=24u AS=66p PS=24u

M2 N2 inb N1 Gnd NMOS L=2u W=4u AD=66p PD=24u AS=66p PS=24u

M3 N1 inc Gnd Gnd NMOS L=2u W=4u AD=66p PD=24u AS=66p PS=24u

M4 out ina Vdd Vdd PMOS L=2u W=8u AD=66p PD=24u AS=66p PS=24u

M5 out inb Vdd Vdd PMOS L=2u W=8u AD=66p PD=24u AS=66p PS=24u

M6 out inc Vdd Vdd PMOS L=2u W=8u AD=66p PD=24u AS=66p PS=24u

vb inb gnd 1.0

va ina gnd 1.0

vc inc gnd 1.0

vvdd vdd gnd 5.0

* End of main circuit: nand3

.dc lin source va 0 5.0 0.1 sweep lin source vb 0 5.0 1 sweep lin source vc 0 5.0 1 .print dc v(out)

1.3.3在W-Edit 中观看模拟结果如下:

1.4.三输入或非门:

1.4.1电路及符号

1.3.2三输入或非门直流分析:

* Main circuit: nnor3

M1 out inb Gnd Gnd NMOS L=2u W=4u AD=66p PD=24u AS=66p PS=24u M2 out ina Gnd Gnd NMOS L=2u W=4u AD=66p PD=24u AS=66p PS=24u M3 out inc Gnd Gnd NMOS L=2u W=4u AD=66p PD=24u AS=66p PS=24u M4 out inb N3 Vdd PMOS L=2u W=8u AD=66p PD=24u AS=66p PS=24u M5 N3 ina N7 Vdd PMOS L=2u W=8u AD=66p PD=24u AS=66p PS=24u M6 N7 inc Vdd Vdd PMOS L=2u W=8u AD=66p PD=24u AS=66p PS=24u vb inb gnd 1.0

va ina gnd 1.0

vc inc gnd 1.0

vvdd vdd gnd 5.0

* End of main circuit: nnor3

.dc lin source va 0 5.0 0.1 sweep lin source vb 0 5.0 1 sweep lin source vc 0 5.0 1 .print dc v(out)

1.4.3在W-Edit 中观看模拟结果如下:

1.5 一位全加器:

1.5.1电路及符号

1.5.2一位全加器直流分析:

.include "C:\Users\meng\Desktop\e005_tanner\tanner\TSpice70\models\ml2_125.md" * SPICE netlist written by S-Edit Win32 7.03

.param 1=0.5u

vvdd vdd gnd 5.0

va a gnd PULSE (0 5 50n 5n 5n 50n 100n)

vb b gnd BIT ({0011} lt=50n ht=50n on=5 rt=5n ft=5n)

vci ci gnd PWL (0ns 0v 200ns 0v 205ns 5v 400ns 5v)

.tran/op 1n 400n method=bdf

.print tran v(a) v(b) v(ci) v(s) v(co)

1.5.3在W-Edit 中观看模拟结果如下:

1.6四位全加器:1.6.1电路及符号

1.6.2四位全加器直流分析:

.include "C:\Documents and Settings\Administrator.LENOVO-9011394C\桌面\09045401\集成电路综合设计\e005_tanner\tanner\TSpice70\models\ml2_125.md"

.param l=0.5u

vvdd Vdd GND 5.0

.vector A {A3 A2 A1 A0}

.vector B {B3 B2 B1 B0}

va A GND BUS ({0011 1110 1100 1010} lt=50n ht=50n on=5 off=0 rt=5n ft=5n)

vb B GND BUS ({1101 0111 1010 0101} lt=50n ht=50n on=5 off=0 rt=5n ft=5n)

.tran/op 1n 200n method=bdf

.print tran v(Cout) v(S3) v(S2) v(S1) v(S0)

1.6.3在W-Edit 中观看模拟结果如下:

2.使用L-Edit 画布局图

2.1 PMOS版图:

2.2 NMOS版图:

2.3输入端口的绘制PortA:

以上PMOS、NMOS、节点、端口在画反相器版图时需调用,本次实验中调用初始遇到问题,用copy 不能把他们复制进去调用,需要用instance :

2.4 PMOS NMOS基板节点组件

PMOS 基板节点组件NMOS 基板节点组件

2.5反相器版图

2.6 4位全加器的版图

2.7 T-Spice 模拟:

.include "C:\Users\meng\Desktop\e005_tanner\tanner\TSpice70\models\ml2_125.md" M1 OUT A GND PMOS L=2u W=5u

M2 OUT A GND PMOS L=2u W=5u

vvdd Vdd GND 5

va A GND PULSE (0 5 0 5n 50n 100n)

.tran/op 1n 400n method=bdf

.print tran v(A) v(OUT)

*Total Nodes:4

*total Elements:2

3. DRC报告文件

DRC by Tanner Research's L-Edit Version 9.00

File: D:\集成电路综合设计\e005_tanner\tanner\LEdit90\add4\EX14.tdb Cell: Lights

Date: Sun May 27 22:30:13 2012

Bin Size = 100.0000 locator units

0 errors.

0 warnings.

Select layer generation elapsed time: 00:00:00 (0.00%).

Merge/Boolean layer generation elapsed time: 00:00:04 (57.14%).

DRC rule checking elapsed time: 00:00:03 (42.86%).

Total DRC elapsed time: 00:00:07.

4.使用LVS 对比反相器:生成的inv.spc文件:

LVS对比:

但是对比出错:

反相器LVS始终对比不出,错误如上,但修改多次终于成功。

5.实验总结:

通过本学期的集成电路课程设计的学习,我基本上了解了e005_tanner软件的使用方法。在这个学期里,我使用了S-Edit、T-Spice、L-Edit 三个软件。分别用来画电路原理图,仿真波形以及画布局图。在这个实验中,S-Edit最好学,只需要按照原理图放置元件即可,T-Spice次之,在仿真时,很容易出错,需要一步步设置。最难的就是L-Edit,每做一步都需要设计规则检验,找出错误,修改完之后才能进行下一步的工作,该过程需要细心和耐性。在L-Edit

设计nmos和pmos 时经常犯错误,找不出原因,每每都需要请教老师和同学。设计反向器时,调用nmos和pmos,该过程在前两个步骤之后,操作起来比较容易了。通过设计一位加法器,然后调用一位加法器来完成4位加法器的设计,该思路很好。在平时电路设计当中,思路很重要,教会我们解题的技巧。

实验一四位串行进位加法器的设计实验报告

实验一四位串行进位加法器的设计 一、实验目的 1.理解一位全加器的工作原理 2.掌握串行进位加法器的逻辑原理 3.进一步熟悉Quartus软件的使用,了解设计的全过程, 二、实验容 1.采用VHDL语言设计四位串行进位的加法器 2.采用画原理图的方法设计四位串行进位加法器 三、实验步骤 1、使用VHDL语言设计 1.打开File—>New Project Wizard输入文件名adder4保存在D 盘,打开File—>New—>VHDL File,从模版中选择库的说明,use 语句的说明,实体的说明,结构体的说明,编写VHDL代码,然后保存、编译。打开File—>New—>Other File—>Vector Waveform File,查找引脚,从Edit中选择End Time 输入40、ns 保存。从Assignments—>Settings—>Simulator Settings —>Functional 然后Processing—>Generate Functional Simnlation Netlist —>确定。选择Start Simulation保存最后的波形图,打开File —>close关闭工程。 底层文件: LIBRARY ieee;

USE ieee.std_logic_1164.ALL; ENTITY fadder IS PORT ( a, b,cin : IN STD_LOGIC; s, co : OUT STD_LOGIC ); END fadder; ARCHITECTURE arc1 OF fadder IS BEGIN s<=a xor b xor cin; co<=((a xor b)and cin)or(a and b); END arc1; 顶层文件: LIBRARY ieee; USE ieee.std_logic_1164.ALL; ENTITY adder4 IS PORT ( c0: IN STD_LOGIC; a,b : IN STD_LOGIC_VECTOR(3 DOWNTO 0); s : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

4位全加器实验报告

四位全加器 11微电子黄跃21 【实验目的】 采用modelsim集成开发环境,利用verilog硬件描述语言中行为描述模式、结构描述模式或数据流描述模式设计四位进位加法器。 【实验内容】 加法器是数字系统中的基本逻辑器件。多位加法器的构成有两种方式:并行进位和串行进位方式。并行进位加法器设有并行进位产生逻辑,运算速度快;串行进位方式是将全加器级联构成多位加法器。通常,并行加法器比串行级联加法器占用更多的资源,并且随着位数的增加,相同位数的并行加法器比串行加法器的资源占用差距也会越来越大。 实现多位二进制数相加的电路称为加法器,它能解决二进制中1+1=10的功能(当然还有 0+0、0+1、1+0). 【实验原理】

表2 全加器逻辑功能真值表 图4 全加器方框图 图5 全加器原理图 多位全加器连接可以是逐位进位,也可以是超前进位。逐位进位也称串行进位,其逻辑电路简单,但速度也较低。 四位全加器 如图9所示,四位全加器是由半加器和一位全加器组建而成: 图9 四位全加器原理图 【实验步骤】 (1)建立新工程项目: 打开modelsim软件,进入集成开发环境,点击File→New project建立一

个工程项目adder_4bit。 建立文本编辑文件: 点击File→New在该项目下新建Verilog源程序文件 并且输入源程序。 (2)编译和仿真工程项目: 在verilog主页面下,选择Compile— Compile All或点击工具栏上的按钮启动编译,直到project出现status栏全勾,即可进行仿真。 选择simulate - start simulate或点击工具栏上的按钮开始仿真,在跳出来的 start simulate框中选择work-test_adder_4bit测试模块,同时撤销Enable Optimisim前的勾,之后选择ok。 在sim-default框内右击选择test_adder_4bit,选择Add Wave,然后选择simulate-run-runall,观察波形,得出结论,仿真结束。 四位全加器 1、原理图设计 如图9所示,四位全加器是由半加器和一位全加器组建而成: 图9 四位全加器原理图 【仿真和测试结果】 下图为四位全加器的仿真图:

集成电路设计实验报告

集成电路设计 实验报告 时间:2011年12月

实验一原理图设计 一、实验目的 1.学会使用Unix操作系统 2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件 二:实验内容 使用schematic软件,设计出D触发器,设置好参数。 二、实验步骤 1、在桌面上点击Xstart图标 2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入 用户密码,在protocol:中选择telnet类型 3、点击菜单上的Run!,即可进入该用户unix界面 4、系统中用户名为“test9”,密码为test123456 5、在命令行中(提示符后,如:test22>)键入以下命令 icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。 出现的主窗口所示: 6、建立库(library):窗口分Library和Technology File两部分。Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。 7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输 入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。当然在Tool工具中还有很多别的

《集成电路设计》课程设计实验报告

《集成电路设计》课程设计实验报告 (前端设计部分) 课程设计题目:数字频率计 所在专业班级:电子科 作者姓名: 作者学号: 指导老师:

目录 (一)概述 2 2 一、设计要求2 二、设计原理 3 三、参量说明3 四、设计思路3 五、主要模块的功能如下4 六、4 七、程序运行及仿真结果4 八、有关用GW48-PK2中的数码管显示数据的几点说明5(三)方案分析 7 10 11

(一)概述 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。测量频率的方法有多种,数字频率计是其中一种。数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,是一种用十进制数字显示被测信号频率的数字测量仪器。数字频率计基本功能是测量诸如方波等其它各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 频率计的基本原理是应用一个频率稳定度高的时基脉冲,对比测量其它信号的频率。时基脉冲的周期越长,得到的频率值就越准确。通常情况下是计算每秒内待测信号的脉冲个数,此时我们称闸门时间是1秒。闸门时间也可以大于或小于1秒,闸门的时间越长,得到的频率值就越准确,但闸门的时间越长则每测一次频率的间隔就越长,闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。 本文内容粗略讲述了我们小组的整个设计过程及我在这个过程中的收获。讲述了数字频率计的工作原理以及各个组成部分,记述了在整个设计过程中对各个部分的设计思路、程序编写、以及对它们的调试、对调试结果的分析。 (二)设计方案 一、设计要求: ⑴设计一个数字频率计,对方波进行频率测量。 ⑵频率测量可以采用计算每秒内待测信号的脉冲个数的方法实现。

加法器实验报告文档2篇

加法器实验报告文档2篇 Adder experiment report document 编订:JinTai College

加法器实验报告文档2篇 小泰温馨提示:实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。本文档根据实验报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:加法器实验报告文档 2、篇章2:加法器的基本原理实验报告文档 篇章1:加法器实验报告文档 【实验名称】 【目的与要求】 1.掌握1位全加器的设计 2.学会1位加法器的扩展【实验内容】 1.设计1位全加器

2.将1位全加器扩展为4位全加器 3.使4位的全加器能做加减法运算 【操作步骤】 1.1位全加器的设计 (1)写出1位全加器的真值表 (2)根据真值表写出表达式并化简 (3)画出逻辑电路 (4)用quartusII进行功能仿真,检验逻辑电路是否正确,将仿真波形截图并粘贴于此 (5)如果电路设计正确,将该电路进行封装以用于下一个环节 2.将1位全加器扩展为4位全加器 (1)用1位全加器扩展为4位的全加器,画出电路图 (2)分别用两个4位补码的正数和负数验证加法器的正确性(注意这两 个数之和必须在4位补码的数的范围内,这两个数包括符号在内共4位),用quartusII进行功能仿真并对仿真结果进行截图。

3.将4位的全加器改进为可进行4位加法和减法的运算器 (1)在4位加法器的基础上,对电路进行修改,使该电路不仅能进行加 法运算而且还能进行减法运算。画出该电路 (2)分别用两个4位补码的正数和负数验证该电路的正确性(注意两个 数之和必须在4位补码的数的范围内),用quartusII 进行功能仿真并对仿真结果进行截图。 【附录】 篇章2:加法器的基本原理实验报告文档【按住Ctrl键点此返回目录】 一、实验目的 1、了解加法器的基本原理。掌握组合逻辑电路在Quartus Ⅱ中的图形输入方法及文本输入方法。 2、学习和掌握半加器、全加器的工作和设计原理

计组-加法器实验报告

半加器、全加器、串行进位加法器以及超前进位加法器 一、实验原理 1.一位半加器 A和B异或产生和Sum,与产生进位C 2.一位全加器 将一位半加器集成封装为halfadder元件,使用两个半加器构成一位的全加器 3.4位串行进位加法器 将一位全加器集成封装为Fulladder元件,使用四个构成串行进位加法器

4.超前进位加法器(4位) ⑴AddBlock 产生并行进位链中的ti(即Cthis)和di(即Cpass),以及本位结果Sum ⑵进位链(Cmaker) 四位一组并行进位链,假设与或非门的级延迟时间为1.5ty,与非门的延迟时间为1ty,在di和ti产生之后,只需2.5ty就可产生所有全部进位

⑶超前进位加法器 将以上二者结合起来即可完成,A和B各位作为各个AddBlock的输入,低一位的进位Ci-1作为本位AddBlock的C-1的输入。各个AddBlock输出的C_this和C_pass作为对应的Cmaker的thisi和passi的输入。

二、实验器材 QuartusII仿真软件,实验箱 三、实验结果 1.串行进位加法器结果 2.超前进位加法器结果

四、实验结果分析 1.实验仿真结果显示串行加法器比超前进位加法器快,部分原因应该是电路结构优化 不到位。另外由于计算的位数比较少,超前进位加法链结构较复杂,所以优势没体现出来,反倒运作的更慢一点。当位数增加的时候,超前进位加法器会比串行的更快。 2.波形稳定之前出现上下波动,应该与“竞争冒险”出现的情况类似,门的延迟和路径 的不同导致了信号变化时到达的时间有先有后,因此在最终结果形成前出现了脉冲尖峰和低谷;另外也可能部分原因由于电路结构优化的不到位所致

4位全加器实验报告.doc

四位全加器 11微电子黄跃1117426021 【实验目的】 采用modelsim集成开发环境,利用verilog硬件描述语言中行为描述模式、结构描述模式或数据流描述模式设计四位进位加法器。 【实验内容】 加法器是数字系统中的基本逻辑器件。多位加法器的构成有两种方式:并行进位和串行进位方式。并行进位加法器设有并行进位产生逻辑,运算速度快;串行进位方式是将全加器级联构成多位加法器。通常,并行加法器比串行级联加法器占用更多的资源,并且随着位数的增加,相同位数的并行加法器比串行加法器的资源占用差距也会越来越大。 实现多位二进制数相加的电路称为加法器,它能解决二进制中1+1=10的功能(当然还有 0+0、0+1、1+0). 【实验原理】 全加器 除本位两个数相加外,还要加上从低位来的进位数,称为全加器。图4为全 加器的方框图。图5全加器原理图。被加数A i 、加数B i 从低位向本位进位C i-1 作 为电路的输入,全加和S i 与向高位的进位C i 作为电路的输出。能实现全加运算 功能的电路称为全加电路。全加器的逻辑功能真值表如表2中所列。 信号输入端信号输出端 A i B i C i S i C i 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1

表2 全加器逻辑功能真值表 图4 全加器方框图 图5 全加器原理图 多位全加器连接可以是逐位进位,也可以是超前进位。逐位进位也称串行进位,其逻辑电路简单,但速度也较低。 四位全加器 如图9所示,四位全加器是由半加器和一位全加器组建而成: 图9 四位全加器原理图 【实验步骤】 (1)建立新工程项目: 打开modelsim软件,进入集成开发环境,点击File→New project建立一

cmos模拟集成电路设计实验报告

北京邮电大学 实验报告 实验题目:cmos模拟集成电路实验 姓名:何明枢 班级:2013211207 班内序号:19 学号:2013211007 指导老师:韩可 日期:2016 年 1 月16 日星期六

目录 实验一:共源级放大器性能分析 (1) 一、实验目的 (1) 二、实验内容 (1) 三、实验结果 (1) 四、实验结果分析 (3) 实验二:差分放大器设计 (4) 一、实验目的 (4) 二、实验要求 (4) 三、实验原理 (4) 四、实验结果 (5) 五、思考题 (6) 实验三:电流源负载差分放大器设计 (7) 一、实验目的 (7) 二、实验内容 (7) 三、差分放大器的设计方法 (7) 四、实验原理 (7) 五、实验结果 (9) 六、实验分析 (10) 实验五:共源共栅电流镜设计 (11) 一、实验目的 (11) 二、实验题目及要求 (11) 三、实验内容 (11) 四、实验原理 (11) 五、实验结果 (14) 六、电路工作状态分析 (15) 实验六:两级运算放大器设计 (17) 一、实验目的 (17) 二、实验要求 (17) 三、实验内容 (17) 四、实验原理 (21) 五、实验结果 (23) 六、思考题 (24) 七、实验结果分析 (24) 实验总结与体会 (26) 一、实验中遇到的的问题 (26) 二、实验体会 (26) 三、对课程的一些建议 (27)

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验内容 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、实验电路图

FPGA一位全加器设计实验报告

题目:1位全加器的设计 一.实验目的 1.熟悉QUARTUSII软件的使用; 2.熟悉实验硬件平台的使用; 3.掌握利用层次结构描述法设计电路。 二.实验原理 由于一位全加器可由两个一位半加器与一个或门构成,首先设计半加器电路,将其打包为半加器模块;然后在顶层调用半加器模块组成全加器电路;最后将全加器电路编译下载到实验箱,其中ain,bin,cin信号可采用实 验箱上SW0,SW1,SW2键作为输入,并将输 入的信号连接到红色LED管 LEDR0,LEDR1,LEDR2上便于观察,sum,cout 信号采用绿色发光二极管LEDG0,LEDG1来 显示。 三.实验步骤 1.在QUARTUSII软件下创建一工程,工程名为full_adder,芯片名为EP2C35F672C6; 2.新建Verilog语言文件,输入如下半加器Verilog语言源程序; module half_adder(a,b,s,co); input a,b; output s,co; wire s,co; assign co=a & b; assign s=a ^ b; Endmodule 3.保存半加器程序为,进行功能仿真、时序仿真,验证设计的正确性。 其初始值、功能仿真波形和时序仿真波形分别如下所示

4.选择菜单File→Create/Update→Create Symbol Files for current file,创建半加器模块; 5.新建一原理图文件,在原理图中调用半加器、或门模块和输入,输出引脚,按照图1所示连接电路。并将输入ain,bin,cin连接到FPGA的输出端,便于观察。完成后另保存full_adder。 电路图如下 6.对设计进行全编译,锁定引脚,然后分别进行功能与时序仿真,验证全加器的逻辑功能。其初始值、功能仿真波形和时序仿真波形分别如下所示

八位加法器设计实验报告

实验四:8位加法器设计实验 1.实验目的:熟悉利用quartus原理图输入方法设计简单组合电路,掌握层次化设计方法。 2.实验原理:一个八位加法器可以由八个全加器构成,加法器间的进位可以串行方式实现,即将低位加法器的进位输出cout与相邻的高位加法器的最低进位输入信号cin相接。 3.实验任务:完成半加器,全加器,八位加法器设计,使用例化语句,并将其设计成一个原件符号入库,做好程序设计,编译,程序仿真。 1)编译成功的半加器程序: module h_adder(a,b,so,co); input a,b; output so,co; assign so=a^b; assign co=a&b; endmodule 2)编译成功的全加器程序: module f_adder(ain,bin,cin,cout,sum); output cout,sum;input ain,bin,cin; wire net1,net2,net3; h_adder u1(ain,bin,net1,net2); h_adder u2(.a(net1),.so(sum),.b(cin),.co(net3));

or u3(cout,net2,net3); endmodule 3)编译成功的八位加法器程序: module f_adder8(ain,bin,cin,cout,sum); output [7:0]sum; output cout;input [7:0]ain,bin;input cin; wire cout0, cout1, cout2 ,cout3, cout4,cout5,cout6; f_adder u0(.ain(ain[0]),.bin(bin[0]),.cin(cin),.sum(sum[0]) ,.cout(cout0)); f_adder u1(.ain(ain[1]),.bin(bin[1]),.cin(cout0),.sum(sum[1 ]),.cout(cout1)); f_adder u2(.ain(ain[2]),.bin(bin[2]),.cin(cout1),.sum(sum[2 ]),.cout(cout2)); f_adder u3(.ain(ain[3]),.bin(bin[3]),.cin(cout2),.sum(sum[3 ]),.cout(cout3)); f_adder u4(.ain(ain[4]),.bin(bin[4]),.cin(cout3),.sum(sum[4

加法器实验报告

加法器实验报告 篇一:加法器实验报告 实验 __一__ 【实验名称】 1位加法器 【目的与要求】 1. 掌握1位全加器的设计 2. 学会1位加法器的扩展 【实验内容】 1. 设计1位全加器 2. 将1位全加器扩展为4位全加器 3. 使4位的全加器能做加减法运算 【操作步骤】 1. 1位全加器的设计 (1)写出1位全加器的真值表 (2)根据真值表写出表达式并化简 (3)画出逻辑电路 (4)用quartusII进行功能仿真,检验逻辑电路是否正确,将仿真波形截图并粘贴于此 (5)如果电路设计正确,将该电路进行封装以用于下一个环节 2. 将1位全加器扩展为4位全加器 (1)用1位全加器扩展为4位的全加器,画出电路图

(2)分别用两个4位补码的正数和负数验证加法器的正确性(注意这两 个数之和必须在4位补码的数的范围内,这两个数包括符号在内共4位),用quartusII进行功能仿真并对仿真结果进行截图。 3. 将4位的全加器改进为可进行4位加法和减法的运算器 (1)在4位加法器的基础上,对电路进行修改,使该电路不仅能进行加 法运算而且还能进行减法运算。画出该电路 (2)分别用两个4位补码的正数和负数验证该电路的正确性(注意两个 数之和必须在4位补码的数的范围内),用quartusII进行功能仿真并对仿真结果进行截图。 【附录】 篇二:加法器的基本原理实验报告 一、实验目的 1、了解加法器的基本原理。掌握组合逻辑电路在Quartus Ⅱ中的图形输入方法及文本输入方法。 2、学习和掌握半加器、全加器的工作和设计原理 3、熟悉EDA工具Quartus II和Modelsim的使用,能够熟练运用Vrilog HDL语言在Quartus II下进行工程开发、调试和仿真。

CMOS数字集成电路设计_八位加法器实验报告

CMOS数字集成电路设计课程设计报告 学院:****** 专业:****** 班级:****** 姓名:Wang Ke qin 指导老师:****** 学号:****** 日期:2012-5-30

目录 一、设计要求 (1) 二、设计思路 (1) 三、电路设计与验证 (2) (一)1位全加器的电路设计与验证 (2) 1)原理图设计 (2) 2)生成符号图 (2) 3)建立测试激励源 (2) 4)测试电路 (3) 5)波形仿真 (4) (二)4位全加器的电路设计与验证 (4) 1)原理图设计 (4) 2)生成符号图 (5) 3)建立测试激励源 (5) 4)测试电路 (6) 5)波形仿真 (6) (三)8位全加器的电路设计与验证 (7) 1)原理图设计 (7) 2)生成符号图 (7) 3)测试激励源 (8) 4)测试电路 (8) 5)波形仿真 (9) 6)电路参数 (11) 四、版图设计与验证 (13) (一)1位全加器的版图设计与验证 (13) 1)1位全加器的版图设计 (13) 2)1位全加器的DRC规则验证 (14) 3)1位全加器的LVS验证 (14) 4)错误及解决办法 (14) (二)4位全加器的版图设计与验证 (15) 1)4位全加器的版图设计 (15) 2)4位全加器的DRC规则验证 (16) 3)4位全加器的LVS验证 (16) 4)错误及解决办法 (16) (三)8位全加器的版图设计与验证 (17) 1)8位全加器的版图设计 (17) 2)8位全加器的DRC规则验证 (17) 3)8位全加器的LVS验证 (18) 4)错误及解决办法 (18) 五、设计总结 (18)

数字集成电路设计实验报告

哈尔滨理工大学数字集成电路设计实验报告 学院:应用科学学院 专业班级:电科12 - 1班 学号:32 姓名:周龙 指导教师:刘倩 2015年5月20日

实验一、反相器版图设计 1.实验目的 1)、熟悉mos晶体管版图结构及绘制步骤; 2)、熟悉反相器版图结构及版图仿真; 2. 实验内容 1)绘制PMOS布局图; 2)绘制NMOS布局图; 3)绘制反相器布局图并仿真; 3. 实验步骤 1、绘制PMOS布局图: (1) 绘制N Well图层;(2) 绘制Active图层; (3) 绘制P Select图层; (4) 绘制Poly图层; (5) 绘制Active Contact图层;(6) 绘制Metal1图层; (7) 设计规则检查;(8) 检查错误; (9) 修改错误; (10)截面观察; 2、绘制NMOS布局图: (1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览; 3、绘制反相器布局图: (1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点; (11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice 模拟; 4. 实验结果 nmos版图

加法器的基本原理实验报告

一、实验目的 1、了解加法器的基本原理。掌握组合逻辑电路在Quartus Ⅱ中的图形输入方法及文本输入方法。 2、学习和掌握半加器、全加器的工作和设计原理 3、熟悉EDA工具Quartus II和Modelsim的使用,能够熟练运用Vrilog HDL语言在Quartus II下进 行工程开发、调试和仿真。 4、掌握半加器设计方法 5、掌握全加器的工作原理和使用方法 二、实验内容 1、建立一个Project。 2、图形输入设计:要求用VHDL结构描述的方法设计一个半加器 3、进行编译,修改错误。 4、建立一个波形文件。(根据真值表) 5、对该VHDL程序进行功能仿真和时序仿真Simulation 三、实验步骤 1、启动QuartusⅡ 2、建立新工程NEW PROJECT 3、设定项目保存路径\项目名称\顶层实体名称 4、建立新文件Blok Diagram/Schematic File 5、保存文件FILE /SA VE 6、原理图设计输入 元件符号放置通过EDIT_>SYMBOL 插入元件或点击图标 元件复制 元件移动 元件转动 元件删除 管脚命名PIN_NAME 元件之间连线(直接连接,引线连接) 7、保存原理图 8 、编译:顶层文件设置,PROJECT_>Set as Top_Level 开始编译processing_>Start Compilation 编译有两种:全编译包括分析与综合(Analysis&Synthesis)、适配(Fitter)、编程(assembler)时序分析(Classical Timing Analysis)4个环节,而这4个环节各自对应相应菜单命令,可单独发布执行也可以分步执行

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

加法器实验报告标准范本

编号:QC/RE-KA5914 加法器实验报告标准范本 The new situation in operation, especially the emergency, makes the information open and transparent by reporting the details, and then forms a closer cooperative relationship. (工作汇报示范文本) 编订:________________________ 审批:________________________ 工作单位:________________________

加法器实验报告标准范本 使用指南:本报告文件适合在为规范管理,让所有人员增强自身的执行力,避免自身发展与集体的工 作规划相违背,按固定模式形成日常报告进行上交最终实现及时更新进度,快速掌握所需了解情况的 效果。文件可用word任意修改,可根据自己的情况编辑。 篇一:加法器实验报告 实验__一__ 【实验名称】 1位加法器 【目的与要求】 1. 掌握1位全加器的设计 2. 学会1位加法器的扩展 【实验内容】 1. 设计1位全加器 2. 将1位全加器扩展为4位全加器 3. 使4位的全加器能做加减法运算 【操作步骤】

1. 1位全加器的设计 (1)写出1位全加器的真值表 (2)根据真值表写出表达式并化简 (3)画出逻辑电路 (4)用quartusII进行功能仿真,检验逻辑电路是否正确,将仿真波形截图并粘贴于此 (5)如果电路设计正确,将该电路进行封装以用于下一个环节2. 将1位全加器扩展为4位全加器 (1)用1位全加器扩展为4位的全加器,画出电路图 (2)分别用两个4位补码的正数和负数验证加法器的正确性(注意这两 个数之和必须在4位补码的数的范围

福州大学集成电路版图设计实验报告

福州大学物信学院 《集成电路版图设计》 实验报告 姓名:席高照 学号:111000833 系别:物理与信息工程 专业:微电子学 年级:2010 指导老师:江浩

一、实验目的 1.掌握版图设计的基本理论。 2.掌握版图设计的常用技巧。 3.掌握定制集成电路的设计方法和流程。 4.熟悉Cadence Virtuoso Layout Edit软件的应用 5.学会用Cadence软件设计版图、版图的验证以及后仿真 6.熟悉Cadence软件和版图设计流程,减少版图设计过程中出现的错误。 二、实验要求 1.根据所提供的反相器电路和CMOS放大器的电路依据版图设计的规则绘制电路的版图,同时注意CMOS查分放大器电路的对称性以及电流密度(通过该电路的电流可能会达到5mA) 2.所设计的版图要通过DRC、LVS检测 三、有关于版图设计的基础知识 首先,设计版图的基础便是电路的基本原理,以及电路的工作特性,硅加工工艺的基础、以及通用版图的设计流程,之后要根据不同的工艺对应不同的设计规则,一般来说通用的版图设计流程为①制定版图规划记住要制定可能会被遗忘的特殊要求清单②设计实现考虑特殊要求及如何布线创建组元并对其进行布局③版图验证执行基于计算机的检查和目视检查,进行校正工作④最终步骤工程核查以及版图核查版图参数提取与后仿真 完成这些之后需要特别注意的是寄生参数噪声以及布局等的影响,具体是电路而定,在下面的实验步骤中会体现到这一点。 四、实验步骤 I.反相器部分: 反相器原理图:

反相器的基本原理:CMOS反相器由PMOS和NMOS构成,当输入高电平时,NMOS导通,输出低电平,当输入低电平时,PMOS导通,输出高电平。 注意事项: (1)画成插齿形状,增大了宽长比,可以提高电路速度 (2)尽可能使版图面积最小。面积越小,速度越高,功耗越小。 (3)尽可能减少寄生电容和寄生电阻。尽可能增加接触孔的数目可以减小接触电阻。(4)尽可能减少串扰,电荷分享。做好信号隔离。 反相器的版图: 原理图电路设计: 整体版图:

数电实验报告半加全加器

实验二 半加/减器与全加/减器 一、 实验目的: (1) 掌握全加器和半加器的逻辑功能。 (2) 熟悉集成加法器的使用方法。 (3) 了解算术运算电路的结构。 二、 实验设备: 1、 74LS00 (二输入端四与非门) 2、 74LS86 (二输入端四异或门) 3、 数字电路实验箱、导线若干。 Ver 4B 4A 4¥ 3B 3A 3Y 1A IB !Y 2A 2B 2Y GND (74LS86引脚图) 三、 实验原理: 两个二进制数相加,叫做半加,实现半加操作的电路,称为半加器。 A 表示 被加数,B 表示加数,S 表示半加和,Co 表示向高位的进位。 全加器能进行加数、被加数和低位来的信号相加,并给出该位的进位信号以 及和。 四、 实验内容: 用74LS00和74LS86实现半加器、全加器的逻辑电路功能。 (一)半加器、半减器 M=0寸实现半加,M=1时实现半减,真值表如下: (74LS00引脚 )

功能M A B S C 半加00000 00110 01010 01101 半减10000 10111 11010 11100 —s +/- ——co M (半加器图形符号) 2、 ⑴S真值表: 00011110 00110 11001 A ⑵C真值表: 00011110 00000 10101 C 二B(A二M)

(二)全加器、全减器 S CO C^BC i-1 ?(M 十 A )(B 十 C ) 、实验结果 半加器: S 二 AB AB = A 二 B C =B (A 二 M ) 全加器: S = A 二 B - C i-1 G 二GM C 2M CI B +/一

数字ic设计实验报告

数字集成电路设计 实验报告 实验名称二输入与非门的设计 一.实验目的 a)学习掌握版图设计过程中所需要的仿真软件

b)初步熟悉使用Linux系统 二.实验设备与软件 PC机,RedHat,Candence 三.实验过程 Ⅰ电路原理图设计 1.打开虚拟机VMware Workstation,进入Linux操作系统RedHat。 2.数据准备,将相应的数据文件拷贝至工作环境下,准备开始实验。 3.创建设计库,在设计库里建立一个schematic view,命名为,然后进入电路 图的编辑界面。 4.电路设计 设计一个二输入与非门,插入元器件,选择PDK库(xxxx35dg_XxXx)中的nmos_3p3、 pmos_3p3等器件。形成如下电路图,然后check and save,如下图。 图1.二输入与非门的电路图 5.制作二输入与非门的外观symbol Design->Create Cellview -> From Cellview,在弹出的界面,按ok后出现symbol Generation options,选择端口排放顺序和外观,然后按ok出现symbol编辑界面。按照需 要编辑成想要的符号外观,如下图。保存退出。

图2.与非门外观 6.建立仿真电路图 方法和前面的“建立schemtic view”的方法一样,但在调用单元时除了调用analogL 库中的电压源、(正弦)信号源等之外,将之前完成的二输入与非门调用到电路图中,如下图。 图3.仿真电路图 然后设置激励源电压输出信号为高电平为3.5v,低电平为0的方波信号。 7.启动仿真环境 在ADE中设置仿真器、仿真数据存放路径和工艺库,设置好后选择好要检测的信号在电路中的节点,添加到输出栏中,运行仿真得到仿真结果图。

quarters加法器实验报告

加法器数字逻辑实验报告 一、实验目的 1.熟悉Quartus II软件的基本操作,了解各种设计方法(原理图设计、文本设计、波形设计) 2.用VHDL语言设计一个加法器。 3.用VHDL语言设计串行加法器、并行加法器。 二、实验内容 1、熟悉QuartusⅡ软件的基本操作,了解各种设计输入方法 (原理图设计、文本设计、波形设计) 2、用VHDL语言设计加法器、串行全加器、并行全加器,再利 用波形编辑区进行逻辑功能仿真,以此验证电路的逻辑功能 是否正确,最终在FPGA芯片上下载验证逻辑实现。三、实验原理 1.全加器 用途:实现一位全加操作 逻辑图 真值表 X Y CIN S COUT

0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 VHDL程序 数据流描述: 波形图

2.四位串行加法器逻辑图 波形图

3.74283:4位先行进位全加器(4-Bit Full Adder) 逻辑框图 逻辑功能表 注:1、输入信号和输出信号采用两位对折列表,节省表格占用的空间,如:[A1/A3]对应的列取值相同,结果和值[Σ1/Σ3]对应的运算是Σ1=A1+B1和Σ3=A3+B3。请自行验证一下。 2、C2是低两位相加产生的半进位,C4是高两位相加后产

生的进位输出,C0是低位级加法器向本级加法器的进位输入。四、实验方法与步骤 实验方法: 采用基于FPGA进行数字逻辑电路设计的方法。 采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA电路板。 实验步骤: 1、建立工程project,并命名顶层文件为JFQ,按照实验箱上 FPGA的芯片名更改编程芯片的设置。操作是点击Assignment/Device,选取芯片的类型。选择“FLEX10K—— EPF10K20TI144_4” 2、编写VHDL源代码。打开QuartusⅡ软件平台,点击File中得 New建立一个VHDL文件。编写的文件名与实体名一致且为JFQ。VHDL如下:

北邮_模拟集成电路设计_期末实验报告

模拟CMOS集成电路课程 实验报告 姓名:杨珊 指导老师:韩可 学院:电子工程班级:2013211204 学号:2013210926

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验要求 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、电路图

当R=1K, 当R=10K,

四、实验结果分析 器件参数: NMOS管的宽长比为10,栅源之间所接电容1pF。 实验结果: 当Rd=1K时,gm=2735.7u,Av=2.73. 当Rd=10k时,gm=173.50u,Av=1.73. 由此可知,当R增大时,放大器的性能下降。 实验二:差分放大器设计 一、实验目的 1.掌握差分放大器的设计方法; 2.掌握差分放大器的调试与性能指标的测试方法。 二、实验要求 1.确定放大电路; 2.确定静态工作点Q; 3.确定电路其他参数。

4.电压放大倍数大于20dB ,尽量增大GBW ,设计差分放大器; 5.对所设计电路调试; 6.对电路性能指标进行测试仿真,并对测量结果进行验算和误差分析。 三、实验原理 平衡态下的小信号差动电压增益A β1= β2= β=μn C OX (W/L) 四、实验结果 定时,随着R 的增加,增益也减少。但是由于带宽的限制,我们不能无限地增大W/L.为保证带宽,选取W/L=30,R=30K 的情况下的数值,保证了带宽约为300MHZ ,可以符合系统的功能特性,实验结果见下图。 V D D A ==

四位全加器实验报告

《四位全加器》实验报告 题目:___ ____ 学号:___ _____姓名:____ _______ 教师:____ ____

1、实验内容 四位全加器的设计与实现。 2、实验目的与要求 利用MAX+plusII实现四位全加器并且验证实验内容。 3、实验环境 MAX+plus II 10.1 4、设计思路分析(包括需求分析、整体设计思路、概要设计) 一个4位全加器可以由4个1位全加器构成,加法器间的进位可以串行方式实现,即将低位加法器的进位输出cout与相邻的高位加法器的最低进位输入信号cin相接。 半加器描述: 根据半加器真值表可以画出半加器的电路图。 a b so Co 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 5、详细设计 A) 半加器设计: 1)新建一个设计文件,使用原理图设计方法设计。 2)将所需元件全部调入原理图编辑窗,所需元件依次为:input 2个;output 2个;and2 1个;xnor 1个;not 1个。 3)依照下图连接好各元件

4)保存为h-adder将当前设计文件设置成工程文件。 5)编译 B) 一位全加器的实现: 1)一位全加器可以由两个半加器和一个或门连接而成,因而可以根据半加器的电路原理图或真值表写出1位全加器的VHDL描述。. 2)依照以下原理图连接好全加器: 其中有两个原件(h-adder)为刚刚设计好的半加器.其他原件为:input 3个, output 2个, or2 1个. 3)保存为f-adder设置成工程文件并选择目标器件为EPF10K20TC144.4 4)编译 C) 四位全加器的实现 1) 4位全加器可以看做四个1位全加器级联而成,首先采用基本逻辑门设计一位全加器,而后通过多个1位全加器级联实现4位全加器。 2) 依照以下原理图连接好全加器。、

相关主题