搜档网
当前位置:搜档网 › 二次函数的三种表达形式

二次函数的三种表达形式

二次函数的三种表达形式
二次函数的三种表达形式

二次函数的三种表达形式:

①一般式:

y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,]

把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

②顶点式:

y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。

有时题目会指出让你用配方法把一般式化成顶点式。

例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。

解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。

注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。

具体可分为下面几种情况:

当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;

当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;

当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;

当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单

位可得到y=a(x-h)2+k的图象;

当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

③交点式:

y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

由一般式变为交点式的步骤:

二次函数

∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得),

∴y=ax2+bx+c

=a(x2+b/ax+c/a)

=a[x2-(x1+x2)x+x1?x2]

=a(x-x1)(x-x2).

重要概念:

a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。

a的绝对值越大开口就越小,a的绝对值越小开口就越大。

能灵活运用这三种方式求二次函数的解析式;

能熟练地运用二次函数在几何领域中的应用;

能熟练地运用二次函数解决实际问题。

二次函数解释式的求法:

就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。

1.巧取交点式法:

知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。

已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。

①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函

数的交点式。

例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。

点拨:

解设函数的解析式为y=a(x+2)(x-1),

∵过点(2,8),

∴8=a(2+2)(2-1)。

解得a=2,

∴抛物线的解析式为:

y=2(x+2)(x-1),

即y=2x2+2x-4。

②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。

例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。

点拨:

在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。

2.巧用顶点式:

顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.

①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。

点拨:

解∵顶点坐标为(-1,-2),

故设二次函数解析式为y=a(x+1)2-2 (a≠0)。

把点(1,10)代入上式,得10=a·(1+1)2-2。

∴a=3。

∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。

②典型例题二:

如果a>0,那么当时,y有最小值且y最小=;

如果a<0,那么,当时,y有最大值,且y最大=。

告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。

点拨:

析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。

由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。

∴抛物线的顶点为(4,-3)且过点(1,0)。

故可设函数解析式为y=a(x-4)2-3。

将(1,0)代入得0=a(1-4)2-3, 解得a=13.

∴y=13(x-4)2-3,即y=13x2-83x+73。

③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。

例如:

(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x =3.求这个二次函数的解析式.

(2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式.

(3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式.

(4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.

④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。

例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。

点拨:

解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。

∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,

∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。

学习二次函数的技巧和方法

二次函数专项知识分析 知识能力目标: 1、 经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数 学的方法描述变量之间的数量关系。 2、 能用表格、表达式、图象表示变量之间的二次函数关系,提高有条理的思考和语言 表达能力,能根据具体问题,选取适当的方法表示变量之间的二次函数关系。 3、 会作二次函数的图象,并能根据图象对二次函数的性质进行分析,逐步积累研究函数性质的经验。 4、 能根据二次函数的表达式确定二次函数的开口方向、对称轴和顶点坐标。 5、 理解一元二次方程与二次函数的关系,并能利用二次函数的图象求一元二次方程的 近似根。 考点一 二次函数的图象和性质 1、二次函数的定义和知识点:形如y=ax 2+bx+c(a ≠0,其中a 、b 、c 是常数)的函数为二次函数。 (1)、a 决定抛物线的开口方向和形状大小,当a >0时,开口向上,当a <0时开口向下;︱a ︱的值越大,开口就越小;当b=0时,抛物线的轴对称是Y 轴;当c=0时,抛物线经过原点;当b 和c 同时为0时,其顶点就是原点。 (2)、抛物线y=ax 2 +bx+c (a ≠0)的顶点坐标是??? ? ? ?--a b a c ,a b 4422,对称轴方程是直线x =a b 2- ,注意:对称轴是由a 和b 决定的,与c 无关,a 和b 同号时,对称轴在Y 轴的左边,a 和b 异号时,对称轴在Y 轴的右边,简称“同左异右”。 (3)、抛物线y=ax 2+bx+c (a ≠0)与Y 轴的交点坐标为(0,c );求与X 轴的两个交点坐标的方法是令y=0,然后解关于ax 2+bx+c=0的方程,得出的x 的解就是与x 轴的交点的横坐标。这两个交点关于抛物线的对称轴对称。 2、二次函数的图象和性质。 二次函数y=ax 2+bx+c (a ≠0)的图象是一条抛物线,a 决定抛物线的开口方向。当a >0时,抛物线的开口向上,图象有最低点;函数有最小值;且x >a b 2-时,y 随x 的增大而增大;当x <a b 2- 时, y 随x 的增大而减小;当a <0时,抛物线的开口向下, 图象有最高点,函数有最大值,且x >a b 2-时,y 随x 的增大而减小;当x <a b 2- 时, y 随x 的增大而增大。 注意:函数的最值就是顶点的纵坐标的值,即当 3、图象的平移:将二次函数y=ax 2(a ≠0)的图象进行平移,就是在顶点式y=a(x-h)2+k

二次函数的三种表达形式

二次函数地三种表达形式:①一般式: (≠、、为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出、、地值. ②顶点式: ()(≠、、为常数),顶点坐标为对称轴为直线,顶点地位置特征和图像地开口方向与函数地图像相同,当时,最值. 有时题目会指出让你用配方法把一般式化成顶点式. 例:已知二次函数地顶点()和另一任意点(),求地解析式. 解:设(),把()代入上式,解得(). 注意:与点在平面直角坐标系中地平移不同,二次函数平移后地顶点式中,>时,越大,图像地对称轴离轴越远,且在轴正方向上,不能因前是负号就简单地认为是向左平移. 具体可分为下面几种情况: 当>时,()地图象可由抛物线向右平行移动个单位得到; 当<时,()地图象可由抛物线向左平行移动个单位得到; 当>>时,将抛物线向右平行移动个单位,再向上移动个单位,就可以得到()地图象; 当><时,将抛物线向右平行移动个单位,再向下移动个单位可得到()地图象; 当<>时,将抛物线向左平行移动个单位,再向上移动个单位可得到()地图象; 当<<时,将抛物线向左平行移动个单位,再向下移动个单位可得到()地图象.

③交点式: ()() (≠) [仅限于与轴即有交点时地抛物线,即≥] . 已知抛物线与轴即有交点(,)和(,),我们可设()(),然后把第三点代入、中便可求出. 由一般式变为交点式地步骤: 二次函数 ∵,(由韦达定理得), ∴ () [()] ()(). 重要概念: ,,为常数,≠,且决定函数地开口方向.>时,开口方向向上; <时,开口方向向下.地绝对值可以决定开口大小. 地绝对值越大开口就越小,地绝对值越小开口就越大. 能灵活运用这三种方式求二次函数地解析式; 能熟练地运用二次函数在几何领域中地应用; 能熟练地运用二次函数解决实际问题.b5E2R。 二次函数解释式地求法: 就一般式++(其中,,为常数,且≠)而言,其中含有三个待定地系数,,.求二次函数地一般式时,必须要有三个独立地定量条件,来建立关于,,地方

九年级数学二次函数几种解析式的求法素材

二次函数的解析式求法 求二次函数的解析式这类题涉及面广,灵活性大,技巧性强,笔者结合近几年来的中考 试题,总结出几种解析式的求法,供同学们学习时参考。 一、 三点型 例1 已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函 数的解析式是_______。 分析 已知二次函数图象上的三个点,可设其解析式为y=ax 2 +bx+c,将三个点的坐标代 入,易得a=2,b=-3,c=5 。故所求函数解析式为y=2x 2-3x+5. 这种方法是将坐标代入y=ax 2+bx+c 后,把问题归结为解一个三元一次方程组,求出待定系 数 a, b , c, 进而获得解析式y=ax 2+bx+c. 二、交点型 例2 已知抛物线y=-2x 2+8x-9的顶点为A ,若二次函数y=ax 2+bx+c 的图像经过A 点, 且与x 轴交于B (0,0)、C (3,0)两点,试求这个二次函数的解析式。 分析 要求的二次函数的图象与x 轴的两个交点坐标,可设y=ax(x-3),再求也y=-2x 2+8x-9的顶点A (2,-1)。将A 点的坐标代入y=ax(x-3),得到a=21 ∴y=21x(x-3),即 y= x x 23212 . 三、顶点型 例 3 已知抛物线y=ax 2 +bx+c 的顶点是A(-1,4)且经过点(1,2)求其解析式。 分析 此类题型可设顶点坐标为(m,k),故解析式为y=a(x-m)2+k.在本题中可设y=a(x+1)2+4.

再将点(1,2)代入求得a=-21 ∴y=-,4)1(212++x 即y=-.272 12+-x x 由于题中只有一个待定的系数a ,将已知点代入即可求出,进而得到要求的解析式。 四、平移型 例 4 二次函数y=x 2 +bx+c 的图象向左平移两个单位,再向上平移3个单位得二次函 数,122+-=x x y 则b 与c 分别等于 (A)2,-2;(B)-6,6;(c)-8,14;(D)-8,18. 分析 逆用平移分式,将函数y=x 2 -2x+1的顶点(1,0)先向下平移3个单位,再向右平移 两个单位得原函数的图象的顶点为(3,-3)。 ∴y=x 3)3(22--=++x c bx =x .662 +-x ∴b=-6,c=6. 因此选(B ) 五、弦比型 例 5 已知二次函y=ax 2+bx+c 为x=2时有最大值2,其图象在X 轴上截得的线段长为 2,求这个二次函数的解析式。 分析 弦长型的问题有两种思路,一是利用对称性求出交点坐标,二是用弦比公式d=a ?

初中二次函数的解题方法

初中二次函数的解题方 法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

11.1班沈阳 14号 初中二次函数的解题方法 首先回顾一下初中二次函数的重要性质和基本表达式:一般式:y=a x2+bx+c(a≠0,a、b、c为常数),顶点坐 标为(-b/2a,4ac-b2/4a) ; 顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标 为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方 向与函数y=ax2的图像相同,有时题目会指出让你用配 方法把一般式化成顶点式。 交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0 有交点A(x1,0)和 B(x2,0)的抛物线,即b^2-4ac≥0] :由 一般式变为交点式的步骤:∵X1+x2=-b/a x1·x2=c/a ∴ y=ax2+bx+c=a(x2+b/ax+c/a)=a[﹙x2;-(x1+x2)x+x1x2]=a(x- x1)(x-x2) 重要概念:。 1.二次函数图像是轴对称图形。对称轴为直线x = h 或者x=-b/2a 对称轴与二次函数图像唯一的交点为二次 函数图像的顶点P。特别地,当h=0时,二次函数图像 的对称轴是y轴(即直线x=0);a,b同号,对称轴在y轴左 b=0,对称轴是y轴;a,b异号,对称轴在y轴右侧

2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当 h=0时,P在y轴上;当k=0时,P在x轴上。h=-b/2a k=(4ac-b2)/4a 3.二次项系数a决定二次函数图像的开口方向和大 小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。 有时也可以考虑图像的整体性质、特殊点的位置及二次方程的联系,结合韦达定理和判别式定理确定a,b,c, △及系数的代数符号。 常见问题 1、抛物线中特殊点组成的三角形问题:抛物线线中的特殊三角形主要有两类:(1)、抛物线与x轴的两个交点和与y轴的交点所组成的三角形;(2)、抛物线与x轴的两个交点和顶点所组成的三角形。 解决策略是:应用平面几何的有关定理,如等腰三角形的三线合一、直角三角形的勾股定理、射影定理、斜边中线定理等结合两点间的距离公式及二次方程的求根公式、判别式定理、韦达定理等知识求解。用到的数学思想方法有数形结合、分类讨论、转化等。 2、二次函数的定点和动点问题:求动点运动所形成的直线或曲线一般采用消去参数法,即消去参数以后的方程即为动点需满足的函数解析式。

求二次函数解析式 综合题 练习+答案

求二次函数解析式:综合题 例1 已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式. 分析:本题可以利用抛物线的一般式来求解,但因 A(-1,0)、B(1,0)是抛物线与x轴的交点,因此有更简捷的解法. 如果抛物线y=ax2+bx+c与x轴(即y=0)有交点(x1,0),(x2,0).那么显然有 ∴x1、x2是一元二次方程ax2+bx+c=0的两个根.因此,有 ax2+bx+c=a(x-x1)(x-x2) ∴抛物线的解析式为 y=a(x-x1)(x-x2) (*) (其中x1、x2是抛物线与x轴交点的横坐标) 我们将(*)称为抛物线的两根式.

对于本例利用两根式来解则更为方便. 解:∵抛物线与x轴交于A(-1,0)、B(1,0) ∴设抛物线的解析式为 y=a(x+1)(x-1) 又∵抛物线过M(0,1),将x=0,y=1代入上式,解得a=-1 ∴函数解析式为y=-x2+1. 说明:一般地,对于求二次函数解析式的问题,可以小结如下: ①三项条件确定二次函数; ②求二次函数解析式的一般方法是待定系数法; ③二次函数的解析式有三种形式: 究竟选用哪种形式,要根据具体条件来决定. 例2 由右边图象写出二次函数的解析式.

分析:看图时要注意特殊点.例如顶点,图象与坐标轴的交点. 解:由图象知抛物线对称轴x=-1,顶点坐标(-1,2),过原点(0,0)或过点(-2,0). 设解析式为y=a(x+1)2+2 ∵过原点(0,0),∴a+2=0,a=-2.故解析式为 y=-2(x+1)2+2,即y=-2x2-4x. 说明:已知顶点坐标可以设顶点式. 本题也可设成一般式y=ax2+bx+c,∵过顶点(-1,2)和过原点(0,0),

二次函数综合题解题方法与技巧

图1 图 2 压轴题解题技巧练习 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、 动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、 x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的 点Q 的坐标;若不存在,请说明理由. 二、圆 2. 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l. (1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 . 2

二次函数的三种表达形式.

二次函数的三种表达形式: ①一般式: y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c =a(x2+b/ax+c/a) =a[x2-(x1+x2)x+x1?x2] =a(x-x1)(x-x2). 重要概念: a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。 a的绝对值越大开口就越小,a的绝对值越小开口就越大。 能灵活运用这三种方式求二次函数的解析式;

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数表达式三种形式练习题

二次函数表达式三种形式 一.选择题(共12小题) 1.(2015?永春县校级质检)把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.(2014?XX模拟)将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为()A.B. C.D. 3.(2015秋?XX校级期中)与y=2(x﹣1)2+3形状相同的抛物线解析式为() A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.(2015秋?XX校级月考)一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.(2015秋?禹城市校级月考)已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3

6.(2014秋?岳池县期末)顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.(2014秋?招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.(2013秋?青羊区校级期中)若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.(2013秋?江北区期末)如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是() A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.(2014?XX县校级模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的 值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.(2015?XX模拟)二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125B.4 C.2 D.0 12.(2015?宜城市模拟)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣

求二次函数解析式的四种方法详解

求二次函数解析式的四种基本方法 二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。熟练地求出二次函数的解析式是解决二次函数问题的重要保证。 二次函数的解析式有三种基本形式: 1、一般式:y=ax 2 +bx+c (a ≠0)。 2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。 3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。 4.对称点式: y=a(x -x 1)(x -x 2)+m (a ≠0) 求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式: 1、若给出抛物线上任意三点,通常可设一般式。 2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。 3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。 4.若已知二次函数图象上的两个对称点(x 1、m)(x 2、m),则设成: y=a(x -x 1)(x -x 2)+m (a ≠0),再将另一个坐标代入式子中,求出a 的值,再化成一般形式即可。 探究问题,典例指津: 例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0)。 解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0) 依题意得:?????=++-=-=+-145c b a c c b a 解这个方程组得:?? ???-===432c b a ∴这个二次函数的解析式为y=2x 2 +3x -4。 例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式。 分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点。 解:依题意,设这个二次函数的解析式为y=a(x -4)2 -1 (a ≠0) 又抛物线与y 轴交于点)3,0(。

求二次函数解析式的几种方法

沁乐教育沁心学习乐在其中 2015年秋季九年级数学辅导资料第二讲函数图像性质及应用 学校:姓名:

二次函数的图象与基本性质 (一)、知识点回顾 【知识点一:二次函数的基本性质】 【知识点二:抛物线的图像与a、b、c关系】 (1)a决定抛物线的开口方向:a>0,开口向________ ;a<0,开口向________ (2)c决定抛物线与________的位置:c>0,图像与y轴的交点在___________;

c=0,图像与y 轴的交点在___________;c<0,图像与y 轴的交点在___________; (3)a ,b 决定抛物线对称轴的位置,我们总结简称为:___________; (4)△=b 2-4ac 决定抛物线与________交点情况: △=b 2-4ac ?? ? ??<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000 【知识点三:二次函数的平移】 设0,0>>n m ,将二次函数2 ax y =向右平移m 个单位得到___________;向左平移m 个 单位得到___________;向上平移n 个单位得到___________;向下平移n 个单位得到___________。简单总结为___________,___________。 (注意:要用以上方法对二次函数图象进行平移,要先化成顶点式再操作) 【知识点四:二次函数与一元二次方程的关系】 二次函数)0(2 ≠++=a c bx ax y ,当0=y 时,即变为一元二次方程 )0(02≠=++a c bx ax ,从图象上来说,二次函数)0(2≠++=a c bx ax y 的图象与x 轴的 交点的横坐标x 的值就是方程)0(02 ≠=++a c bx ax 的根。 【知识点五:二次函数解析式的求法】 (1) 知抛物线三点,可以选用一般式:c bx ax y ++=2,把三点代入表达式列三元一次 方程组求解; (2) 知抛物线顶点或对称轴、最大(小)值可选用顶点式:k h x a y +-=2 )(;其中抛 物线顶点是),(k h ; (3) 知抛物线与x 轴的交点坐标为)0,(),0,(21x x 可选用交点式:

二次函数表达式三种形式的联系与区别

二次函数表达式三种形式的联系与区别 二次函数的表达式有三种形式,即一般式、顶点式、交点式。它们之间各不相同,而又相互联系。 一、一般式:)0(2≠++=a c bx a y x 优点:二次项系数a ,一次项系数b ,常数项c ,三系数一目了然。 缺点:不容易看出顶点坐标和对称轴 二、顶点式:)0(4422)2(≠-+=+a a ac a y b a b x 优点:很容易看出顶点坐标和对称轴 缺点:不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 三、交点式:))((2 1x x x x a y --= 优点:很容易看出图像与x 轴的交点坐标(x 1,0)和(x 2 ,0) 缺点:(1)不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 (2)当图像不与x 轴相交时,此式不成立。 四、三种表达式之间的联系 (1)一般式转化为顶点式 利用配方法转化(一提、二配、三整理) a ac a a ac a a c a x a b a x a b a x a b a c bx a y b a b x b a b x a b a b x x x x 44444][[)2222222222)2()2()2()2(-+=+-=+-++=++ =+ =++=++(

(2)顶点式转化为一般式 展开整理即可 c bx a a ac bx a a ac a bx a a ac x a b a a a ac a y x x b b x b a b x b a b x ++=++=-+++=-+++=≠-+=+222222222224444444)4()0(44)2( (3)交点式转化为一般式 展开,利用韦达定理整理可得 二次函数)0(2≠++=a c bx a y x 与x 轴有两交点(x 1,0)和(x 2,0) 则x 1 和x 2为方程02=++c bx a x 的两个根 ] )([)())((212122121221x x x x x x x x x x x x x a x x a x x a y ++-=+--=--= 由韦达定理得: a c a b x x x x =-=+2121 代入得: c bx a a c x a b a x a y x x x x x x x ++=+--=++-=2221212])([] )([ 三种表达式视情况而定; (1)不知道特殊点的坐标时,常用一般式来表示; (2)知道顶点坐标,常用顶点式来表示; (3)如果知道图像与x 轴的交点坐标,常用交点式来表示。 上述三种情况要灵活运用才能更好地理解二次函数的解析式。

二次函数典型题解题技巧

二次函数典型题解题技巧

————————————————————————————————作者:————————————————————————————————日期:

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C、A、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD ∥x 轴且点C(0,3), ∴设点D 的坐标为(x ,3) . ∵直线y = x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M(-1,4). ∴设抛物线的解析式为 2(1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP ⊥AC 于点P,MN⊥AB 于点N. 由(1)中抛物线 223y x x =--+可得 点A(-3,0),B(1,0), ∴AB=4,AO =C O=3,A C=32. ∴∠PAB =45°. ∵∠ABP=45°,∴P A=PB=22. ∴P C=A C-PA =2. 在Rt△BPC 中,tan ∠BCP=PB PC =2.

二次函数表达式三种形式练习题

1.把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为() A.B.C.D. 3.与y=2(x﹣1)2+3形状相同的抛物线为()A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3 6.顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是()A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 12.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣ 13.如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它 的解析式为. 14.二次函数的图象如图所示,则其解析式为. 15.若函数y=(m2﹣4)x4+(m﹣2)x2的图象是顶点在原点,对称轴是y轴的抛物线,则 m=. 16.二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x轴的距离为2, 则该二次函数的解析式为. 17.如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0), 那么它对应的函数解析式是. 18.二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(0,﹣3)、C(4,5)三点,求出 抛物线解析式. 19.二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为. 20.如图,一个二次函数的图象经过点A,C,B三点,点A的坐标为(﹣1,0),点B的坐标为 (4,0),点C在y轴的正半轴上,且AB=OC.则这个二次函数的解析式是. 21.坐标平面内向上的抛物线y=a(x+2)(x﹣8)与x轴交于A、B两点,与y轴交于C点,若 ∠ACB=90°,则a的值是.

二次函数的三种表达形式

?二次函数的三种表达形式: ?①一般式: ?y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] ?把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c 的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到; 当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;

当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c

专题09 一元二次函数的三种表示方式(解析版)

专题09 一元二次函数的三种表示方式 一、知识点精讲 通过上一小节的学习,我们知道,一元二次函数可以表示成以下三种形式: 1.一般式:y=ax2+bx+c(a≠0); 2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k). 除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式, 我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数. 当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.① 并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac 存在下列关系: (1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立. (2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立. (3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0), 则x1,x2是方程ax2+bx+c=0的两根,所以x1+x2= b a -,x1x2= c a ,即 b a =-(x1+x2), c a =x1x2.所 以,y=ax2+bx+c=a(2b c x x a a ++) = a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论: 若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法: 3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标. 今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题. 二、典例精析 【典例1】已知某一元二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),

二次函数求最值方法总结

二次函数求最值方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

XX 教育辅导教案 学生姓名 性别 年级 学科 数学 授课教师 上课时间 年 月 日 第( )次课 共( )次课 课时: 课时 教学课题 二次函数求最大值和最小值 教学目标 利用二次函数的图像和性质特点,求函数的最大值和最小值 教学重点 与难点 含有参数的二次函数最值求解。 课堂引入: 1) 由二次函数应用题最值求解问题引申至一般二次函数求最值问题,阐述二次函数求最值问题 方法的重要性(初高中衔接、高中必修一重点学习内容)。 2) 当22x -≤≤时,求函数223y x x =--的最大值和最小值. (引导学生用初中所学的二次函数知识求解,为下面引出二次函数求最值方法总结做铺垫) 二次函数求最值方法总结: 一、设)0(2≠++=a c bx ax y ,当n x m ≤≤时,求y 的最大值与最小值。 1、当0>a 时,它的图象是开口向上的抛物线,数形结合可求得y 的最值: 1) 当n a b m ≤-≤2时,a b x 2-=时,y 取最小值:a b a c y 442min -=;y 的最大值在m x =或n x =处取到。 2) 若m a b <-2,二次函数在n x m ≤≤时的函数图像是递增的,则m x =时,y 取最小值;则n x =时,y 取最大值。 若n a b >- 2,二次函数在n x m ≤≤时的函数图像是递减的,则n x =时,y 取最小值;则m x =时,y 取最大值。

【变式训练】 变式1、当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,1max -=y ,当2x =时,5min -=y . 【例题解析】 例2、当1t x t ≤≤+时,求函数21522 y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522 y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+?≤≤时: 当1x =时,2min 1511322 y =?--=-; (3) 当对称轴在所给范围右侧.即110t t +

二次函数配方法练习

二次函数配方法练习 This model paper was revised by the Standardization Office on December 10, 2020

1.抛物线y =2x 2-3x -5配方后的解析式为 顶点坐标为 ______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大. 2.抛物线y =3-2x -x 2的顶点坐标是______,配方后为 它与x 轴的交点坐标是______,与y 轴的交点坐标是______. 3.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______. 4.已知二次函数y =x 2+4x -3,配方后为 当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0. 5.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______. 6.抛物线y =2x 2如何变化得到抛物线y =2(x -3)2+4.请用两种方法变换。 7.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( ) A .向下,(0,4) B .向下,(0,-4) C .向上,(0,4) D .向上,(0,-4) 8.抛物线x x y --=22 1的顶点坐标是( )

相关主题