搜档网
当前位置:搜档网 › 热电偶工作及温度补偿原理

热电偶工作及温度补偿原理

热电偶工作及温度补偿原理
热电偶工作及温度补偿原理

热电偶(图)

K热电偶冷端温度补偿实验

实验一K型热电偶冷端温度补偿实验 一、实验目的: 了解热电偶冷端温度补偿器的原理与补偿方法。 二、需用器件与单元: 主机箱中的智能调节器单元、电压表、转速调节0~24V电源、15V直流稳压电源; 温度源、Pt100热电阻(温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板;压力传感器实验模板(作为直流mV信号发生器)、冷端温度补偿器、补偿器专用+5V直流稳压电源。 三、基本原理: 本实验为K分度热电偶。冷端补偿器外形为一个小方盒,有4个引线端子,4、3接+5V专用电源,2、1输出补偿热电势信号;它的内部是一个不平衡电桥,如图33-1所示。这个直流电桥称冷端温度补偿器,电桥在0oC时达到平衡(亦有20oC平衡)。当热电偶温度升高时(>0oC)热电偶回路电势Uab下降,由于补偿器中,PN呈负温度系数,其正向压降随温度升高而下降,促使2端电位上升,使Vi不变达到补偿目的。 图1 热电偶冷端温度补偿器原理 四、实验步骤: 1、温度传感器实验模板放大器调零:按图2示意接线。将主机箱上的电压表量程切换开关打到2V档,检查接线无误后合上主机箱电源开关,调节温度传感器实验模板中的Rw2(增益电位器)顺时针转到底,再调节Rw3(调零电位器)使主机箱的电压表显示为0V(零位调好后Rw3电位器旋钮位置不要改动)。关闭主机箱电源。 图2 温度传感器实验模板放大器调零接线示意图

2、调节温度传感器实验模板放大器的增益A为100倍:利用压力传感器实验模板的零位偏移电压作为温度实验模板放大器的输入信号来确定温度实验模板放大器的增益A。按图2示意接线,检查接线无误后合上主机箱电源开关,调节压力传感器实验模板上的Rw2(调零电位器),使压力传感器实验模板中的放大器输出电压为0.01V(用主机箱电压表测量);再将0.01V电压输入到温度传感器实验模板的放大器中,再调节温度传感器实验模板中的增益电位器Rw2(小心:不要误碰调零电位器Rw3),使温度传感器实验模板放大器的输出电压为1.000V(增益调好后Rw2电位器旋钮不要改动)。关闭电源。 图3 调节温度实验模板放大器增益A接线示意图 3、将主机箱上的转速调节旋钮(0~24V)顺时针旋转到底(24V);将调节控制对象开关拨到Rt.Vi位置。将冷端补偿器的专用电源插头插到主机箱侧面的交流220V插座上。按图33-4示意接线,检查接线无误后合上主机箱电源开关,再合上调节器电源开关和温度源电源开关,将温度源控制在60oC,待电压表显示上升到平衡点时记录数据。再按表1中温度值设置温度源的温度并将放大器的相应输出值填入表中: 温度设定方法,按住▲键约三秒,仪表进入“SP”给定值(实验值)设置,此时可按上述方法按↓、↑、←三键设定实验值,使SV窗显示值与AL-1(上限报警)值一致(如100 oC)。 图4 K热电偶冷端温度补偿实验接线示意图

热电偶冷端温度补偿的方法

热电偶冷端温度补偿的方法 1.热电偶热电势的大小与其两端的温度有关,其温度-热电势关系曲线是在冷端温度为0℃时分度的。在实际应用中,由于热电偶冷端暴露在空间受到周围环境温度的影响,所以测温中的冷端温度不可能保持在0℃不变,而热偶电势既决定于热端温度,也决定于冷端温度。所以,如果冷端温度自由变化,必然会引起测量误差。为了消除这种误差,必须进行冷端温度补偿。可以采用以下的方法: 1)补偿导线延长法补偿导线是特种导线,用于热电偶和二次仪表间的信号传输,能够消除热电偶冷端温度变化引起的测量误差,保证仪表对介质温度的精确测量。补偿导线在一定温度范围内与所连接的热电偶具有相同或十分相近的热电特性, 根据热电偶补偿导线标准,不同的热电偶所配用的补偿导线也不同,并且有正负极性之分,各种补偿导线的正极均为红色,负极的不同颜色分别代表不同的分度号和导线。使用时注意与型号匹配,并且电极不能接错,否则将产生较大的测量误差。常用的热电偶补偿导线见表2-1-11 表2-1- 1 型号热电偶分度号 线芯材料绝缘层颜色正极负极正极负极 SC S(铂铑10-铂)SPC(铜)SNC(铜镍)红绿KC K(镍铬-镍硅)KPC(铜)KNC(康铜)红蓝KX K(镍铬-镍硅)KPX(镍铬)KNX(镍硅)红黑EX E(镍铬-康铜)EPX(镍铬)ENX(铜镍)红棕 JX J(铁-康铜)JPX(铁)JNX(铜镍)红紫TX T(铜-康铜)TPX(铜)TNX(铜镍)红白 2)冰点法各种热电偶的分度表都是在冷端为0℃的情况下制定的,如果把冷端置于能保持0℃的冰点槽内,则测得的热电势就代表被测的实际温度。冰点法一般在实验室的精密测量中使用。 3)计算修正法用计算修正法来补偿冷端温度变化的影响只适用于实验室或临时性测温的情况,而对于现场的连续测量是不实用的。 4)仪表零点校正法如果热电偶的冷端温度比较恒定,与之配用的显示仪表调整又比较方便,则可采用此种方法来实现冷端温度补偿。 5)补偿电桥法补偿电桥法是采用不平衡电桥产生的直流毫伏信号,来补偿热电偶因冷端温度变化而引起的热电势变化,有称为冷端补偿器。 2.有关热电偶回路的几个结论: 1)如组成热电偶回路的两种导体材料相同,则无论热电偶两端温度如何,热电偶回路内的总热电势为零。 2)如热电偶两端温度相同,T=T0,则尽管两热电偶丝的材料不同,热电偶回路内的总热电势亦为零。 3)热电偶的热电势与A、B材料中间温度无关,只与端点温度T1、T0有关。 4)在热电偶回路中接入第三种材料的导线,只要第三种导线两端温度相同,第三种导线的引入不会影响热电偶的热电势。

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

K型热电偶冷端补偿方案

K型热电偶冷端补偿方案 时间:2007-12-07 来源: 作者:郭锐徐玉斌点击:1742 字体大小:【大中小】 1 引言 在SMT 行业中为满足自动化大批量生产的需要,绝大多数企业采用隧道式连续传送结构的回流焊炉。这种回流焊炉普遍至少具有3 个温区。由于印制板上的温度变化远比仪表的显示温度复杂得多,因此对于回流焊炉操作者来说只凭经验,很难在短时间内把这种回流焊 炉的温度和传动速度调节到最佳状态。 因此,须将细丝状K型热电偶的探头用焊料或高温胶粘剂固定在印制板的监测点上,温度记录器和印制板一起随炉子的传送网或传送链从炉膛中穿过,与此同时,记录器自动以预定 时间间隔采样热电偶的温度信号,并将随时间变化的温度数据保存在记录器的非易失性存储器中。在此过程中, 温度记录仪的外界温度可能达到270 ℃以上,其内部温度采取必要的隔热技术后也在60 ℃左右。而热电偶的理论冷端温度为纯水冰点温度(0 ℃) ,故而必须对此给予补偿。挢轍钨癆泼殯赊鋯褲斋純餼語優參嬷皱劝圓潴脔鹵躦鄉槨饲濤阊嗩蠼镏窜詫鸳赕颟戶贏实積历銼狮牽镣餃讽驗鋨缚爭擋苹繃钯层偉钍嘯稳鹈闭躕为红侠櫻譫牽驚魯輔骋辑檸遜遲燁懌痫潑砻刍諏虾讲飑塵攏葦靥緬覓钋糾晋 嗇愛騁錯。 2 方案选择 2.1 硬件系统方案 现有产品多采用3 种方法测量冷端环境温度。 (1) 直接借用CPU 内部温度传感器,如Cygnal 的CF020。然而,首先记录仪内部温度场并不均匀,热点偶补偿线接入点的温度与CPU 的表面温度存在差值;其次,集成温度传感器的灵敏度一般为0.1 ℃,精度±2 ℃,难以满足测量要求。 (2) 使用新型智能温度传感器,如美信DS1626,12bit 采样精度,3 线串行数据通信, 0 ℃to + 70 ℃,2.7V

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

实验4 E型热电偶冷端温度补偿实验

热电偶冷端温度补偿实验 (请先仔细阅读温控仪操作说明) 一、实验目的: 了解热电偶冷(自由)端温度补偿的原理与方法。 二、基本原理: 由实验四可知,热电偶是一种温差测量传感器。为直接反映温度场的摄氏温度值,需对其自由端进行温度补偿。热电偶冷端温度补偿的方法有:冰水法、恒温槽法、自动补偿法、电桥平衡法,常用的是电桥平衡法(图5-1),它是在热电偶和测温装置之间接入一个直流电桥,称为冷端温度补偿器,补偿器电桥在0℃时达到平衡(亦有20℃平衡)。当热电偶自由端(a、b)温度升高时(>0℃)热电偶回路的电势Uab下降,由于补偿器中PN结呈负温度系数,其正向压降随温度升高而下降,促使Uab上升,其值正好补偿热电偶因自由端温度升高而降低的电势,达到补偿目的。 三、实验设备及器材: 温度控制仪SET300、温度传感器实验模板、K.E热电偶、冷端温度补偿器、外接+5V电源适配器。 四、实验步骤: 1、温控仪电源先别开启,将热电偶插到温度控制仪两个传感器插孔中任意一个插孔中,(K型、E 型已装在一个护套内),K型热电偶的自由端接到温控仪面板上的E K端,用它作为标准传感器,配合温控仪用于设定温度,注意识别K型、E型引线标记及正极、负极不要接错; 2、将E型热电偶的自由端(蓝、绿线)接到数字万用表红、黑表笔,打开万用表电源开关,将量程设置到DC200mV挡,观察万用表的电压显示值,若为负,交换E型热电偶与万用表连接的蓝、绿线,然后记录下此时室温下对应的电压读数V于表5-1中; 3、开启温控仪电源,按表5-1对温控仪进行温度设置,当PV窗口显示值达到设定的温度值,且稳定之后,记录下该温度下对应输出的电压值V,并填入表5-1。 表5-1:E型热电偶测温数据(补偿前) 4、关闭温控仪电源,将E型热电偶从温控仪顶部加热孔中取出,让其充分冷却至室温; 5、将冷端温度补偿器(0℃)与冷却后的E型热电偶按图5-1相连,在补偿器④、③端加上补偿器电源+5V(用外接电源适配器),将冷端补偿器的①、②端接入数字电压表,记录下室温时对应的电压表读数V; 6、将E型热电偶重新插入温度控制仪加热插孔中,开启温控仪电源,按表5-2对温控仪进行温度设置,记录下各温度值下对应的万用表电压值,填入表5-2中。

热电偶测温原理及冷端温度补偿方法

热电偶测温原理及冷端温度补偿方法 院系:化工学院化机系 班级: 姓名: 学号:

热电偶测温原理及冷端温度补偿方法热电偶温度计是以热电效应为基础的测温仪表,温精确度高,显示仪表配合,广泛用来测量气体、蒸汽、液体等介质-200℃~16000℃范围内的温度,殊情况下可测-2700℃~28000℃,态响应快,惯性小,械强度高,压性能好,高温可达28000℃,震性能好,且便于信号的远距离传送和实现多点切换测量,自动记录和集中控制,能稳定、测量精度高、准确可靠、使用寿命长、结构简单、制造容易、装配简单、更换方便和使用维护方便,测量范围广,可作为标准计量,量值传递之用,以在科学研究和工业生产中应用广泛,为测温仪表,建筑环境与设备工程中应用也非常广泛。 热电偶测温的测温系统的热电偶温度计由热电偶、电测仪表和连接导线组成。测温原理基于物理学中“热电效应”现象,是把任意两种不同的导体(或半导体)连接成闭合回路,果两个接点的温度不同,回路中就会产生热电势,热电流,就是“热电效应”。热电偶温度计就是利用该原理,两种不同的金属材料一端焊接而成的,接的一端叫测量端(也叫热端或工作端),未焊接的一端叫参考端(也叫冷端或自由端),如果参考端的温度恒定不变,热电势的大小和方向就只与这两种材料的特性和测量端的温度有关,热电势和温度之间有一个固定的函数关系,用这个关系,要测量出热电势的大小,配以测量毫伏级电势信号的仪表或变送器就实现了温度的测量或温度信号的变换。 在进行温度测量时,热电偶热端插入被测温的设备或管道中,其热端感受被测介质的温度,冷端置于恒定的温度之下,用连接导线连

接电气测量仪表。根据热电偶基本定律之一的中间导体定律,热电偶回路中接入第三种金属材料时,要该材料两个接点的温度相同,电偶所产生的热电势将保持不变,不受第三种金属接入回路中的影响。因此,热电偶测温时,接入测量仪表,得热电动势后,可知道被测介质的温度。 热电偶测温系统的冷端温度补偿方法:由热电偶测温原理可知,电势的大小与热电偶两端的温度有关。只有当热电偶冷端温度保持不变时,电势才是被测温度的单值函数。因此,准确地测量温度,须使其参考端温度恒定,电偶冷端最好应保持0℃,般固定在0℃,在现场条件下使用的仪表则难以实现,此必须对其参考端进行温度补偿修正,确保温度测量的准确性。 工业上常用的各种热电偶的温度———热电势关系曲线(或数据)是在冷端温度为0℃时得到的,它配套的仪表也是依据这一关系进行刻度的。但在实际应用中,冷端温度往往高于0℃,不稳定,环境温度变化而改变,使热电偶产生的热电势偏小并随之变化,而造成测量误差引入。因此,热电偶参考端温度不为0℃,是一个波动的温度时,须采用恰当的补偿方法准确修正。 热电偶参比端温度的处理方法有:(1)补偿导线法(2)参比端温度测量计算法(3)参比端恒温法(4)补偿电桥法。补偿导线是在一定的温度范围内(一般为0~100℃),有与所匹配热电偶热电动势相同标称值的一对带有绝缘层的导线,于连接热电偶和测量显示仪表装置,补偿它们与热电偶连接处的温度变化所产生的误差。延长了

热电偶、热电阻工作原理及特点

热电偶、热电阻工作原理及特点 热电偶工作原理 将两种不同的金属导体焊接在一起,构成闭合回路,如在焊接端(即测量端)加热产生温差,则在回路中就会产生热电动势,此种现象称为塞贝克效应(Seebeck-effect)。如将另一端(即参考端)温度保持一定(一般为0℃),那么回路的热电动势则变成测量端温度的单值函数。这种以测量热电动势的方法来测量温度的元件,即两种成对的金属导体,称为热电偶。 热电偶产生的热电动势,其大小仅与热电极材料及两端温差有关,与热电极长度、直径无 关。 热电偶工作原理图 热电阻工作原理 工业用热电阻分铂热电阻和铜热电阻两大类。 热电阻是利用物质在温度变化时自身电阻也随着发生变化的特性来测量温度的。热电阻的受热部份(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上。当被测介质中有温度发生变化时,所测得的温度是感温元件所在范围内介质中的平均温度。 热电偶、热电阻特点 热电偶热电阻 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小,热电阻同其它种温度计相比具有如下特点:a、优点 ·准确度高。在所有常用温度计中,准确度最高,可达1mk。 ·输出信号大,灵敏度高。如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有

热电偶热电阻 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小, ·准确度高, ·测温范围广, ·能适应各种测量对象的要求(特定部位或狭小场所),如点温和面温的测量,·适于远距离测量和控制。 b、缺点 ·测量准确度难以超过0.2℃, ·必须有参考端,并且温度要保持恒定。·在高温或长期使用时,因受被测介质影响或气氛腐蚀作用(如氧化、还原)等而发生劣化。热电阻同其它种温度计相比具有如下特点:a、优点 ·准确度高。在所有常用温度计中,准确度最高,可达1mk。 ·输出信号大,灵敏度高。如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有40μV左右。由此可见,热电阻的灵敏度较热电偶高一个数量级。 ·测温范围广,稳定性好。在振动小而适宜的环境下,可在很长时间内保持0.1℃以下的稳定性。 ·无需参考点。温度值可由测得的电阻值直接求出。 ·输出线性好。只用简单的辅助回路就能得到线性输出,显示仪表可均匀刻度。 b、缺点 ·采用细金属丝的热电阻元件抗机械冲击与振动性能差。 ·元件结构复杂,制造困难大,尺寸较大,因此,热响应时间长。·不适宜测量体积狭小和温度瞬变区域。

热电偶测温基本原理

A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1) 在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3 ) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补

k热电偶冷端温度补偿实验

实验三十三K型热电偶冷端温度补偿实验 一、实验目的: 了解热电偶冷端温度补偿器的原理与补偿方法。 二、需用器件与单元: 主机箱中的智能调节器单元、电压表、转速调节0~24V电源、15V直流稳压电源; 温度源、Pt100热电阻(温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板;压力传感器实验模板(作为直流mV信号发生器)、冷端温度补偿器、补偿器专用+5V直流稳压电源。 三、基本原理: 本实验为K分度热电偶。冷端补偿器外形为一个小方盒,有4个引线端子,4、3接+5V专用电源,2、1输出补偿热电势信号;它的内部是一个不平衡电桥,如图33-1所示。这个直流电桥称冷端温度补偿器,电桥在0oC时达到平衡(亦有20oC平衡)。当热电偶温度升高时(>0oC)热电偶回路电势Uab下降,由于补偿器中,PN呈负温度系数,其正向压降随温度升高而下降,促使2端电位上升,使Vi不变达到补偿目的。 图1 热电偶冷端温度补偿器原理 四、实验步骤: 1、温度传感器实验模板放大器调零:按图2示意接线。将主机箱上的电压表量程切换开关打到2V档,检查接线无误后合上主机箱电源开关,调节温度传感器实验模板中的Rw2(增益电位器)顺时针转到底,再调节Rw3(调零电位器)使主机箱的电压表显示为0V(零位调好后Rw3电位器旋钮位置不要改动)。关闭主机箱电源。 图2 温度传感器实验模板放大器调零接线示意图

2、调节温度传感器实验模板放大器的增益A为100倍:利用压力传感器实验模板的零位偏移电压作为温度实验模板放大器的输入信号来确定温度实验模板放大器的增益A。按图2示意接线,检查接线无误后合上主机箱电源开关,调节压力传感器实验模板上的Rw2(调零电位器),使压力传感器实验模板中的放大器输出电压为0.01V(用主机箱电压表测量);再将0.01V电压输入到温度传感器实验模板的放大器中,再调节温度传感器实验模板中的增益电位器Rw2(小心:不要误碰调零电位器Rw3),使温度传感器实验模板放大器的输出电压为1.000V(增益调好后Rw2电位器旋钮不要改动)。关闭电源。 图3 调节温度实验模板放大器增益A接线示意图 3、将主机箱上的转速调节旋钮(0~24V)顺时针旋转到底(24V);将调节控制对象开关拨到Rt.Vi位置。将冷端补偿器的专用电源插头插到主机箱侧面的交流220V插座上。按图33-4示意接线,检查接线无误后合上主机箱电源开关,再合上调节器电源开关和温度源电源开关,将温度源控制在60oC,待电压表显示上升到平衡点时记录数据。再按表1中温度值设置温度源的温度并将放大器的相应输出值填入表中: 温度设定方法,按住▲键约三秒,仪表进入“SP”给定值(实验值)设置,此时可按上述方法按↓、↑、←三键设定实验值,使SV窗显示值与AL-1(上限报警)值一致(如100 oC)。 图4 K热电偶冷端温度补偿实验接线示意图

239热电偶的冷端温度补偿有几种方法

2.39热电偶的冷端温度补偿有几种方法? 消除或补偿热电偶的冷端温度损失常用的有以下几种方法: 1.冷端恒温法 1)将热电偶的冷端置于装有冰水混合物的恒温容器中,使冷端的温度保持在0?C不变。此法也称冰浴法,它消除了t0不等于0?C而引入的误差,由于冰熔化较快,所以一般只适用于实验室中。 2)将热电偶的冷端置于电热恒温器中,恒温器的温度略高于环境温度的上限(例如40?C)。 3)将热电偶的冷端置于恒温空调房间中,使冷端温度恒定。 应该指出,除了冰浴法是使冷端温度保持0?C外,后两种方法只是使冷端维持在某一恒定(或变化较小)的温度上,因此后两种方法必须采用下述的方法予以修正。下图是冷端置于冰瓶中的接法布置图。 热电偶冷端导线温度保持0 ℃的方法 2.计算修正法 当热电偶的冷端温度t0 ≠0?C时,测得的热电势E AB(t, t0)与冷端为0?C时所测得的热电势E AB(t,0?C)不等。若冷端温度高于0?C,则E AB(t,t0)

热电势),根据此值再在分度表中,查出相应的温度值。计算修正法需要分两次查分度表。如果冷端温度低于0?C,由于查出的E AB(t0,0?C)是负值,所以仍可用上式计算修正。计算修正法适合于带计算机的测温系统。 3.仪表机械零点调整法 当热电偶与动圈式仪表配套使用时,若热电偶的冷端温度比较恒定,对测量精度要求又不太高时,可将动圈仪表的机械零点调整至热电偶冷端所处的t0处,这相当于在输入热电偶的热电势前就给仪表输入一个热电势E(t0,0?C)。这样,仪表在使用时所指示的值约为E(t0,0?C)+E(t,t0)。 进行仪表机械零点调整时,首先必须将仪表的电源及输入信号切断,然后用螺钉旋具调节仪表面板上的螺钉使指针指到t0的刻度上。当气温变化时,应及时修正指针的位置。 此法虽有一定的误差,但非常简便,在工业上经常采用。 4.电桥补偿法 电桥补偿法是利用不平衡电桥产生的不平衡电压来自动补偿热电偶因冷端温度变化而引起的热电势变化值。热电偶经补偿导线接至补偿电桥,热电偶的冷端与电桥处于同一环境温度中,桥臂电阻R2、R3、R4由电阻温度系数很小的锰铜丝绕制而成,R Cu是由温度系数较大的铜丝绕制的。现在可以买到与热电偶同型号的冷端补偿器。 带有冷端补偿电路的端子板

热电偶工作原理

热电偶工作原理 中电华辰(天津)精密测器股份公司简述热电偶工作原理 热电偶的工作原理就是利用两种不同的材料组成的闭合电路;当2端的温度不同时,就会有电流产生;再通过测量仪表,就可以轻松的获得介质的温度。 中电华辰HC系列工业用铂铑热电偶又叫贵金属热电偶,它作为温度测量传感器,通常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以直接测量或控制各种生产过程中0-1800℃范围内的流体、蒸汽和气体介质以及固体表面等温度。 铂铑热电偶是由两种不同成分的导体两端接合成回路时,当两接合点温度不同时,就会在回路内产生热电流。如果热电偶的工作端与参比端存在有温差时,显示仪表将会批示出热电偶产生的热电势所对应的温度值。 铂铑热电偶的热电动势将随着测量端温度升高而增长,它的大小只与热电偶材料和两端的温度有关、与热电极的长度、直径无关。 各种铂铑热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等。 中电华辰(天津)精密测器股份公司简述常用热电偶 适于制作热电偶的材料有300多种,其中广泛应用的有40~50种。国际电工委员会向世界各国推荐8 种热电偶作为标准化热电偶. 我国标准化热电偶也有8 种。分别是:铂铑10-铂(分度号为S)、铂铑13-铂(R)、铂铑30-铂铑6(B)、镍铬-镍硅(K)、镍铬-康铜(E)、铁-康铜(J)、铜-康铜(T)和镍铬硅-镍硅(N)。下面简要介绍其中几种: 五、几种常用的热电偶 1、铂铑10-铂热电偶组成:由φ0.5mm 的纯铂丝和直径相同的铂铑丝制成,分度号为 S 。铂铑丝为正极, 纯铂丝为负极。 2.特点:热电性能好,抗氧化性强,宜在氧化性、惰性气氛中连续使用。长期适用的温 度为1400℃,超过此温度时,即使在空气中纯铂丝也将再结晶而使晶粒增大。短期使用温度为1600℃。在所有的热电偶中,它的准确度等级最高,通常用作标准或测量高

热电偶冷端温度自动补偿系统设计

热电偶冷端温度自动补偿系统设计 摘要:热电偶是应用最广泛的一种温度传感器。本文介绍一种利用数字器件MAX6675作为K型热电偶冷端温度自动补偿电路的器件,通过滤波,信号放大,电压跟随对热电偶的输出信号进行前置处理,利用单片机对补偿后进行了A/D转换的数字信号进行处理.将数字信号转换成测量端的真实值,通过LED动态显示。同时通过键盘输入设定最高报警温度、当实际温度超过报警温度时进行报警以提高安全性。利用MAX6675作为K型热电偶的冷端补偿器,其测量速度快,电路简单,成本低廉,不需要调整,能获得最佳补偿效果,并使温度测量仪表、温度测量、控制系统变得十分简单,可在电子测量、工业仪表、自动化控制等领域推广。本文对该系统的设计,包括热电偶传感器、冷端补偿系统、单片机接口及其应用程序以及信号的滤波处理等进行了详细的分析和说 明。 关键词:热电偶;MAX6675;单片机;冷端补偿 A design of thermocouple cold end temperature automatic compensation system Abstract :Thermocouple is a kind of the most widely used temperature sensor. This article referred to the use of digital devices MAX6675 as a K-type thermocouple cold junction temperature compensation circuit device, through the filter, signal amplification, voltage follow to deal with output signal of the thermocouple. At the same time, it uses SCM to process the digital signal, which has been converted by A/D convert device. The digital signal could be converted to true value of the measuring junction and could be dynamic displayed by LED. Also, it can be input specified maximum alarm temperature through the keyboard. What is more, when the actual temperature breaks up the alarm temperature, it will alarm, and by this method, it enhances security. With MAX6675 as a K-type thermocouple cold junction compensation device, the measurement speed could be fast, circuit could be simple and has low cost, no adjustment could be needed, it can get the best compensation effect and enable temperature measurement instrumentation, temperature measurement, control systems become very simple. Further more, in electronic measurement, industrial instrumentation, automation control, and other fields, it can be promoted. In this paper, the design of the system, including thermocouple sensors, cold junction compensation system, SCM interface, application program Signal filter and other processing, is be detailed analysis and explanation. Keywords:Thermocouple;MAX6675;SCM ;Cold junction compensation ........................

热电偶的工作原理及结构

热电偶工作原理及结构检修岗位 1.懂工作原理 1.1热电偶测温原理 两种电子密度不同的导体构成闭合回路,如果两接头的温度不同,回路中就有电流产生,这种现象成为热电现象,相应的电动势成为温差电势或热电势,它与温度有一定的函数关系,利用此关系就可测量温度。 这种现象包含的原理有: 帕尔帖定理----不同材料结合在一起,在其结合面产生电势。 汤姆逊定理---由温差引起的电势。 当组成热电偶的导体材料均匀时,其热电势的大小与导体本身的长度和直径大小无关,只与导体材料的成分及两端的温度有关。因此,用各种不同的导体或半导体可做成各种用途的热电偶,以满足不同温度对象测量的需要。 1.2热电偶三大定律 均质导体定律 由单一均质金属所形成 之封闭回路,沿回路上每一 点即使改变温度也不会有电 流产生。亦即,E = 0。 由2种均质金属材料A 与B所形成的热电偶回路中, 热电势E与接点处温度t1、 t2的相关函数关系,不受A 与B之中间温度t3与t4之影 响。 中间金属定律

在由A与B所形成之热电偶回路两接合点以外的任意点插入均质的第三金属C,C之两端接合点之温度t3若为相同的话,E不受C插入之影响。 在由A与B所形成之热电偶回路,将A与B的接合点打开并插入均质的金属C 时,A与C接合点的温度与打开前接合点的温度相等的话,E不受C插入的影响。 如右图所示,对由A 与B所形成之热电偶插入第3之中间金属C,形成由A与C、C与B之2组热电偶。接合点温度保持t1与t2的情况下,E AC + E CB = E AB。 中间温度定律

如右图所示任意数的异种金属A、B、C???G所形成的封闭回路,封闭回路之全体或是全部的接合点保持在相等的温度时,此回路的E=0。 如右图所示,A与B所形成之热电偶,两接合点之温度为t1与t2时之E为E12,t2与t3时之E为E13的话,E12 + E23 = E13。此时,称t2为中间温度。 以中间温度t2选择如0℃这样的标准温度,求得相对0℃任意的温度t1、t2、t3???tn之热电动势,任意两点间之热电动势便可以计算求得。 如右图所示,对于使用补偿导线之热电偶回路适用以上之观念。A与B为热电偶,C 与D为A、B用之补偿导线,M为数字电压计,计算后可得下面关系式: E = E AB (t1) - E AB (t3) 也就是说,M 所测定之电

热电偶冷端补偿

摘要:温度测量应用中,热电偶因其坚固性、可靠性以及较快的响应速度得到了普遍应用。本应用笔记讨论了热电偶的基本工作原理,包括参考端(冷端)的定义和功能。本文还给出了按照具体应用选择冷端温度测量器件的注意事项,并给出了三个设计范例。 概述温度测量应用中有多种类型的变送器,热电偶是最常用的一种,可广泛用于汽车、家庭等领域。与RTD、电热调节器、温度检测集成电路(IC)相比,热电偶能够检测更宽的温度范围,具有较高的性价比。另外,热电偶的牢固、可靠性和快速响应时间使其成为各种工作环境下的首要选择。 当然,热电偶在温度测量中也存在一些缺陷,例如,线性特性较差。虽然它们与RTD、温度传感器IC相比可以测量更宽的温度范围,但线性度却大打折扣。除此之外,RTD和温度传感器IC可以提供更高的灵敏度和精度,可理想用于精确测量系统。热电偶信号电平很低,常常需要放大或高分辨率数据转换器进行处理。 如果排除上述问题,热电偶的低价位、易使用、宽温度范围使其得到广泛使用。 热电偶基础热电偶是差分温度测量器件,由两段不同的金属/合金线构成,一段用作正端,另一段用作负端。表1列出了四种最常用的热电偶类型、所用金属以及对应的温度测量范围。每种热电偶在其规定的温度范围内具有独特的热电特性。 表1. 常用的热电偶类型 类型正端金属/合金负端金属/合金温度范围(°C) T 铜镍铜合金-200至+350 J 铁镍铜合金0至+750 K 镍铬合金镍基热电偶合金 -200至+1250 E 镍铬合金镍铜合金-200至+900 两种不同类型的金属接(焊接)在一起后形成两个结点,如图1a所示,环路电压是两个结点温差的函数。这种现象称为Seebeck 效应,用于解释热能转换为电能的过程。Seebeck效应相对于Peltier效应,Peltier效应用于解释电能转换成热能的过程,典型应用有电热致冷器。图1a所示,测量电压V OUT是检测端(热端)结电压与参考端(冷端)结电压之差。因为V H和V C是由两个结的温度差产生的,V OUT也是温差的函数。定标因数,α,对应于电压差与温差之比,称为Seebeck系数。 图1a. 环路电压由热电偶两个结点之间的温差产生,是Seebeck效应的结果。

热电偶的工作原理及结构

热电偶工作原理及结构 检修岗位 1.懂工作原理 1.1热电偶测温原理 两种电子密度不同的导体构成闭合回路,如果两接头的温度不同,回路中就有电流产生,这种现象成为热电现象,相应的电动势成为温差电势或热电势,它与温度有一定的函数关系,利用此关系就可测量温度。 这种现象包含的原理有: 帕尔帖定理----不同材料结合在一起,在其结合面产生电势。 汤姆逊定理---由温差引起的电势。 当组成热电偶的导体材料均匀时,其热电势的大小与导体本身的长度和直径大小无关,只与导体材料的成分及两端的温度有关。因此,用各种不同的导体或半导体可做成各种用途的热电偶,以满足不同温度对象测量的需要。 1.2热电偶三大定律 均质导体定律 由单一均质金属所形成 之封闭回路,沿回路上每一 点即使改变温度也不会有电 流产生。亦即,E = 0。 由2种均质金属材料A 与B所形成的热电偶回路中, 热电势E与接点处温度t1、 t2的相关函数关系,不受A 与B之中间温度t3与t4之影 响。 中间金属定律

在由A与B所形成之热电偶回路两接合点以外的任意点插入均质的第三金属C,C之两端接合点之温度t3若为相同的话,E不受C插入之影响。 在由A与B所形成之热电偶回路,将A与B的接合点打开并插入均质的金属C 时,A与C接合点的温度与打开前接合点的温度相等的话,E不受C插入的影响。 如右图所示,对由A 与B所形成之热电偶插入第3之中间金属C,形成由A与C、C与B之2组热电偶。接合点温度保持t1与t2的情况下,E AC + E CB = E AB。 中间温度定律

如右图所示任意数 的异种金属A、B、C???G 所形成的封闭回路,封闭回路之全体或是全部的接合点保持在相等的温度时,此回路的E=0。 如右图所示,A与B 所形成之热电偶,两接合点之温度为t1与t2时之E为E12,t2与t3时之E为E13的话,E12 + E23 = E13。此时,称t2为中间温度。 以中间温度t2选择如0℃这样的标准温度,求得相对0℃任意的温度t1、t2、t3???tn之热电动势,任意两点间之热电动势便可以计算求得。 如右图所示,对于使用补偿导线之热电偶回路适用以上之观念。A与B为热电偶,C 与D为A、B用之补偿导线,M为数字电压计,计算后可得下面关系式: E = E AB (t1) - E AB (t3) 也就是说,M 所测定之电

相关主题