搜档网
当前位置:搜档网 › 人教版高中数学高二数学学案 矩阵乘法的概念

人教版高中数学高二数学学案 矩阵乘法的概念

人教版高中数学高二数学学案  矩阵乘法的概念
人教版高中数学高二数学学案  矩阵乘法的概念

2.3.1 矩阵乘法的概念(学案)

一、预习:

(一)阅读教材,解决下列问题:

问题:如果我们对一个平面向量连续实施两次几何变换,结果会是怎样?举例说明。

归纳1:矩阵乘法法则:

归纳2:矩阵乘法的几何意义:

(二)初等变换:在数学中,一一对应的平面几何变换都可看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵。

练习

1、. =()

A、B、C、D、

2、已知矩阵X、M、N,若M= , N= ,则下列X中不满足:XM=N,的一个是()

A、X=

B、X=

C、X=

D、X=

二、课堂训练:

例1.(1)已知A= ,B= ,计算AB

(2)已知A= ,B= ,计算AB,BA

(3)已知A= ,B= ,C= 计算AB,AC

例2、已知梯形ABCD,其中A(0,0),B(3,0),C(2,2),D(1,2),先将梯形作关于x轴的反射变换,再将所得图形绕原点逆时针旋转

(1)求连续两次变换所对应的变换矩阵M

(2)求点A,B,C,D在作用下所得到的结果

(3)在平面直角坐标系内画出两次变换对应的几何图形,并验证(2)中的结论。

例3: 已知A= ,B= ,试求AB,并对其几何意义给予解释。

三、课后巩固:

1. 计算:=__________

2、已知,则m= ,n= ,s= .

3、已知,M= N= ,则MN=_______,NM=_________

4、设若M= 把直线l:2x+y+7=0变换为自身,则,作业:P47 2、4、5

上海市高二下学期期末考试数学试题(含答案)

高二下学期期末考试数学试题 (考试时间:120分钟 满分:150分 ) 一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.过点)2,1(、)6,3(的直线的斜率为______________. 2.若i 是虚数单位,复数z 满足5)43(=-z i ,则z 的虚部为_________. 3.正四面体ABC S -的所有棱长都为2,则它的体积为________. 4.以)2,1(-为圆心且过原点的圆的方程为_____________. 5.从一副52张扑克牌中第一张抽到“Q ”,重新放回,第二张抽到一张有人头的牌,则这两个事件都发生的概率为________. 6.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________. 7.正方体1111D C B A ABCD -中,二面角111C D A B --的大小为__________. 8.双曲线14 22 =-y x 的顶点到其渐近线的距离等于_________. 9.某人5次上班途中所花的时间(单位:分钟)分别为9,11,10,,y x .已知这组数据的平均数为10,方差为2,则=-||y x __________. 10.在长方体1111D C B A ABCD -中,已知36,91==BC AA , N 为BC 的中点,则直线11C D 与平面N B A 11的距离是___________. 11.棱长为1的正方体1111D C B A ABCD -的8个顶点都在球面O 的表面上,E 、F 分别是棱1AA 、1DD 的中点,则直线EF 被球O 截得的线段长为________. 12.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外 科和内科医生都至少有1人的选派方法种数是___________.(用数字作答) 13.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计) 14.设焦点是)5,0(1-F 、)5,0(2F 的双曲线C 在第一象限内的部分记为曲线T ,若点ΛΛ),,(),,2(),,1(2211n n y n P y P y P 都在曲线T 上,记点),(n n y n P 到直线02:=+-k y x l 的距离为),2,1(Λ=n d n ,又已知5lim =∞ →n n d ,则常数=k ___________. 二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是( )平方米. A .32424-π B .33636-π C .32436-π D .33648-π 第15题图

苏教版高中数学高二选修4-2 矩阵乘法的概念

选修4-2矩阵与变换 2.3.1 矩阵乘法的概念 编写人: 编号:008 学习目标 1、 熟练掌握二阶矩阵与二阶矩阵的乘法。 2、 理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵,从几何变换的角度来看,它表 示的是原来两个矩阵对应的连续两次变换。 学习过程: 一、预习: (一)阅读教材,解决下列问题: 问题:如果我们对一个平面向量连续实施两次几何变换,结果会是怎样?举例说明。 归纳1:矩阵乘法法则: 归纳2:矩阵乘法的几何意义: (二)初等变换:在数学中,一一对应的平面几何变换都可看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵。 练习 、.?? ??????????10110110=( ) A 、???? ??1110 B 、??????1011 C 、? ? ? ???0111 D 、??????0110 、已知矩阵X 、M 、N,若M =?? ? ???--1111, N =??????--3322,则下列X 中不满足:XM=N ,的一个 是( ) A 、X =???? ??--2120 B 、X =??????--1211 C 、X =??????--3031 D 、X =? ? ? ???-3053

二、课堂训练: 例1.(1)已知A= 11 22 11 22 ?? ? ? ? ? ?? ,B= 11 22 11 22 ?? - ? ? ? - ? ?? ,计算AB (2)已知A= 10 02 ?? ? ?? ,B= 14 23 ?? ? - ?? ,计算AB,BA (3)已知A= 10 00 ?? ? ?? ,B= 10 01 ?? ? ?? ,C= 10 02 ?? ? ?? 计算AB,AC 例2、已知梯形ABCD,其中A(0,0),B(3,0),C(2,2),D(1,2),先将梯形作关于x轴的反射变换,再将所得图形绕原点逆时针旋转0 90 (1)求连续两次变换所对应的变换矩阵M (2)求点A,B,C,D在 M T作用下所得到的结果 (3)在平面直角坐标系内画出两次变换对应的几何图形,并验证(2)中的结论。

上海市高二数学期末考试

高二第一学期数学期末考试 一、填空题(每题3分,共39分) 1、已知数列的通项公式1 2+= n n a n ,求这个数列第6项____________ 2、在等差数列{}n a 中,1615210S d a ,则,且=-==_____________ 3、若等差数列{}n a 共有十项,其中奇数项的和是12.5,偶数项的和是15,则公差d =________ 4、已知等差数列{}{}n n b a 、满足5 32+= n n b a n n ,它们的前n 项之和分别记为n n T S 和,求 11 11T S 的值_______________ 5、设n S 为等比数列{}n a 的前n 项和,2580a a +=,则 52 S S =____________ 6、已知数列{a n }为等比数列,Sn 是它的前n 项和。若a 2· a 3=2a 1,且a4与2a 7等差中项为54 , 则S 5=__________ 7、已知向量a 与b 都是单位向量,它们的夹角为120?,且3= +b a k ,则实数k 的 值是 8、若向量a =)(,2x x ,b =)(3,2x -,且a ,b 的夹角为钝角,则x 的取值范围是 . 9、设向量a 与b 的夹角为θ,)3,3(=a ,)1,1(2-=-a b ,则cos θ= . 10、已知向量(4,0),(2,2),AB AC == 则BC AC 与的夹角的大小为 . 11、P 为ΔABC 所在平面上的点,且满足AP =AB +12 A C ,则ΔABP 与ΔABC 的面积之比是 _______. 12、对于n 个向量, 12n a ,a ,,a ,若存在n 个不全为零的实数12,,,n k k k 使得 120n k k k +++= 12n a a a 成立,则称向量 12n a ,a ,,a ,是线性相关的.按此规定,能使向 量(1,0),(1,1),(2,2)==-=123a a a 是线性相关的实数123,,k k k 的值依次为 13、若==k k 则,01 2 131 12 _____________。 二、选择题(每题3分,共12分)

GPU上的矩阵乘法的设计与实现

计 算 机 系 统 应 用 https://www.sodocs.net/doc/f311273365.html, 2011 年 第20卷 第 1期 178 经验交流 Experiences Exchange GPU 上的矩阵乘法的设计与实现① 梁娟娟,任开新,郭利财,刘燕君 (中国科学技术大学 计算机科学与技术学院,合肥 230027) 摘 要: 矩阵乘法是科学计算中最基本的操作,高效实现矩阵乘法可以加速许多应用。本文使用NVIDIA 的CUDA 在GPU 上实现了一个高效的矩阵乘法。测试结果表明,在Geforce GTX 260上,本文提出的矩阵乘法的速度是理论峰值的97%,跟CUBLAS 库中的矩阵乘法相当。 关键词: 矩阵乘法;GPU ;CUDA Design and Implementation of Matrix Multiplication on GPU LIANG Juan-Juan, REN Kai-Xin, GUO Li-Cai, LIU Yan-Jun (School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China) Abstract: Matrix multiplication is a basic operation in scientific computing. Efficient implementation of matrix multiplication can speed up many applications. In this paper, we implement an efficient matrix multiplication on GPU using NVIDIA’s CUDA. The experiment shows that our implementation is as fast as the implementation in CUBLAS, and the speed of our implementation can reach the peak speed’s 97%, on Geforce GTX260. Keywords: matrix multiplication; GPU; CUDA GPU 是一种高性能的众核处理器,可以用来加速许多应用。CUDA 是NVIDIA 公司为NVIDIA 的GPU 开发的一个并行计算架构和一门基于C 的编程语言。在CUDA 中程序可以直接操作数据而无需借助于图形系统的API 。现在已经有许多应用和典型算法使用CUDA 在GPU 上实现出来。 1 引言 矩阵乘法是科学计算中的最基本的操作,在许多领域中有广泛的应用。对于矩阵乘法的研究有几个方向。一个是研究矩阵乘法的计算复杂度,研究矩阵乘法的时间复杂度的下界,这方面的工作有strassen 算法[1]等。另外一个方向是根据不同的处理器体系结构,将经典的矩阵乘法高效的实现出来,这方面的结果体现在许多高效的BLAS 库。许多高效的BLAS 库都根据体系结构的特点高效的实现了矩阵乘法,比如GotoBLAS [2], ATLAS [3]等。Fatahalian [4]等人使 用着色语言设计了在GPU 上的矩阵乘法。CUBLAS 库是使用CUDA 实现的BLAS 库,里面包含了高性能的矩阵乘法。 本文剩下的部分组织如下,第2节介绍了CUDA 的编程模型,简单描述了CUDA 上编程的特点。第3节讨论了数据已经拷贝到显存上的矩阵乘法,首先根据矩阵分块的公式给出了一个朴素的矩阵乘法实现,分析朴素的矩阵乘法的资源利用情况,然后提出了一种新的高效的矩阵乘法。第4节讨论了大规模的矩阵乘法的设计和实现,着重讨论了数据在显存中的调度。第5节是实验结果。第6节是总结和展望。 2 CUDA 编程模型和矩阵乘法回顾 2.1 CUDA 编程模型 NVIDIA 的GPU 是由N 个多核处理器和一块显存构成的。每个多核处理器由M 个处理器核,1个指令部件,一个非常大的寄存器堆,一小块片上的共享内 ① 基金项目:国家自然科学基金(60833004);国家高技术研究发展计划(863)(2008AA010902) 收稿时间:2010-04-26;收到修改稿时间:2010-05-21

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析 1.定义运算?? ????++=?????????????df ce bf ae f e d c b a ,如??? ???=?????????????1514543021.已知πβα=+, 2 π βα=-,则=? ? ? ???????? ??ββααααsin cos sin cos cos sin ( ). A. 00?? ???? B. 01?????? C. 10?????? D. 11?????? 2.定义运算 a b ad bc c d =-,则符合条件 120 121z i i i +=--的复数z 对应的点在 ( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.矩阵E =??? ? ??1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数 4. 若行列式21 24 1 013 9x x =-,则=x . 5.若2021310x y -??????= ??? ?-?????? ,则x y += . 6.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-?? ??? ,则 x y -=_______. 7.矩阵1141?? ???? 的特征值为 . 8.已知变换100M b ?? =? ??? ,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10ml 到110ml 之间,用0.618 法寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加入量可以是 ; 10.已知 , ,则y= . 11.若2211 x x x y y y =--,则______x y +=

上海市2021年高二数学第二学期期末模拟考试卷(一)

上海市高二第二学期期末模拟考试卷(一) 一、填空题 1.在空间中,若直线a与b无公共点,则直线a、b的位置关系是______. 2.若点H(﹣2,4)在抛物线y2=2px的准线上,则实数p的值为______. 3.若椭圆上一点P到其焦点F1的距离为6,则P到另一焦点F2的距离为 ______. 4.若经过圆柱的轴的截面面积为2,则圆柱的侧面积为______. 5.经过点(﹣2,2)且与双曲线﹣y2=1有公共渐近线的双曲线方程为______.6.已知实数x、y满足约束条件则z=2x+4y的最大值为______. 7.一个圆锥的侧面积展开图是一个半径为2的半圆,则此圆锥的体积为______.8.在平面直角坐标系x0y中,直线(t为参数)与圆(θ为参数) 相切,切点在第一象限,则实数a的值为______. 9.在北纬45°的线圈上有A、B两地,它们的经度差为90°,若地球半径为R,则A、B 两地的球面距离为______. 10.设α与β是关于x的方程x2+2x+m=0的两个虚数根,若α、β、0在复平面上对应的点构成直角三角形,那么实数m=______. 11.如图,正三棱柱ABC﹣A1B1C1的所有棱的长度都为4,则异面直线AB1与BC1所成的角是______(结果用反三角函数值表示). 12.已知复数z满足|z|=3,则|z+4|+|z﹣4|的取值范围是______. 13.已知x、y、u、v∈R,且x+3y﹣2=0,u+3v+8=0,T=x2+y2+u2+v2﹣2ux﹣2vy,则T 的最小值为______.

14.已知曲线C的方程为F(x,y)=0,集合T={(x,y)|F(x,y)=0},若对于任意的(x1,y1)∈T,都存在(x2,y2)∈T,使得x1x2+y1y2=0成立,则称曲线C为曲线,下列方程所表示的曲线中,是曲线的有______(写出所有曲线的序号) ①2x2+y2=1;②x2﹣y2=1;③y2=2x;④|x|﹣|y|=1;⑤(2x﹣y+1)(|x﹣1|+|y﹣2|)=0. 二、选择题 15.“直线l垂直于平面α内的无数条直线”是“l⊥α”的一个() A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 16.曲线Γ:2x2﹣3xy+2y2=1() A.关于x轴对称 B.关于原点对称,但不关于直线y=x对称 C.关于y轴对称 D.关于直线y=x对称,也关于直线y=﹣x对称 17.下列命题中,正确的命题是() A.若z1、z2∈C,z1﹣z2>0,则z1>z2 B.若z∈R,则z?=|z|2不成立 C.z1、z2∈C,z1?z2=0,则z1=0或z2=0 D.z1、z2∈C,z12+z22=0,则z1=0且z2=0 18.如图,正方体ABCD﹣A1B1C1D1,则下列四个命题: ①点P在直线BC1上运动,三棱锥A﹣D1PC的体积不变 ②点P在直线BC1上运动,直线AP与平面ACD1所成角的大小不变 ③点P在直线BC1上运动,二面角P﹣AD1﹣C的大小不变 ④点P是平面ABCD上到点D和C1距离相等的动点,则P的轨迹是过点B的直线.其中的真命题是()

strassen矩阵相乘算法C++代码

Strassen 矩阵相乘算法代码 #include #include #include #include usingnamespace std; template class Strassen_class { public: void ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize);//朴素算法实现void FillMatrix(T** MatrixA, T** MatrixB, int length);//A,B矩阵赋值 void PrintMatrix(T **MatrixA, int MatrixSize);//打印矩阵 void Strassen(int N, T **MatrixA, T **MatrixB, T **MatrixC);//Strassen算法实现 }; template void Strassen_class::ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) {

《1.3.2 矩阵乘法的运算律》教案2

《1.3.2 矩阵乘法的运算律》教案1 教学目的 一、知识与技能:理解矩阵乘法不满足交换吕和消去律,会验证矩阵乘法满足结合律 二、过程与方法:比较演算法 三、情感态度和价值观:体会类比推理中结论全真的含义 教学重点、难点 熟练运用各种运算 教学过程 一、矩阵的加法 定义2 设 } {ij a A = 和 } {ij b B = 是 n m ? 的矩阵,A 与B 的加法(或称和),记作A + B ,定 义为一个n m ? 的矩阵: 1111 1212112121 22222211 22 {}n n n n ij m m m m mn mn a b a b a b a b a b a b c a b a b a b +++????+++?? ===??? ? +++?? C A +B 。 例2 设 ??????-=2015A , ??????-=4012B ,计算 B A +。 负矩阵 设 {}ij m n a ?=A ,称矩阵 {} ij a -=-A 为矩阵A 的负矩阵。矩阵的减法: 11111212 1121212222221122 ()n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b ---????---?? -=+-=??? ? ---?? A B A B 二、数与矩阵相乘 定义3 (矩阵数乘) 数λ与矩阵 n m ij a A ?=}{的乘积(称之为数乘),记作A λ 或λA ,定义为一个 n m ? 的矩阵 1112 12122212 ()()n n ij m n ij m n m m mn a a a a a a a a a a a λλλλλλλλλλλλλ???????? ====??? ??? A A 。 以上运算称为矩阵的线性运算,它满足下列运算法则:

上海市高二上学期期末数学试卷(理科)

上海市高二上学期期末数学试卷(理科) 姓名:________ 班级:________ 成绩:________ 一、选择题: (共12题;共24分) 1. (2分)已知命题p:?x∈R,x﹣2>lg(x+1),命题q:f(x)= 是偶函数,则下列结论中正确的是() A . p∨q是假命题 B . p∧q是真命题 C . p∧¬q是真命题 D . p∨¬q是真命题 2. (2分) (2017高二上·牡丹江月考) 椭圆()上存在一点满足, 为椭圆的左焦点,为椭圆的右顶点,则椭圆的离心率的范围是() A . B . C . D . 3. (2分) (2018高二上·舒兰月考) 已知等比数列的各项都是正数,且成等差数列,则 () A . 8 B . 16 C . 27

4. (2分)(2018·长沙模拟) 记不等式组所表示的平面区域为,若对任意,不等式恒成立,则的取值范围是() A . B . C . D . 5. (2分)在△ABC中,角A,B,C所对边的长分别为a,b,c且有20a +15b +12c = ,则△ABC的形状为() A . 锐角三角形 B . 钝角三角形 C . 直角三角形 D . 等腰直角三角形 6. (2分)等差数列的首项为a1 ,公差为d,前n项和为Sn .则“”是“Sn的最小值为S1 ,且Sn无最大值”的() A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要 7. (2分)已知{an}为等差数列,且a2=3,a6=5,S7=() A . 42

C . 24 D . 34 8. (2分) (2015高二下·椒江期中) 如图,在平行六面体ABCD﹣A1B1C1D1中,已知,, ,则用向量,,可表示向量等于() A . B . C . D . 9. (2分)(2017·莆田模拟) 已知双曲线 =1的一条渐近线斜率大于1,则实数m的取值范围() A . (0,4) B . (0,) C . (0,2) D . (,4) 10. (2分)已知向量,,则以,为邻边的平行四边形的面积为() A . B . C . 4

上海高二数学矩阵及其运算

矩阵及其运算 矩阵的概念 1、形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ? - ? ?-?? 这样的矩形数表叫做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排列 的数组成的向量12n b b b ?? ? ? ???? ??? 称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵,m n ?阶矩阵可记做m n A ?,如矩阵13 ?? ??? 为21?阶矩阵,可记做21A ?;矩阵 512128363836232128?? ? ? ??? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第 j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ??? 为一个 23?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有 n 行(列),可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-?? 均为三阶方阵。在一个n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线

的元素均为1,其余元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ??? 为2阶单位矩阵,矩阵100010001?? ? ? ??? 为3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。 7、对于方程组231 324244x y mz x y z x y nz ++=?? -+=??+-=? 中未知数z y x ,,的系数按原来的次序排列所得的矩阵 2332441m n ?? ?- ? ?-??,我们叫做方程组的系数矩阵;而矩阵2313242414m n ?? ?- ? ?-?? 叫做方程组的增广矩阵。 应用举例: 例1、已知矩阵222,22x x y b a A B x a b y x y ---???? == ? ?++????且A B =,求a 、b 的值及矩阵A 。 例2、写出下列线性方程组的增广矩阵: (1)23146x y x y +=??-=?;(2)2320 3250230 x y z x y z x y z +-+=?? -++-=??-++=? 例3、已知线性方程组的增广矩阵,写出其对应的方程组: (1)235124-?? ?-??(2)210203213023-?? ? - ? ? -?? 例4、已知矩阵sin cos 0sin cos 1αα ββ+?? ?+??为单位矩阵,且,,2παβπ?? ∈???? ,求()sin αβ-的值。 矩阵的基本变换:

矩阵乘法题目

十个利用矩阵乘法解决的经典题目 By Matrix67 好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。 不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1:下面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?废话,交换过来后两个矩阵有可能根本不能相乘。为什么它又满足结合律呢?仔细想想你会发现这也是废话。假设你有三个矩阵A、B、C,那么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。 经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时 O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。 经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。 由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。 经典题目3 POJ3233 (感谢rmq) 题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。 这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有: A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3) 应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

上海市高二数学上学期期末考试

2016学年度第一学期高二年级数学学科期末考试卷 (考试时间:120分钟 满分:150分 ) 一.填空题(1--6每小题4分,7--12每小题5分,共54分) 1.已知复数i i z += 2(i 为虚数单位),则=||z . 2.若)1,2(=d 是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示). 3.抛物线2 4y x =的焦点坐标为 . 4.6 2x ? - ? 的展开式中的常数项的值是 . 5.已知实数x 、y 满足不等式组5 2600 x y x y x y +≤??+≤? ?≥??≥?,则34z x y =+的最大值是 . 6.已知虚数ααsin cos i z += 是方程0232 =+-a x x 的一个根,则实数 =a . 7.已知21,F F 为双曲线C:12 2 =-y x 的左右焦点,点P 在双曲线C上,1260F PF ∠=?,则 =?||||21PF PF . 8.某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2 名,则不同的安排方案种数为 . 9. 设曲线C 的参数方程为23cos 13sin x y θ θ =+??=-+?(θ为参数),直线l 的方程为320x y -+=,则曲 线C 上到直线l 距离为 10 的点的个数为____________. 10.已知抛物线y x 32=上的两点A、B 的横坐标恰是关于x 的方程02 =++q px x (,p q 是 常数)的两个实根,则直线AB 的方程是 .

11.在ABC ?中, AB 边上的中线2CO =,若动点 P 满足221 sin cos 2 AP AB AC θθ=?+?() R θ∈, 则 ()PA PB PC +?的 最 小 值 是 . 12.已知椭圆C:)0(1 22 22>>=+b a b y a x 的左右焦点分别为21,F F ,P 为椭圆C上任一点,M =||||||||2121PF PF PF PF ?+-。M的最大值为 .

沪教版(上海)高二上学期数学第 九 章 矩阵和行列式初步

第 九 章 矩阵和行列式初步 格致中学 王国伟 第一课时 9.1 矩阵的概念(1) [教学目标] 1、了解矩阵的产生背景,并会用矩阵形式表示一些实际问题; 2、了解矩阵、行向量、列向量、方矩阵、零矩阵、单位矩阵等概念; 3、理解同阶矩阵、相等的矩阵等概念; 4、理解线性方程组与系数矩阵及其增广矩阵之间的转化。 [教学重点] 1、与矩阵有关的概念; 2、线性方程组的系数矩阵及增广矩阵的概念。 [教学难点] 学习矩阵的目的。 [教学过程] 一、情境设置、引入: 引例1:已知向量()1,3OP =,如果把的坐标排成一列,可简记为13?? ??? ; 引例2:2008 我们可将上表奖牌数简记为:512128363836232128?? ? ? ??? ; 引例3:将方程组231 324244x y mz x y z x y nz ++=?? -+=??+-=? 中未知数z y x ,,的系数按原来的次序排列,可简记为 2332441m n ?? ?- ? ? -?? ;若将常数项增加进去,则可简记为:2313242414m n ?? ? - ? ?-??。 二、概念讲解:

1、上述形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ? - ? ? -? ?这样的矩形数表 叫做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排列的数 组成的向量12 n b b b ?? ? ? ???? ??? 称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵, m n ?阶矩阵可记做m n A ?,如矩阵13?? ???为21?阶矩阵,可记做21A ?;矩阵512128363836232128?? ? ? ? ?? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第 j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ??? 为一个23 ?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行(列), 可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ? - ? ?-?? 均为三阶方阵。在一个 n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为1,其余 元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ???为2阶单位矩阵,矩阵100010001?? ? ? ? ?? 为 3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。

上海高中数学教材目录表(2017.08.12)(最新整理)

上海市高中数学二期课改新教材目录表高中一年级第一学期高中一年级第二学期 第一章集合和命题第四章幂函数、指数函数和对数函数(下) 一、集合三、对数 1.1集合及其表示法 1.2集合之间的关系 4.4 对数概念及其运算 1.3集合的运算四、反函数 二、四种命题的形式 4.5 反函数的概念 1.4命题的形式及等价关系五、对数函数 三、充分条件与必要条件 4.6 对数函数的图像与性质 1.5充分条件,必要条件六、指数方程和对数方程 1.6子集与推出关系 4.7 简单的指数方程 第二章不等式 4.8 简单的对数方程 2.1不等式的基本性质第五章三角比 2.2一元二次不等式的解法一、任意角的三角比 2.3其他不等式的解法 5.1 任意角及其度量 2.4基本不等式及其应用 5.2 任意角的三角比 第三章函数的基本性质二、三角恒等式 3.1函数的概念 5.3 同角三角比的关系 3.2函数关系的建立和诱导关系 3.3函数的运算 5.4 两角和与差的余弦、 3.4函数的基本性质正弦和正切 第四章幂函数、指数函数和对数函数(上) 5.5 二倍角与半角的正弦 一、幂函数余弦和正切 4.1幂函数的性质与图像三、解斜三角形 二、指数函数 4.2指数函数的性质与图像 5.6 正弦定理、余弦定理 4.3借助计算器观察函数递增的快慢和解斜三角形 第六章三角函数 一、三角函数的图像与性质 6.1 正弦函数和余弦函数的 图像和性质 6.2 正切函数的图像和性质 6.3 函数y=Asin(?x+Φ)的 图像和性 质 二、反三角函数与最简三角方程 6.4 反三角函数 6.5 最简三角方程

高中二年级第一学期高中二年级第二学期 第七章数列和数学归纳法第十一章坐标平面上的直线 一、数列11.1 直线的方程 7.1 数列11.2 直线的倾斜角和斜率 7.2 等差数列11.3 两条直线的位置关系 7.3 等比数列11.4 点到直线的距离 二、数学归纳法第十二章圆锥曲线 7.4 数学归纳法12.1 曲线和方程 7.5 数学归纳法的应用12.2 圆的方程 7.6 归纳---猜想---论证12.3 椭圆的标准方程 三、数列的极限12.4 椭圆的性质 7.7 数列的极限12.5 双曲线的标准方程 7.8 无穷等比数列各项的和12.6 双曲线的性质 第八章平面向量的坐标表示12.7 抛物线的标准方程 8.1 向量的坐标表示及其运算12.8 抛物线的性质 8.2 向量的数量积第十三章复数 8.3 平面向量的分解定理13.1 复数的概念 8.4 向量的应用13.2 复数的坐标表示 第九章矩阵和行列式初步13.3 复数的加法与减法 一、矩阵13.4 复数的乘法与除法 9.1 矩阵的概念13.5 复数的平方根与立方根 9.2 矩阵的运算13.6 实系数的一元二次方程 二、行列式 9.3 二阶行列式 9.4 三阶行列式 第十章算法初步 10.1 算法的概念 10.2 程序框图 10.3 计算机语句和算法程序

高二数学变换的复合与矩阵的乘法

§2.3变换的复合与矩阵的乘法 教学目标: 一、知识与技能: 通过变换的实例,了解矩阵与矩阵的乘法的意义;掌握二阶矩阵的乘法法则 ,并能运用几何图形变换,说明矩阵乘法不满足交换律 二、方法与过程 借助实例的探究,引入复合变换,寻求二阶矩阵的乘法法则,发现矩阵乘法不满足交换律;通过具体情境的观察、类比、探索、交流和反思等数学活动,培养学生的创新意识,使学生掌握研究问题的方法,从而学会学习体会从具体到抽象再到具体的思想方法。 三、情感、态度与价值观 新旧知识的联结,潷学生的求知欲及进一点探索的乐趣。 教学重点:二阶矩阵乘法法则及运用 教学难点:说明矩阵乘法不满足交换律 教学过程 一、复习引入: 1、基本概念 (1)二阶矩阵:由四个数a ,b ,c ,d 排成的正方形数表??? ? ??d c b a 称为 二阶矩阵。特别地,称二阶矩阵??? ? ??0000为零矩阵,简记为0。称二阶矩阵??? ? ??1001为二阶单位矩阵,记为2E 。 (2)向量:向量(y x ,)是一对有序数对,y x ,叫做它的两个分量,且称??? ? ??y x 为列向量,(y x ,)为行向量。同时,向量、点以及有序实数对三者不加区别。 2、几类特殊线性变换及其二阶矩阵

在平面直角坐标系中,把形如???+=+=dy cx y by ax x ``(其中a ,b ,c ,d 为常 数)的几何变换叫做线性变换。 (2)旋转变换 坐标公式为???+=-=α αααcos sin sin cos ``y x y y x x ,变换对应的矩阵为??? ? ??-αα αα cos sin sin cos (3)反射变换 ①关于x 的反射变换坐标公式为???-==y y x x ``对应的二阶矩阵为 ??? ? ??-1001; ②关于y 的反射变换坐标公式为???=-=y y x x ``对应的二阶矩阵为 ??? ? ??-1001; ③关于x y =的反射变换坐标公式为???==x y y x ``对应的二阶矩阵为 ??? ? ??0110; (4)伸缩变换 坐标公式为???==y k y x k x 2`1`对应的二阶矩阵为??? ? ??21 0k k ; (5)投影变换 ①投影在x 上的变换坐标公式为???==0``y x x 对应的二阶矩阵为???? ??0001; ②投影在y 上的变换坐标公式为???==y y x ``0对应的二阶矩阵为???? ??1000

苏教版数学高二选修4-2矩阵与变换学案第01课时 矩阵的概念

第01课时 矩阵的概念 一、要点讲解 1.矩阵的概念: 2.矩阵的相等: 二、知识梳理 1.在数学中,将形如13?????? ,80908688??????,23324m ????-??这样的__________________称做矩阵._____________________________________叫做矩阵的行,______________________ ________________叫做矩阵的列.通常称具有i 行j 列的矩阵为i ×j 矩阵. 2.__________________称为零矩阵;______________________称为行矩阵;____________ _______________称为列矩阵. 3.平面上向量α = (x ,y )的坐标和平面上的点P (x ,y )看作行矩阵可记为________,看作列矩阵可记为_________. 4.当两个矩阵A ,B ,只有当A ,B 的_______________________,并且____________________也分别相等时,才有A = B . 三、例题讲解 例1. 用矩阵表示△ABC ,其中A (-1,0),B (0,2),C (2,0). 例2. 设31,422x y A B z ????==????--???? ,若A = B ,求x ,y ,z . 例3. 已知n 阶矩阵11221 21247712j n j n i i i j in n n n j nn a a a a A a a a a a a a a ????????=???????????? ,其中每行、每列都是等差数列,ij a 表示位于第i 行第j 列的数. (1)写出45a 的值; (2) 写出ij a 的计算公式. 四、巩固练习 1. 画出矩阵143111-????-?? 所表示的三角形,并求该三角形的面积.

相关主题