搜档网
当前位置:搜档网 › 高考立体几何知识点汇总(详细)

高考立体几何知识点汇总(详细)

高考立体几何知识点汇总(详细)
高考立体几何知识点汇总(详细)

高考立体几何知识点汇总(详细)

————————————————————————————————作者:————————————————————————————————日期:

高考立体几何知识点总结

一 、空间几何体 (一) 空间几何体的类型

1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的

面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征

1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类

棱柱

四棱柱

平行六面体

直平行

六面体长方体正四棱柱正方体 性质:

Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;

1.3 棱柱的面积和体积公式

ch S 直棱柱侧(c 是底周长,h 是高)

S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h

2 、棱锥的结构特征

2.1 棱锥的定义

(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底

棱长都相等

底面是正方形

底面是矩形

侧棱垂直于底面

底面是平行四边形 底面是四边形 图1-1

面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征

Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;

Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;

正棱锥侧面积:1

'2

S ch =

正棱椎(c 为底周长,'h 为斜高) 体积:1

3

V Sh =

棱椎(S 为底面积,h 为高)

正四面体:

对于棱长为a 正四面体的问题可将它补成一个边长为

a 2

2

的正方体问题。 对棱间的距离为

a 2

2

(正方体的边长) 正四面体的高

a 36(正方体体对角线l 3

2

=) 正四面体的体积为

3122a (正方体小三棱锥正方体V V V 3

1

4=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2

1

61=

) 3 、棱台的结构特征

3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征

(1)各侧棱相等,各侧面都是全等的等腰梯形;

(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征

4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。

A

B

C D P O

H

4.2 圆柱的性质

(1)上、下底及平行于底面的截面都是等圆;

(2)过轴的截面(轴截面)是全等的矩形。

4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。

4.4 圆柱的面积和体积公式

S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)

S圆柱全= 2π r h + 2π r2

V圆柱= S底h = πr2h

5、圆锥的结构特征

5.1 圆锥的定义:以直角三角形的一直角边所在的直

线为旋转轴,其余各边旋转而形成的曲面所围成的几

何体叫做圆锥。

5.2 圆锥的结构特征

(1)平行于底面的截面都是圆,截面直径与底面

直径之比等于顶点到截面的距离与顶点到底面的距

离之比;

(2)轴截面是等腰三角形;

图1-5 圆锥

(3)母线的平方等于底面半径与高的平方和:

l2 = r2 + h2

5.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。

6、圆台的结构特征

6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台。

6.2 圆台的结构特征

⑴圆台的上下底面和平行于底面的截面都是圆;

⑵圆台的截面是等腰梯形;

⑶圆台经常补成圆锥,然后利用相似三角形进行研究。

6.3 圆台的面积和体积公式

S圆台侧= π·(R + r)·l (r、R为上下底面半径)

S圆台全= π·r2 + π·R2 + π·(R + r)·l

V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)

7 球的结构特征

7.1 球的定义:以半圆的直径所在的直线为旋

转轴,半圆旋转一周形成的旋转体叫做球体。空

间中,与定点距离等于定长的点的集合叫做球

面,球面所围成的几何体称为球体。 7-2 球的结构特征

⑴ 球心与截面圆心的连线垂直于截面;

⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ★7-3 球与其他多面体的组合体的问题

球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:

⑴ 根据题意,确定是内接还是外切,画出立体图形;

⑵ 找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图; ⑶ 将立体问题转化为平面几何中圆与多边形的问题;

⑷ 注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长。 7-4 球的面积和体积公式 S 球面 = 4 π R 2 (R 为球半径) V 球 = 4/3 π R 3

(三)空间几何体的表面积与体积 空间几何体的表面积

棱柱、棱锥的表面积:各个面面积之和

圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S

rl r ππ=+

圆台的表面积:22

S rl r Rl R ππππ=+++

球的表面积:2

4S R π=

扇形的面积公式2211=36022

n R S lr r πα==扇形

(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积

柱体的体积 :V S h =?底

锥体的体积 :1

3

V S h =?底

台体的体积 : 1

)3V S S S S h =+

+?下下上上(

球体的体积:34

3

V R π=

(四)空间几何体的三视图和直观图

正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。

俯视图:光线从几何体的上面向右边正投影,得到的投影图。 ★画三视图的原则:

正俯长相等、正侧高相同、俯侧宽一样

注:球的三视图都是圆;长方体的三视图都是矩形 直观图:斜二测画法 斜二测画法的步骤:

(1)平行于坐标轴的线依然平行于坐标轴;

(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3)画法要写好

用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

二 、点、直线、平面之间的关系

(一)、立体几何网络图:

1、线线平行的判断:

(1)、平行于同一直线的两直线平行。

(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那

么这条直线和交线平行。

(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 (12)、垂直于同一平面的两直线平行。 2、线线垂直的判断:

(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也

和这条斜线垂直。

(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜

线的射影垂直。

线线

线面面面

线线线面面面三垂线三垂⑴ ⑵ ⑷ ⑶ ⑸ ⑹

⑾ ⑿

⒀ ⒁ ⑼ ⑽ ⒂ ⒃ ⑺ ⑻

(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

3、线面平行的判断:

(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。判定定理:

性质定理:

★判断或证明线面平行的方法

I,则l∥α (用于判断);

⑴利用定义(反证法):lα=?

⑵利用判定定理:线线平行线面平行(用于证明);

⑶利用平面的平行:面面平行线面平行(用于证明);

⑷利用垂直于同一条直线的直线和平面平行(用于判断)。

2线面斜交和线面角:l∩α = A

2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,

则平面的斜线与该斜线在平面内射影的夹角θ。

2.2 线面角的范围:θ∈[0°,90°]

注意:当直线在平面内或者直线平行于平面时,θ=0°;

图2-3 当直线垂直于平面时,θ=90°

4、线面垂直的判断:

⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

判定定理:

性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线。

即:

(2)垂直于同一平面的两直线平行。 即:

★判断或证明线面垂直的方法 ⑴ 利用定义,用反证法证明。 ⑵ 利用判定定理证明。

⑶ 一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面。 ⑷ 一条直线垂直于两平行平面中的一个,则也垂直于另一个。

⑸ 如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于

另一平面。

★1.5 三垂线定理及其逆定理

⑴ 斜线定理:从平面外一点向这个平面所引的所有线段中,

斜线相等则射影相等,斜线越长则射影越长,垂线段最短。 如图:

⑵ 三垂线定理及其逆定理

已知PO ⊥α,斜线PA 在平面α内的射影为OA ,a 是平面

α内的一条直线。

① 三垂线定理:若a ⊥OA ,则a ⊥PA 。即垂直射影则垂直斜线。

② 三垂线定理逆定理:若a ⊥PA ,则a ⊥OA 。即垂直斜线则垂直射影。

⑶ 三垂线定理及其逆定理的主要应用 ① 证明异面直线垂直; ② 作出和证明二面角的平面角; ③ 作点到线的垂线段。 5、面面平行的判断:

⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。 ⒀垂直于同一条直线的两个平面平行。 6、面面垂直的判断:

⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。 判定定理:

性质定理:

图2-7 斜线定理

图2-8 三垂线定理

⑴ 若两面垂直,则这两个平面的二面角的平面角为

90°; (2)

(3)

(4)

(二)、其他定理:

(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系: 相交 ; 平行 ; 异面 ;

直线与平面的位置关系: 在平面内 ; 平行 ; 相交(垂直是它的特殊情况) ;

平面与平面的位置关系: 相交 ;; 平行 ;

(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;

如果两条相交直线和另外两条相交直线分别平行,

那么这两组直线所成的锐角(或直角)相等;

(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段

和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。

(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影

所成的角。

(6)异面直线的判定: ①反证法;

②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线。 (7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内。

图2-10 面面垂直性质2

图2-11 面面垂直性质3

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

立体几何复习知识点汇总(全)

立体几何知识点汇总(全) 1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段) ⑦b a,是夹在两平行平面间的线段,若 a,的位置关系为相交或平行或异面. a=,则b b ⑧异面直线判定定理:过平面外一点与平 面内一点的直线和平面内不经过该点的直线是

异面直线.(不在任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (直线与直线所成角]90,0[??∈θ)(向量与向量所成角])180,0[οο∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能 叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直. (1). 空间直线与平面位置分三种:相交、平行、在平面内. (2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) (3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线

打印:高考立体几何知识点总结

一、空间几何体 (一)空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何 体。其中,这条直线称为旋转体的轴。 (二)几种空间几何体的结构特征 1 、棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形 的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 棱柱四棱柱平行六面体直平行六面体长方体正四棱 柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行;Ⅲ、平行于底面的截面和底面全等; 棱柱的面积和体积公式 ch S= 直棱柱侧 (c是底周长,h是高)S直棱柱表面 = c·h+ 2S底V棱柱 = S底·h 2 、棱锥的结构特征 棱锥的定义 (1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的结构特征 Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 ' 2 S ch = 正棱椎 (c为底周长,'h为斜高) 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱 A B C D P O H

知识点-立体几何知识点常见结论汇总

知识点-立体几何知识点常见结论汇总

————————————————————————————————作者:————————————————————————————————日期: 2

O A B C D E F 垂 立体几何高考知识点和解题思想汇总 补充:三角形内心、外心、重心、垂心知识 四心的概念介绍: (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 若P 为ABC ?所在平面外一点, O 是点P 在 ABC ?内的射影,则: ①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ?的外心; ②若P 到ABC ?的三边的距离相等, 则O 为△ABC 的内心; ③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ?的垂心. 常见空间几何体定义: 1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,这两个面为底面,其他面为侧面。 棱柱具有下列性质: 1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等; 2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。 3)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。 棱柱的分类: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱。 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。直棱柱的各个侧面都是矩形; 正棱柱:底面是正多边形的直棱柱叫做正棱柱。正棱柱的各个侧面都是全等的矩形。 平行六面体:底面是平行四边形的棱柱。 直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。 长方体:底面是矩形的直棱柱叫做长方体 2 .棱锥:有一个面是多边形 ,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高. (2) 底边长和侧棱长都相等的三棱锥叫做正四面体. A B C O 外 I K H E F D A B C M 内 A B C D E F G 重

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

必修2立体几何复习(知识点+经典习题)

必修二立体几何知识点与复习题 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平 行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 4、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 5、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成? 90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为? 90 2、在一个平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 1、异面直线所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 2、直线与平面所成的角的取值范围是:? ≤ ≤ ?90 0θ[]? ?90 , 3、斜线与平面所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 4、二面角的大小用它的平面角来度量;取值范围是:? ≤ < ?180 0θ(]? ?180 , 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2)有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是() A.空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行; (3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

高考立体几何知识点总结

立体几何知识点总结(二) 一.点、直线、平面之间的关系 1、线线平行的判断: (1)、平行于同一直线的两直线平行。 (2)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 (3)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 (4)、垂直于同一平面的两直线平行。 (5) 平行四边形两组对边平行,三角形中位线平行底边,,,,,, 2、线线垂直的判断: (1)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。 (2)相交直线两直线可组成三角形利用勾股定理证垂直。 (3)一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 3、线面平行的判断: (1)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 (2)、两个平面平行,其中一个 平面内的直线必平行于另一个平 面。

4、线面垂直的判断: (1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 (2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。(3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。(4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 5、面面平行的判断: (1)一个平面内的两条相交直线分别平行于另一个平面, 这两个平面平行: 线面平行面面平行 (2)垂直于同一条直线的两个平面平行。 6、面面垂直的判断: (1)一个平面经过另一个平面的垂线,这两个平面互相垂直。 7,体积的求法 (1)三棱锥换底换高 (2)其他图形根据情况适用公式或分割成几个图形

高考立体几何知识点总结(详细)

收集整理:宋氏资料 2016-1-1 2016 高考立体几何知识点总结 一、空间几何体 (一)空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个 面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线 称为旋转体的轴。 (二)几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2棱柱的分类 图1-1 棱柱 底面是四边形 棱柱四棱柱底面是平行四边形侧棱垂直于底面底面是矩形底面是正方形平行六面体直平行六面体长方体 棱长都相等 正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3棱柱的面积和体积公式 S直棱柱侧(c 是底周长,h 是 ch 高) S 直棱柱表面= c·h+ 2S 底 V 棱柱= S 底·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成 的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心, 这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到

底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 S正棱椎ch (c为底周长,h'为斜高) ' 2 P 体积: 1 V棱椎Sh(S为底面积,h 为高) 3 D C O H 正四面体: A B 2 对于棱长为a正四面体的问题可将它补成一个边长为 a 的正方体问题。 2 2 对棱间的距离为 a 2 (正方体的边长) 6 正四面体的高 a 3 ( 2 3 l 正方体体对角线 ) 正四面体的体积为 2 12 a 3 ( 1 V正方体4V V ) 小三棱锥正方体 3 正四面体的中心到底面与顶点的距离之比为1:3( 1 6 l 1 正方体体对角线:l 2 正方体体对角线 ) 3 、棱台的结构特征 1.4棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 1.5正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 2.3圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 2.4圆柱的性质 (1)上、下底及平行于底面的截面都是等圆; (2)过轴的截面(轴截面)是全等的矩形。 2.5圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2.6圆柱的面积和体积公式 S 圆柱侧面= 2π·r·h (r 为底面半径,h 为圆柱的高) S 2

立体几何知识点题型整理

立体几何总结(1)空间几何体的知识点: (2)点、直线、面的位置关系: (3)空间直角坐标系: 考点一空间几何体与三视图 1.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.画直观图时,与坐标轴平行的线段仍平行,与x轴、z轴平行的线段长度不变,与y轴平行的线段长度减半. 题型一三视图的考察 1、(2009·海南、宁夏) 一个棱锥的三视图如图,则该棱锥的全面积( 单位:cm2) 为( ) A.48+12 2 B.48+24 2 C.36+12 2 D.36+24 2 2、如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ( ) A.6 3 B.9 3 C.12 3 D.18 3 【方法技巧】 1.求三棱锥体积时,可多角度地选择方法.如体积分割、体积差等积转化法是常用的方法.2.与三视图相结合考查面积或体积的计算时,解决时先还原几何体,计算时要结合平面图形,不要弄错相关数量. 3.求不规则几何体的体积常用分割或补形的思想将不规则几何体转化为规则几何体以易于求解. 4.对于组合体的表面积要注意其衔接部分的处理.

题型二 平面图的直观图(斜二测面法) 1、如图所示的直观图,其平面图形的面积为 ( ) A .3 B.32 2 C .6 D .3 2 2、如图所示为一平面图形的直观图,则这个平面图形可能是 ( ) 答案 :C 题型四 其他类型:展开、投影、截面、旋转体等 1 、面积为3的等边三角形绕其一边中线旋转所得圆锥的侧面积是________. 答案 :2π 2、 如图,长方体ABCD -A1B1C1D1 中,交于顶点A 的三条棱长分别为AD =3 ,AA1 =4 ,AB =5 ,则从A 点沿表面到 C1 的最短距离为 ( ) A .5 2 B.74 C .4 5 D .310 考点三 球与空间几何体的“切”“接”问题 1.长方体、正方体的外接球其体对角线长为该球的直径. 2.正方体的内切球其棱长为球的直径. 3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线. 4.正四面体的外接球与内切球的半径之比为3∶1. 若正四面体的棱长为 a a R a a 12 6 ,46 ,36的半径为 正四面的内切球 径正四面体的外接球的半则正四面体的高为= (熟悉常见的补体,特殊的几何体如正三棱柱、正四棱柱、正六棱柱,注意如何确定球心的位置) 1.已知三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球的半径为( )A.3 B.6 C.36 D.9 2、在三棱锥BCD A -中,5,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为( )A.π102 B. π54 C. π21 D. π43 变式:在三棱锥BCD A -中,5,4,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为————(π2 77 ) 2、棱长为2的正四面体(四个面均为正三角形)外接球的表面积是( ) A π3 B π3 C π33 D π2 3 3、在三棱柱C B A ABC '''-中,已知ABC A A 平面⊥',2='==A A AC AB ,32=BC ,且此三棱柱的各个顶点都在一个球面上,则球的表面积为__________.

知识点立体几何知识点常见结论总结

立体几何高考知识点和解题思想汇总 补充:三角形内心、外心、重心、垂心知识 四心的概念介绍: (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 若P 为ABC ?所在平面外一点, O 是点P 在 ABC ?内的射影,则: ①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ?的外心; ②若P 到ABC ?的三边的距离相等, 则O 为△ABC 的内心; ③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ?的垂心. 常见空间几何体定义: 1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,这两个面为底面,其他面为侧面。 棱柱具有下列性质: 1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等; 2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。 3)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。 棱柱的分类: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱。 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。直棱柱的各个侧面都是矩形; 正棱柱:底面是正多边形的直棱柱叫做正棱柱。正棱柱的各个侧面都是全等的矩形。 平行六面体:底面是平行四边形的棱柱。 直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。 长方体:底面是矩形的直棱柱叫做长方体 2 .棱锥:有一个面是多边形 ,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高. A B C O I K H E F D A B C M A B C D E F G

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

高考立体几何题型与方法全归纳文科

2019高考立体几何题型与方法全归纳文科 配套练习 1、四棱锥中,⊥底面,,, . (Ⅰ)求证:⊥平面; (Ⅱ)若侧棱上的点满足,求三棱锥的体积。 【答案】 (Ⅰ)证明:因为BC=CD ,即BCD ?为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥. 因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线AC PA ,都垂直, 故⊥平面。 (Ⅱ)解:33 2sin 2221sin 21=??=∠??=?πBCD CD BC S BCD . 由⊥PA 底面ABCD 知23233 131=??=??=?-PA S V BCD BDC P . 由,7FC PF =得三棱锥BDC F -的高为PA 8 1, 故:4 132813318131=???=??=?-PA S V BCD BDC F 4 7412=-=-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ?∠=,平面PAD ⊥ 平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点. (Ⅰ)证明:EF P 平面PAD ; (Ⅱ)证明:平面PDC ⊥平面PAD ;

(Ⅲ)求四棱锥P ABCD -的体积. 【答案】 (Ⅰ)证明:如图,连结AC . ∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点. 又E 是PC 的中点,EF AP P ∵EF ?平面PAD ,PA ?平面PAD ,所以EF P 平面PAD ; (Ⅱ)证明:∵平面PAD ⊥ 平面ABCD ,CD AD ⊥,平面PAD I 平面ABCD AD =, 所以平面CD ⊥ 平面PAD ,又PA ?平面PAD ,所以PA CD ⊥ 又PA PD ⊥,,PD CD 是相交直线,所以PA ⊥面PCD 又PA ?平面PAD ,平面PDC ⊥平面PAD ; (Ⅲ)取AD 中点为O .连结PO ,PAD ?为等腰直角三角形,所以PO AD ⊥, 因为面PAD ⊥面ABCD 且面PAD I 面ABCD AD =, 所以,PO ⊥面ABCD , 即PO 为四棱锥P ABCD -的高. 由2AD =得1PO =.又1AB =. ∴四棱锥P ABCD -的体积1233 V PO AB AD =??= 考点:空间中线面的位置关系、空间几何体的体积. 3、如图,在四棱锥P ABCD -中,PD ABCD ⊥平面,CD PA ⊥, DB ADC ∠平分,E PC 为的中点,45DAC ∠=o ,AC = O

高中数学立体几何知识点整理

三、立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到 截面距离与高的比的平方。 (3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图 是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变; ②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高,' h 为斜高,l 为母线) ch S =直棱柱侧面积rh S π2=圆柱侧'2 1ch S =正棱锥侧面积rl S π=圆锥侧面积 ')(2 121h c c S +=正棱台侧面积l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式 V Sh =柱2V Sh r h π==圆柱13V Sh =锥h r V 231π=圆锥 '1()3 V S S h =台'2211()()33V S S h r rR R h π==++圆台 (4)球体的表面积和体积公式:V 球=343 R π ; S 球面=24R π 4、空间点、直线、平面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 应用: 判断直线是否在平面内 用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈?? 公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

高考立体几何知识点详细总结

八、立体几何 一、立体几何网络图: (1)线线平行的判断: ⑴平行于同一直线的两直线平行。 ⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直 线和交线平行。 ⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ⑿垂直于同一平面的两直线平行。 (2)线线垂直的判断: ⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜 线垂直。 ⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影 垂直。 ⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。 补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 ⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 ⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

(5)面面平行的判断: ⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。 ⒀垂直于同一条直线的两个平面平行。 (6)面面垂直的判断: ⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。 二、其他定理: (1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系:相交;平行;异面; 直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况); 平面与平面的位置关系:相交;;平行; (3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等; 如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的 锐角(或直角)相等; (4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相 等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角。(6)异面直线的判定:①反证法; ②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线。 (7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内。 (8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线。 (9)如果两个相交平面都垂直于第三个平面,那么它们的交线也垂直于第三个平面。 三、唯一性定理: (1)过已知点,有且只能作一直线和已知平面垂直。 (2)过已知平面外一点,有且只能作一平面和已知平面平行。 (3)过两条异面直线中的一条能且只能作一平面与另一条平行。 四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所 o90 o 0≤ <α 注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。有的

文科立体几何知识点方法总结高三复习

立体几何知识点整理(文科) 一.直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 方法二:用面面平行实现。 方法 用线 直实 现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量和向量共线且l、m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 方法二:用面面平行实现。 方法三:用平面法向量实现。 若n为平面α的一个法向量,l n⊥且α ? l,则 α // l。 3.面面平行: 方法一:用线线平行实现。 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 方法二:用线面平行实现。 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 3.线线垂直: 方法一:用线面垂直 实现。 方法二:三垂线定理及其逆定理。 方法三:用向量方法: 若向量和向量的数量积为0,则m l⊥。 三.夹角问题。 (一)异面直线所成的角: (1) 范围:] 90 , 0(? ? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: (计算结果可能是其补角 ) θ c b a l

方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 (2)范围:]90,0[?? 当?=0θ时,α?l 或α//l 当?=90θ时,α⊥l (3)求法: 方法一:定义法。 步骤1:作出线面角,并证明。 步骤2:解三角形,求出线面角。 (三) 二面角及其平面角 (1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角θ为二面角α—l —β的平面角。 (2)范围:]180,0[?? (3)求法: 方法一:定义法。 步骤1:作出二面角的平面角(三垂线定理),并证明。 步骤2:解三角形,求出二面角的平面角。 方法二:截面法。 步骤1:如图,若平面POA 同时垂直于平面βα和,则交线(射线)AP 和AO 的夹角就是二面角。 步骤2:解三角形,求出二面角。 方法三:坐标法(计算结果可能与二面角互补)。 步骤一:计算121212 cos n n n n n n ?= ? 步骤二:判断θ与12n n 的关系,可能相等或者互补。 四.距离问题。 1.点面距。 方法一:几何法。 步骤1:过点P 作PO ⊥α于O ,线段PO 即为所求。 步骤2:计算线段PO 的长度。(直接解三角形;等体积法和等面积法;换点法) 2.线面距、面面距均可转化为点面距。 3.异面直线之间的距离 方法一:转化为线面距离。 如图,m 和n 为两条异面直线,α?n 且α//m , 则异面直线m 和n 之间的距离可转化为直线m 与平面α之间的距离。 方法二:直接计算公垂线段的长度。 方法三:公式法。 如图,AD 是异面直线m 和n 的公垂线段, '//m m ,则异面直线m 和n 之间的距离为: 高考题典例 考点1 点到平面的距离例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.考点2 异面直线的距离 A B C D O F

相关主题