搜档网
当前位置:搜档网 › 废水深度处理方案

废水深度处理方案

废水深度处理方案
废水深度处理方案

邯钢废水深度处理项目

工艺方案

北京佳瑞环境保护有限公司

2010-10

目录

1.项目背景 (2)

2 处理规模及要求 (2)

3工艺路线 (4)

4 工艺设计 (8)

4.1预处理部分 (8)

4.2 膜处理单元 (9)

4.3 浓水深度生物处理单元 (11)

5 投资估算及运行费用分析 (18)

6 占地面积 (20)

1.项目背景

根据新区环评文件要求:XX钢厂东西区(老区、新区)年外排水总量为500万m3。目前新区主体工程建成后,年外排生产废水量由2405.5万m3减少为500万m3;但东区年外排生产废水量为436万 m3。为了达到以上要求,还需对东区进行改造。

每年东区提取新水量约为3200万m3,如果加上电厂用水,则提取量更大。除了在用水过程中的蒸发、渗漏损耗,其他均外排。工程用水仅经过絮凝、沉淀、过滤工艺净化取得,水中含盐量较高,氯离子一般在500mg/l左右,加上水源地河水污染严重,近年来河水水质有恶化的趋势,含盐量和氯离子过高(含盐量已比往年翻番),高达1500~2000mg/l,氯离子也达到200~300mg/l,导致净化水内的盐分最高达到900mg/l,严重影响中水的回用,对已用中水的用户的设备造成潜在的安全隐患,影响设备使用寿命;同时因氯离子含量高,影响循环水的浓缩倍数,造成循环系统置换量大,加大了污水处理厂的负荷,增加了污水处理费用,造成运行成本升高。

为此,结合西区环评年排水500万m3的要求,我们制订了对现在外排的约2000m3/h生产废水进行深度处理,脱盐后的深加工水代替河水做为各系统补水,产生的高盐水可以用于料场喷洒、炼钢焖渣、水冲渣补水等,其余外排。既可以减少外排水的水量,又可以进一步降低吨钢耗新水指标,具有较好的社会效益和环保效益。

2 处理规模及要求

2.1 处理水量:2000m3/h。

处理后最终外排浓盐水水量:≤500m3/h。

2.2 水质现状与处理后水质要求:

邯钢一污水出水水质指标

深度处理产水水质指标

深度处理外排浓盐水水质指标:

3工艺路线

一污产生污水水量为2000T/h,此水作为深度处理系统的原水,由于水中有一定含量COD,而水质为炼钢过程中的工艺产水,BOD较低,可生化性较差,同时水中悬浮物较高,综合整个工艺流程的优化,考虑到此部分水如果采用生化处理工艺,占地面积大,投资费用高,所以预处理阶段采用混凝沉淀+滤布滤池的处理工艺,在水经过膜处理系统浓缩后,COD提高到一定数值,再集中进行生化处理。

预处理阶段采用混凝沉淀过滤+滤布滤池工艺,此工艺可有效地去除悬浮物,同时对COD具有一定的去除率。预处理单元出水COD<60mg/L,SS<10mg/L,NH3-N<20mg/L。

预处理单元出水进入膜处理单元进行处理,经过我公司的工程实践经验,选用污水用的UF和RO膜,膜的抗污染能力较强,同时强化膜清洗的措施(增加NaCLO等),适当增加膜清洗的周期,可以使膜在上述预处理出水的COD

数值范围内能够正常地运行,保持膜的产水率。膜处理单元选择超滤+反渗透的处理工艺,为提高反渗透的水回收率,反渗透浓水再进一步进行浓水反渗透处理,使反渗透最终产水率达到85%。

超滤部分排水及反渗透浓水集中进行进一步深度处理,因膜处理后水的浓缩,集中的浓水COD<250mg/L,NH3-N<80mg/L,采用水解酸化工艺提高废水的可生化性,出水进入BAF处理工艺,BAF处理工艺对COD去除率可达到35~45%,对氨氮的去除率可达到70%左右。

BAF出水进行O

氧化处理,此单元为进一步的保障措施,因原废水本身

3

氧化处理进一可生化性较差,在BAF处理单元运行效果不稳定时,可通过O

3

步对有机物、氨氮等进行氧化,以进一步保证出水能达到标准。同时设置O

3对水解酸化池的管道,在特殊运行方式的情况下,辅助水解酸化池进行对有机物等的处理。经过此单元的综合处理作用下,可稳定的保证保证浓水排放COD≤150mg/L,NH

-N<25mg/L。

3

排放(440t/h)

回用水(1560t/h)图1 水量平衡图(水量损耗暂未计入在内)

7

图2 工艺流程图

(PAM PAC

4 工艺设计

4.1预处理部分

预处理部分采用混凝、沉淀、过滤工艺,混凝反应采用管道混合器+折板絮凝池,通过管道混合器及折板絮凝池使混凝剂、絮凝剂同废水充分的混合,混合后的废水进入沉淀池使泥水分离。

4.1.1 预处理部分土建内容

4.1.2 预处理部分设备清单

4.2 膜处理单元

4.2.1 工艺说明

超滤处理单元选用适合污水水源的膜,产水率92%,选用8套共464支膜,膜进水COD<80mg/L。

一级反渗透处理单元系统回收率70%,RO浓水进行浓水反渗透,回收率50%,反渗透总回收率85%。脱盐率>95%。出水满足回用水质要求。

超滤膜组件过滤单元:

设计水温 20℃

套数 8套

平均产水量(单套) 231m3/h

总产水量 1847m3/h

平均回收率 92.3%

膜面积 27.9M2/支

总的膜组件数 464只

设计通量 55.27 LMH

产品水浊度<0.2NTU

SDI <3

一级反渗透组件过滤单元:

设计水温 20℃

列数 6套

平均产水量(单套) 215m3/h

总产水量 1290m3/h

平均回收率 70%

单列膜组件数 324只

设计通量 17.83 LMH

第三年产水TDS 14mg/L

一级RO浓水再处理单元:

设计水温 20℃

列数 2列

平均产水量(单套) 138m3/h 总产水量 276m3/h 平均回收率 50%

单列膜组件数 264只

设计通量 13.76 LMH 第三年产水TDS 61.24mg/L

4.2.2 设备清单

4.3 浓水深度生物处理单元4.3.1 水解酸化池的主要作用

提高废水的可生化性,同时去除部分有机物及氨氮。

4.3.2 曝气生物滤池主要作用

曝气生物滤池工艺主要用于对污水中有机物的降解和氨氮的硝化。滤池中可驯化出不同功能的优势菌种,大大缩短生物氧化时间,提高生化处理效率,使出水水质稳定达标。超滤及反渗透产生浓水中COD经过浓缩之后较高,BAF工艺生物处理后可将废水中COD降低到排放指标,同时好氧BAF通过硝化作用降低废水中的氨氮含量。其技术特点如下:

(1)关于BAF的进水方式

BAF采用上进水方式,有利提高处理负荷,有利于进水的均匀性和悬浮物的截留与反洗。

(2)关于BAF的曝气方式

①全部曝气生物滤池底部,均考虑设置曝气装置,其目的为采用好氧方式时,创造必要条件;也是减少堵床,采用的一种措施。

②BAF池的曝气量,根据不同运行状态是一个变量,选用离心风机。

③池的反冲洗风,单独设置罗茨鼓风机;

4.3.3 下向流BAF结构示意

图2 下向流曝气生物滤池的结构示意图。

5

1---缓冲配水区;2---承托层;3---滤料层;4---出水区;5---进水槽;

6---反冲洗排水区; 7---斜板沉淀区; 9---滤板;

10---长柄滤头。

曝气生物滤池其主体由滤池池体、滤料层、承托层、布水系统、布气系统、

反冲洗系统、出水系统、管道和自控系统组成。

1)滤池池体

滤池池体的作用是容纳被处理水量和围挡滤料,并承托滤料和曝气装置的重量。

2)滤料

在生物滤池中,滤料是生物的载体,微生物附着在滤料上,进行生物净化作用。

3)承托层

承托层主要是为了支撑滤料,防止滤料流失和堵塞滤头,同时还可以保持反冲洗稳定进行。

4)布水系统

对于下向流滤池,配水室的作用是使某一短时间段内进入滤池的反冲洗水能在配水室内混合均匀,并通过配水滤头均匀流过滤料层,是为了支撑滤料,防止滤料流失和堵塞滤头,同时还可以保持反冲洗稳定进行。

配水室的功能是在滤池正常运行时和滤池反冲洗时使水在整个滤池截面上均匀分布,它由位于滤池下部的缓冲配水区和承托滤板组成。

5)布气系统

曝气生物滤池内的布气系统包括正常运行时曝气所需的曝气系统和进行气-水联合反冲洗时的供气系统两部分。

单孔膜空气扩散器按一定间隔安装在空气管道上,空气管道又被固定在承托滤板上,单孔膜空气扩散器一般都设计安装在滤料承托层里,距承托板约0.1—0.15米,使空气通过扩散器并通过滤料层时可达到30%以上的氧利用率。该扩散器的另一个特点是不容易堵塞,即使堵塞也可用水进行冲洗。

6)反冲洗系统

曝气生物滤池反冲洗系统与给水处理中的V型滤池类似,采用气-水联合反冲洗,其目的是去除生物滤池运行过程中截留的各种颗粒及胶体污染物以及老化脱落的微生物膜。曝气生物滤池气-水联合反冲洗通过滤板及固定其上的配水长柄滤头实现,反冲洗过程采用气-水联合反冲洗,最后再单独采用水洗。

7)管道和自控系统

为提高滤池的处理能力和运行方式的变换,对若干组滤池之间的切换,必须

有管道系统,并通过PLC控制系统来自动完成对滤池的运行控制。

4.3.4 曝气生物滤池系统工艺特点

1)基本原理

曝气生物滤池(简称BAF),采用火山岩作为生物曝气滤池的填料,其比表面积大,且粗糙有利于表面生长生物膜。

污水流经滤层时微生物膜吸附污水中有机污染物作为其新陈代谢的营养物质,并在滤层下部曝气供氧的条件下,使废水中有机物得到好氧降解。

(1)滤池内部形成生物膜与生物絮体联合处理的的模式,能提高总生物处理效率;生物絮体与生物膜的吸附作用,提高了吸附过滤效率,对污水中的溶解及非溶解有机物具有吸附作用,提高污染物在系统内的停留时间,有利于污染物的去除。

(2)生物膜形成后,每粒生物滤料存在好氧、缺氧及厌氧区,滤池系统相当于无数个A/O系统,对难生化废水具有良好的去除作用。这种处理工艺对低浓度有机污水适应性强,不会产生由于营养物过低导致微生物无法培养的情况。

(3)当生物膜生长阻塞滤层时,需要进行气、水反冲洗。

2)生物滤池功能特点

北京佳瑞环境保护有限公司的曝气生物滤池作为一种膜法污水处理的新工艺,其特点如下:

(1)具有较高的生物浓度和较高的有机负荷

曝气生物滤池采用粗糙多孔的火山岩滤料,为微生物提供了较佳的生长环

境,易于挂膜及稳定运行,可在滤料表面和滤料间保持较多的生物量,高浓度的微生物量使得BAF的容积负荷增大,进而减少了池容积和占地面积,使基建费用

大大降低。

(2)易挂膜,启动快

BAF调试时间短,一般只需20-30天,而且不需接种污泥,采用自然挂膜驯化。

(3)自动化程度,模块设计。

(4)工艺简单、出水水质良好

由于滤料的机械截留作用以及滤料表面的微生物和代谢中产生的粘性物质形成的吸附作用,使该工艺出水水质良好。

4.3.5 生化处理部分土建构筑物

4.3.6 生化处理部分设备清单

5 投资估算及运行费用分析

5 .1 土建投资费用估算

5.2 设备投资费用估算

由以上5.1与5.2两项,项目总投资约****万元

5.3 运行费用估算

5.3.1 药剂运行费用

5.3.2 电气负荷

医院污水处理设计方案

****** 污水处理工程 初 步 设 计 方 案 2014年6月

一、项目概况 1.1 概述 主要参数:处理流量1000t/d。 处理工艺:“预消毒+生物接触氧化(二级处理)+深度处理(生物瀑气滤池)+ 二氧化氯消毒”。 水质标准:处理后的水质需达到《医疗机构水污染物排放标准》(GB18466-2005)表1中的标准和和《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准后,就近排入九乡河,项目污水远期处理达到上述标准后汇入汤山污水处理厂进行保障处理,尾水排入汤水河。 1.2 处理能力 建设项目需处理的污水量约为245054t/a,即671.38t/d,建设项目拟建一座处理量为1000t/d的污水处理站,能满足本项目污水处理的需求。 1.3废水来源及水质分析 本项目工程分析中对不同废水进行了分类统计,主要有医疗废水、办公生活污水和食堂含油废水等。其中生活污水经过化粪池处理、食堂餐饮废水经过隔油池处理、地下车库地面冲洗废水经过沉砂池处理;医疗废水中传染病区废水经过专用化粪池处理、放射室废水经过半衰处理池处理,以上废水经过预处理后与其它普通医疗废水及医务员工生活污水、食堂废水、商业用房废水、地下车库地面冲洗水一起排入本项目自建的污水处理站集中处理。

医疗污水中含有酸、碱、固体悬浮物(SS)、有机污染物(CODCr)、BOD5、动植物油、病菌和病毒等有毒、有害物质。拟建医院营运期口腔科采用一般治疗,不涉及牙齿美容等深度治疗,不使用金属材料,没有含汞等特殊医疗废水或废液产生,检验室废液与医疗固废一起委托有资质单位收集处理。 1.4 进水水量及水质指标 根据环评及环评批复内容,本项目废水量为671.38t/d,污水处理站的处理规模为1000t/d。具体病区废水水质水量及水质见下表:

污水深度处理设计计算

第3章 污水深度处理设计计算 污水深度处理是指城市污水或工业废水经一级、二级处理后,为了达到一定的回用水标准使污水作为水资源回用于生产或生活的进一步水处理过程。针对污水(废水)的原水水质和处理后的水质要求可进一步采用三级处理或多级处理工艺。常用于去除水中的微量COD 和BOD 有机污染物质,SS 及氮、磷高浓度营养物质及盐类。 絮凝过程就是使具有絮凝性能的微絮粒相互碰撞,从而形成较大的,絮凝体,以适应沉淀分离的要求。 常见的絮凝池有隔板絮凝池,折板絮凝池,机械絮凝池,网格絮凝池。隔板絮凝池虽构造简单,施工管理方便,但出水流量不易分配均匀。折板絮凝池虽絮凝时间短,效果好,但其絮凝不充分, 形成矾花颗粒较小、细碎、比重小,沉淀性能差,只适用于水量变化不大水厂。机械絮凝池虽絮凝效果较好、水头损失较小、絮凝时间短,但机械设备维护量大、管理比较复杂、机械设备投资高、运行费用大。网格絮凝池构造简单、絮凝时间短且效果较好,本设计将采用网格絮凝池[8,9,10,11]。 3.1.1网格絮凝池设计计算 网格絮凝池分为1座,每座分1组,每组絮凝池设计水量: s /m 308.0Q 31= (1)絮凝池有效容积 T Q V 1= (3-12) 式中 Q 1—单个絮凝池处理水量(m 3/s ) V —絮凝池有效容积(m 3) T —絮凝时间,一般采用10~15min ,设计中取T=15min 。 3277.2m 60150.308V =??= (2)絮凝池面积 H V A = (3-13) 式中 A —絮凝池面积(m 2); V —絮凝池有效容积(m 3); H —有效水深(m ),设计中取H=4m 。 2m 3.694 2.277A == (3)单格面积 1 1 v Q f = (3-14) 式中 f —单格面积(m 2);

污水处理工艺比选

常用处理工艺介绍及比选 本工程实施区域位于园区内部,对水处理设备的外观和出水水质的要求都比较高。针对本工程的要求,对以下几种水处理方法进行介绍和比选。 1 人工湿地 人工湿地是通过人工模拟自然湿地的结构和功能而设计和建造的湿地。人工湿地主要由基质、植物和微生物等组成,它充分利用物理、化学和生物的三重协同作用,通过过滤、吸附、沉淀、离子交换、植物吸收和微生物分解等作用来实现对污水的高效净化,是一种经济有效的处理技术。研究表明,在进水浓度较低的情况下,人工湿地对BOD5的去除率可达85%~95%,对COD的去除率可大于80%。 按照废水在湿地中的流程,人工湿地系统主要分为自由表面流人工湿地、水平潜流人工湿地、垂直流人工湿地等类型。湿地流程、植物种类、基质类型及水力负荷是影响人工湿地处理效率的关键因素。 人工湿地以其去污效果好、建造运营成本低廉、操作与管理简便等优点,在世界范围内正越来越多地被用于生活污水的处理。但从实际运行来看,人工湿地在处理生活污水时还存在一些不足,例如: (1)水力负荷偏低,占地面积大,只适用于用地不紧张的农村和城市郊区; (2)基质易堵塞,影响湿地系统的寿命和运行稳定性; (3)受气候温度影响大,难以在气候寒冷地区推广。 因此人工湿地一般适用于气候温暖,地广人稀的地区,且一般设在生物处理之后,作为出水水质的保证。 # 2 SBR SBR是序批式活性污泥法的简称,又称间歇曝气法。其主体构筑物SBR反应池,是由美国Irvine教授在20世纪70年代开发的,是一种集调节池、初沉池、曝气池、二沉池为一池,连续进水、间歇排水,工艺流程简单,布局紧凑合理的好氧微生物污水处理技术。

1万吨污水处理厂方案确定构筑物选型

污水处理方案的确定 我国城市污水处理在见过四十多年来取得是很大的成就,污水处理技术随着水污染控制与环境治理的实践,在吸取国外技术经验的同时,结合我国国情的特点,逐步改进提高,初步形成一些适用的技术路线,主要如下:(1)对传统活性污泥法进行改造或予以取代后的人工生物净化技术路线; (2)以自然生物净化为主并附以人工的生物净化技术路线; (3)以深水扩散排放为主,处理为辅的技术路线; (4)以回用为目标的污水深度处理技术路线,结合该污水处理工程的具体情况分析进行选择。 设计方案的比选确定 城市污水处理厂设计处理方案时,既要考虑有效去除BOD5又要考虑适当去除N、P。目前,可采用的工艺有很多,而相对来说处理效果好而且技术成熟的工艺有以下几种。 传统活性污泥法; AB法; SBR法; 氧化沟法; .1 传统活动污泥法 传统活性污泥法,又称普通活性污泥法,传统曝气法工艺较早使用,而且一直是城市污水处理的主要工艺之一,至今仍有强大的生命力,原污水从曝气池首段进入池内,由二次沉淀池回流的回流污泥也同步注入。污水与回流污泥形成的混合液在池内呈推流式流动至池的末端,流出池外进入二次沉淀池,在这里处理后的污水与活性污泥分离,部分污泥回流曝气池,部分污泥则作为剩余污泥排出系统,国内外一些大型污水处理厂多选用此法。 传统活性污泥法处理效果好,电耗省,负荷高,污泥量虽较大,对于大规模污水处理厂,集中建污泥消化池,所产生的沼气可作能源回收利用。 传统活性污泥法处理系统存在着下列各项问题: (1)曝气池首段有机污染物负荷高,耗氧速度也高,为了避免由于缺氧形成的厌氧状态,进水有机物负荷不宜过高,因此,曝气池容积大,占 用的土地较多,基建费用高; (2)耗氧速度沿池长是变化的,而供氧速度难于与其相吻合、适应,在池前段可能出现耗氧速度高于供氧速度的现象,池后段又可能出现溶解 氧过生的现象,对此,此阿勇渐减供氧方式,可在一定程度上解决这 一问题。 (3)对进水水质、水量变化的适应性较低,运行效果易受水质、水量变化

电镀废水深度处理技术

精品整理 电镀废水深度处理技术 一、技术概述 该技术采用双级处理、深度回用和膜分离技术,通过自主研发的三段式回用工艺、双级污泥循环反应设备,运用现代化自动控制技术,实现了电镀废水多级利用、系统动态监控、工艺参数的设定、故障报警等功能。电镀废水处理后达到《城市污水再生利用和城市杂用水水质标准》(GB/T18920-2002),废水的资源化利用率大于76%,出水悬浮物低于5mg/L,贵金属去除率达到98%。对日处理水量160 m3,年减少CODCr排放10890kg,减少重金属排放3000kg;年节水43000t,综合运行成本9元/m3。 二、技术优势 (1)采用混凝、沉淀、气浮、过滤的综合处理技术,使电镀废水的各项指标远低于国家标准排放限值 (2)比传统反渗透工艺降低运行费用30%-40%。 (3)将电镀废水回用率由目前的30%以下(行业水平)提高到循环利用率76%,使电镀生产节约用水46%。 (4)采用自动化运行及在线检测、远程监控、联网诊断等先进技术,使处理过程稳定、可靠、安全、达标。 三、适用范围 电镀企业及电镀生产园区电镀废水处理 四、基本原理 采用物理化学方法对电镀废水中的重金属进行分离处理,通过两次调节废水的pH值,使废水中碱性重金属离子和中性重金属离子分别在其最佳的沉淀环境内进行沉淀分离,达到去除重金属的目的,使废水达到《电镀污染物排放标准》(GB21900-2008)中的标准,再对达标的废水进行双膜法(超滤膜+反渗透膜)分离,进一步去除水中的各类金属离子,反渗透膜清水侧出水达到电镀清洗工艺用水水质标准,回用于电镀生产线,反渗透浓水侧出水再经过一次物化沉淀,最终使浓水达标排放。

一体化生活污水深度处理方案

小型一体化村镇生活污水处理方案 一、适用范围 村镇、宾馆、学校、住宅小区、别墅小区等生活污水以及相近性质的污废水处理。二、产品特点 (1)污染物去除率高,COD,BOD,SS,NH3-N,可达到国家一级A排放标准。 (2)投资运行成本低,不产生污泥处理费用,也没有膜污染。 (3)维护管理方便,可以做到无人值守。 (4)占地省,小型一体化污水处理设备可埋入地表以下,不占地不破坏环境。 三、主要工艺流程 生活污水由污水管网收集,经格栅进入调节池,格栅截留污水中的悬浮物和漂浮物,调节池中污水由提升泵提升至一体化污水处理装置,污水处理装置集缺氧池、好氧生物接触氧化、沉淀池、杀菌消毒为一体的集成污水处理装置。(具体流程根据实际情况而定,构筑物组成会有所不同,这里只讲述典型工艺流程) (1)格栅处理 本工艺设置粗、细格栅各一道,以去除污水中的软性纤维物及大颗粒杂质,以防堵塞水泵、阀门、管道,确保处理设备的正常运行。在调节池进口设置1台固定格栅,格栅间隙为5mm,主要拦截大颗粒固体物及塑料袋之类物,防止进入调节池,以减轻有机物负荷和防止堵塞污水泵,其固定格栅机架材质为SS304不锈钢。粗细格栅采用手动式,人工除渣,一般一星期一次。污水经粗、细格栅处理后接入调节池。 (2)调节池 经格栅后污水进入调节曝气池,由于时间不同,各时水量、水质不均匀,为保证后续设备的连续运行,因此设计一综合调节池来贮存污水和均匀水质。本调节池由于容量大,污水在内流速缓慢,原悬浮在水中的微细颗粒容易沉淀在池底,使调节池於塞,污泥发酵,散发臭气,影响周围环境,为防止此类现象的发生,池中设置予曝气措施,主要起到时以下主要功能:A、避免污水中悬浮物的沉降;B、对废水充氧,防止H2S等有毒气体的产生和积累。调节池设立紧急外排口一处,污水提升泵2台(一用一备,自动切换),污水泵液位控制器2套,检修爬梯等基本配套设施。调节池的污水泵将污水提升入污水生化处理系统,该系统有缺氧(厌氧)池,接触氧化池,沉淀池,消毒池,污泥池等组成。 (3)缺氧池(厌氧池) 该池主要目的有二个: A、进水循环回流泥水混合进行缺氧脱氮反应。污水在厌氧微生物的作用下,将污水中的有机氮分解为氨氮,同时采用有机碳源为电子供体,使亚硝酸氮、硝酸氮转化为氮气,并利用部分有机物和氨氮合成新的细胞物质。 B、将污水中悬浮颗粒杂质分解为溶解性有机质,将大分子有机物分解为小分子有机物,本工艺中水解池采用先进的升流式上向流、底部有层较厚的污泥床区,污水从水解池底部进入,通过底部污泥床时,其中的微生物将大量的颗粒物质和胶体物质及有机物迅速截留

污水处理厂出水深度处理方案模板

污水处理厂出水深度处理方案 一、概述 水是国民经济发展中的不可替代的重要资源, 也是人类赖以 生存和发展的重要资源。电厂又是耗水大户, 特别是在中国北方, 以水限电、以水定电的情况相当严重, 水资源的紧张已逐渐成为电力发展的瓶径, 如何节约用水, 提高水的利用率是电厂急需解决的问题。开展中水回用是解决这问题的重要途径, 也是大势所趋。在电力生产过程中, 冷却水的消耗占电厂总耗水量的60~80%, 因此, 城市污水处理厂二级处理出水( 中水) 深度处理后作为电厂冷却水补充水, 如能成功实施, 将起到良好的示范效应, 适应可持续发展 需要, 并为电力发展拓展空间, 具有巨大的经济、社会、环境效益。城市污水具有水量大、来源可靠、水量稳定的特点, 但水质复杂, 其中有机物、微生物和化学溶剂较多。因此, 城市污水二级生化出水要作为电厂循环冷却水, 必须先进行深度处理。使用城市污水做为冷却水的电厂, 其中多数采用石灰处理工艺, 一部分采用单纯过滤法, 一部分采用超滤技术。 石灰处理系统作为电厂循环冷却水的补充水处理早在50年代就有应用的实例。尽管石灰处理系统具有运行费用低, 不污染自然水体等优点, 但由于劳动环境差、劳动强度大、污染、堵塞等原因影响了石灰处理技术的发展。随着科技的发展, 人们环保意识的

不断增强, 经过科技人员的不断努力, 石灰处理系统得到了许多改进, 越来越多的电厂采用了石灰处理系统, 积累了许多宝贵的经验。因此我公司拟采用石灰处理工艺对中水进行处理, 处理出水用作电厂循环冷却水。 二、石灰处理的原理、特点及分析 2.1石灰处理原理 石灰处理是经过投加石灰乳控制出水pH为10.3~10.5, 进行下面三个反应, 产生大量各种形态的CaCO3结晶, 降低水中暂硬, 同时生成的结晶核心还能够对其它杂质起凝聚、吸附作用; 而且石灰乳引起的pH值的升高也为氨氮和磷酸盐的去除创造了条件。为了提高工艺的沉淀效果, 一般在处理过程中投加适量的凝聚剂与助凝剂, 经过压缩双电层作用使分散的悬浮物、CaCO3结晶、有机物、有机粘泥、胶体物等带电体脱稳, 在机械混合搅拌和高分子助凝剂架桥与网捕作用下, 颗粒物质碰撞结合长大, 使污染物容易沉降。 石灰参与的软化反应有: CO2+Ca(OH)2→CaCO3↓+H2O

《废水深度处理技术》课程教学大纲

《废水深度处理技术》课程教学大纲 课程名称:废水深度处理技术课程类别(必修/选修):选修 课程英文名称:Wastewater advanced treatment technology 总学时/周学时/学分:28/2/1.5其中实验/实践学时:0 先修课程:《环境化学》《物理化学》 授课时间:1-14周星期一授课地点:6B-403 授课对象:环境工程2016级卓越1班 开课学院:生态环境与建筑工程学院 任课教师姓名/职称:李长平/教授;宋浩然/讲师 答疑时间、地点与方式:对于普遍性的问题在上课时集中答疑,课程结束后再和各班联系集中答疑的时间、地点,个别答疑可在课前、课后、课间进行或通过电子邮件与电话联系等方式。 课程考核方式:开卷()闭卷()课程论文( )其它() 使用教材:《水的深度处理与回用技术》第三版化学工业出版社张林生主编 教学参考资料:《水污染控制工程》第四版高廷耀主编 《给水工程》第四版中国建筑工业出版社严煦初主编 《排水工程》第五版中国建筑工业出版社张自杰主编 课程简介: 《废水深度处理技术》属环境工程专业的选修课程之一。当前改善水环境保护水资源已成为全民共识,污水的深度处理及再生利用工作十分迫切。微污染水源水的深度处理是保障饮用水水质安全,保护人类身体健康的根本措施。污水深度处理可使污水资源化重复利用,减少企业生产成本,控制水体污染。本课程主要内容为给水与污水深度处理与回用的技术与理论。既阐述了水处理相关技术的基本理论,也汇集了相关工艺在工程应用方面的内容。 课程教学目标 1.理解污水深度处理的相关概念及处理方式和工艺的不同特点,掌握微污染水源水处理的基本原理。 2.运用污水深度处理的技术原理,进行逻辑计算和思考,以及工程思维的锻炼。 3.综合基础理论和技术工艺原理,初步学习如何根据具体对象设计污水处理方案。本课程与学生核心能力培养之间的关联(授课对象为理工科专业学生的课程填写此栏): 核心能力1.具有运用数学和化学、生物学、物理学、力学等自然科学基础知识和环境工程专业知识的能力; 核心能力2.具有设计与实施实验方案,数据分析、信息综合等能力; □核心能力3.具有工程实践所需技术、技巧及使用工具的能力; □核心能力4.具有设计工程单元(设备)、流程或系统的能力; □核心能力5.具有项目管理、有效沟通与团队合作的能力; 核心能力6.具有发现、分析与解决复杂工程问题的能力; □核心能力7.能认清当前形势,了解工程技术对环境、社会及全球的影响,并培养持续学习的习惯与能力;

工业废水深度处理工艺

工业废水深度处理工艺 煤化工废水水量大、水质复杂, 含有大量酚类、含氮/氧/硫的杂环/芳香环有机物、多环芳烃、氰等有毒有害物质.煤化工废水经过传统物化预处理和生化处理后, 往往难以达到相应废水排放标准, 仍属于典型有毒有害生物难降解工业废水, 成为煤化工行业发展的制约性问题.因此, 对煤化工废水生化出水进行深度处理, 进一步去除难降解有毒有害污染物, 对于减轻煤化工废水的环境危害极为必要. 近年来, 高级氧化技术(AOPs)在煤化工废水深度处理中逐渐受到关注, 包括Fenton氧化和臭氧催化氧化, 以破坏和去除废水中的难降解有毒有害污染物, 并提高废水的可生化性.同时, 工业废水深度处理通常考虑将臭氧氧化处理与生化处理相结合, 以降低废水处理成本, 其中臭氧氧化处理是决定污染物去除效率的主要因素.目前, 微气泡技术在强化臭氧气液传质和提高臭氧利用效率及氧化能力方面表现出一定优势, 因此基于微气泡臭氧氧化处理难降解污染物日益受到关注. 本研究采用微气泡臭氧催化氧化-生化耦合工艺对煤化工废水生化出水进行深度处理.前期实验结果表明, 该废水采用传统曝气生物滤池(BAF)处理, COD去除率仅为6.4%, 且生物膜生物量短期内即明显下降, 表明其不宜直接采用生化处理工艺.本研究采用微气泡臭氧催化氧化先期去除部分COD, 并提高废水可生化性, 而后采用生化处理进一步去除COD和氨氮.本研究考察了不同臭氧投加量和进水COD量比值下, 微气泡臭氧催化氧化和生化处理去除污染物性能, 以期为该耦合工艺应用于难降解工业废水深度处理提供技术支持. 1 材料与方法1.1 实验装置 实验装置流程如图 1所示.实验系统包括不锈钢微气泡臭氧催化氧化反应器(MOR)和有机玻璃生化反应器(BR). MOR为密闭带压反应器, 内部填充3层Φ5×5 mm煤质柱状颗粒活性炭床层作为催化剂, 空床有效容积为25 L, 催化剂床层填充率为28.0%. BR内部同样填充3层Φ5×5 mm煤质柱状颗粒活性炭床层作为生物填料, 空床有效容积为42 L, 填料床层填充率为28.6%.本实验系统以纯氧或空气为气源, 通过臭氧发生器(石家庄冠宇)产生臭氧气体, 与废水和MOR循环水混合后, 进入微气泡发生器(北京晟峰恒泰科技有限公司)产生臭氧微气泡, 从底部进入MOR进行微气泡臭氧催化氧化反应.反应后气-水混合物在压力作用下从底部进入BR, 进一步进行生化处理. BR内生化处理由臭氧产生及分解过程所剩余氧气提供溶解氧(DO), 无需曝气.

普通生活污水处理工艺比选

1改良型CASS(IBR)工艺 (1)技术来源和背景 本技术源自华中科技大学主持的国家“十五”863重大科技专项中的高技术研究课题“城镇污水生物---生态处理技术与示范”的成果。该项成果通过示范工程的完善与发展,现已经成为适合乡镇污水处理的成熟技术。该工艺具有投资低、运行费用低、管理要求低,污泥量少的特点。 (2)工艺技术说明 (a)工艺流程 该项组合技术将改良型CASS(IBR)生物反应池技术集成和优化组合,形成城市污水处理与回用的高效率低运行成本的生物工艺。 工艺流程详见图1-1。 (b)基本原理 改良型CASS(IBR)生物处理工艺是一种集厌氧、兼氧、好氧反应及沉淀于一体的连续进出水的周期循环活性污泥法。其内部构造示意如图6-4所示。通过设置于池底的三相分离器将反应池分为位于池中间的反应区与位于池两侧的沉淀区。活性污泥混合液通过三相分离器完成气固液的分离,沉淀区内放置斜管填料,形成沉淀的污泥自滑回流至生物反应区内,使反应池实现无动力内循环;清水由池顶出水槽收集后排放,可实现连续进水出水,避免了传统CASS工艺中通过设置滗水器及其水位控制系统带来的设备投资大,控制环节多的缺点。此外,反应池内采用潜水泵+激波传质器的射流曝气方式,与传统CASS 工艺相比,减少了鼓风机房和曝气管路系统。激波传质器是将两级射流曝气与隐形双吸搅拌技术相结合的专利技术,具有可切割活性污泥

絮体,强化气液传质过程,维持高生物量反应等特点。经激波传质器切割的活性污泥与常规活性污泥相比,具有粒径小、密度大、比表面积大、吸附能力强等特点,有效提高了生物反应器的有机物去除效果。 从运行方式上,改良型CASS(IBR)反应池与传统CASS池相似,采用连续进出水,间歇曝气方式运行。通过调节曝气、搅拌、静沉时间比例,从时间上营造出污水在反应池中的多级A/A/O状态,使污水在反应池中得到最佳状态的脱N除P工况,以最大限度地去除N和P。根据原污水水质、水量、水温、季节变化调节生物反应池曝、搅、沉周期,实现生物反应池曝气量最小,系统整体节能的目的。 改良型CASS(IBR)反应池同时兼具按空间分割的连续流活性污泥法及按时间进行分割的间歇性活性污泥法的优点,与按空间分割的连续流活性污泥法相比,省去了污泥回流的环节,因而节省运行能耗及减少处理设施及投资;与按时间分割的间歇流活性污泥法相比,具备连续进出水的特点,因而减少了处理设施容积及总的土建投资。 污水处理厂配置远程集中自控系统,可以根据原污水水质、水量、水温与季节变化,在充分利用生态系统处理能力的前提下,灵活自动地控制生物反应池的运行模式,使生物反应池利用现行的好氧生化处理法的1/3-1/2能耗,获得相当于好氧生化处理2/3以上的处理效率,在保证出水水质的情况下,实现系统的能耗最小化。 进水 污 泥 外 运

制药废水深度处理技术

安峰环保 随着科学技术的发展,人们的日常需求和社会发展需求将得到更好的满足。对大多数制药企业来说,药品生产过程中的药物浓度过高,如果废水处理得不好,其中的有害物质会继续扩散。因此,在排放这些废水之前,必须深入处理这些废水,降低这些废水的危害。然而,目前医药废水的深度处理还存在许多问题,没有良好的处理效果。本文综合分析了医药废水的深度处理。 目前制药废水深度处理的主要技术 1、混凝沉淀技术 目前,混凝沉淀技术是我国废水处理中最常用的技术。该技术可深入处理制药废水。它可分为以下几个部分: 第一,化学药剂可以放在水中分散,可以将污水中的微小部分转化为不稳定的分离状态,整体污水可以团结和絮状存在。 其次,当污水中的物质形成絮凝体时,混凝技术可以继续发挥重力作用,从而减少污染物,最终可以有效分离固体和液体。混凝沉淀工艺在国内出现较早,因此相关设备相对齐全,操作流程相对简单。例如,在废水处理过程中,可以向内部投入120毫克/升的混凝剂。此时ph值为8,25s,去污率可达89%。总的来说,去污效率高。但是这种方法在溶解毒性方面不是很有效,而且很难从微生物中去除病原体。 2、膜分离技术 早在60年代和70年代,70年代。在使用过程中也会显示出质量的细化和浓缩,整个操作过程相对简单。不仅使整个运行过程变得更节能,而且可以更好地控制。在污水处理过程中,主要采用反渗透和微滤技术去除沉积物中的细菌杂质,有效地减少内部矿化。采用反渗透技术可以控制90%的脱盐率,水回收率可以控制在70%。一般来说,膜生物反应器能有效地将传统的污水处理技术与最新的污水处理技术相结合,从而对污水进行处理。在某制药厂污水处理过程中,发现溶解氧浓度和质量为8,出水化学需氧量和生化需氧量的去除率分别为93%和94%。但在实际运行过程中,发现技术投入过大,使得相关处理技术无法发挥更好的作用。 3、生物处理技术 目前的医药废水处理技术不能满足新的排放标准。但生物处理技术仍是最常用的处理方法。目前,生物处理技术不仅处理成本较低,而且效果更稳定。好氧生物处理技术可以中和废水中的有害物质。因此,在实际运行过程中,有必要将预处理技术与好氧深度处理技术有效结合。在污水深度处理的实际过程中,预处理技术和氧气生化处理技术应有效结合。

污水深度处理工艺

污水深度处理(sewage depth processing)是指城市污水或工业废水经一级、二级处理后,为了达到一定的回用水标准使污水作为水资源回用于生产或生活的进一步水处理过程。针对污水(废水)的原水水质和处理后的水质要求可进一步采用三级处理或多级处理工艺。常用于去除水中的微量COD和BOD有机污染物质,SS及氮、磷高浓度营养物质及盐类。 处理方法 深度处理的方法有:絮凝沉淀法、砂滤法、活性炭法、臭氧氧化法、膜分离法、离子交换法、电解处理、湿式氧化法、蒸发浓缩法等物理化学方法与生物脱氮、脱磷法等。深度处理方法费用昂贵,管理较复杂,除了每吨水的费用约为一级处理费用的4-5倍以上。 方法简介 1、活性炭吸附法活性炭是一种多孔性物质,而且易于自动控制,对水量、水质、水温变化适应性强,因此活性炭吸附法是一种具有广阔应用前景的污水深度处理技术。活性炭对分子量在500~3 000的有机物有十分明显的去除效果,去除率一般为70%~86.7%,可经济有效地去除嗅、色度、重金属、消毒副产物、氯化有机物、农药、放射性有机物等。常用的活性炭主要有粉末活性炭(PAC)、颗粒活性炭(GAC)和生物活性碳(BAC)三大类。近年来,国外对PAC的研究较多,已经深入到对各种具体污染物的吸附能力的研究。淄博市引黄供水有限公司根据水污染的程度,在水处理系统中,投加粉末活性炭去除水中的COD,过滤后水的色度能降底1~2度;臭味降低到0度。GAC在国外水处理中应用较多,处理效果也较稳定,美国环保署(USEPA)饮用水标准的64项有机物指标中,有51项将GAC列为最有效技术。 GAC处理工艺的缺点是基建和运行费用较高,且容易产生亚硝酸盐等致癌物,突发性污染适应性差。如何进一步降低基建投资和运行费用,降低活性炭再生成本将成为今后的研究重点。BAC可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质。不足之处在于活性炭微孔极易被阻塞、进水水质的pH 适用范围窄、抗冲击负荷差等。目前,欧洲应用BAC技术的水厂已发展到70个以上,应用最广泛的是对水进行深度处理。抚顺石化分公司石油三厂采用BAC技术,既节省了新鲜水的补充量,减少污水排放量,减轻水体污染,降低生产成本,还体现了经济效益和社会效益的统一。今后的研究重点是降低投资成本和增加各种预处理措施与BAC联用,提高处理效果。 2、膜分离法膜分离技术是以高分子分离膜为代表的一种新型的流体分离单元操作技术。它的最大特点是分离过程中不伴随有相的变化,仅靠一定的压力作为驱动力就能获得很高的分离效果,是一种非常节省能源的分离技术。微滤可以除去细菌、病毒和寄生生物等,还可以降低水中的磷酸盐含量。天津开发区污水处理厂采用微滤膜对SBR二级出水进行深度处理, 满足了景观、冲洗路面和冲厕等市政杂用和生活杂用的需求。超滤用于去除大分子,对二级出水的COD和BOD去除率大于50%。北京市高碑店污水处理厂采用超滤法对二级出水进行深度处理,产水水质达到生活杂用水标准,回用污水用于洗车,每年可节约用水4700 m3。反渗透用于降低矿化度和去除总溶解固体,对二级出水的脱盐率达到90%以上,COD和BOD 的去除率在85%左右,细菌去除率90%以上。缅甸某电厂采用反渗透膜和电除盐联用技术,用于锅炉补给水。经反渗透处理的水,能去除绝大部分的无机盐、有机物和微生物。纳滤介于反渗透和超滤之间,其操作压力通常为0.5~1.0 MPa,纳滤膜的一个显著特点是具有离子选择性,它对二价离子的去除率高达95%以上,一价离子的去除率较低,为40%~80%。采用膜生物反应器-纳滤膜集成技术处理糖蜜制酒精废水取得了较好结果,出水COD小于100 mg/L,废水回用率大于80%。我国的膜技术在深度处理领域的应用与世界先进水平尚有较大差距。今后的研究重点是开发、制造高强度、长寿命、抗污染、高通量的膜材料,着重解决膜污染、浓差极化及清洗等关键问题。 3、高级氧化法工业生产中排放的高浓度有机污染物和有毒有害污染物,种类多、危害大,

反渗透技术在污废水深度处理中的应用及研究进展

反渗透技术在污废水深度处理中的应用及研究进展 摘要通过对高盐度废水的处理,反渗透技术已成为污水深度處理或优质回用的不可缺少的核心技术。本文综述了难降解机械废水的深度处理和城市污水的高质量回用处理。论述了不同水质组合处理工艺的发展和应用。本文讨论了反渗透膜污染在废水处理过程中的作用机理、反渗透进水潜在污染的预测及反渗透浓缩水处理的研究。 关键词反渗透;污水;深度处理;膜污染 前言 RO膜分离技术是以膜两侧的静压差为驱动力,以水分子为代表的小分子溶剂在克服渗透压的条件下,通过反渗透膜分离杂质的过程。操作压力一般在1.5~10.5 MPa之间,可保留1~10A的小杂质。在水处理中,反渗透是关键设备。它能去除97%多个溶解无机化合物,99%相对分子质量和99%多个有机物,包括细菌和95%SiO2。 1 RO膜分离技术在污水处理中的应用 1.1 在高盐废水处理中的应用 (1)以矿井水为代表的高矿化度废水的进水处理以高盐度为特征,尤其是地下水涌出,平均含盐量大于1000 mg/L,SS中含有大量Ca2+Mg2+K+、Cl-、SO42-、HCO3和HCO3-的有机组分低于1.5 mg/L。对于严重缺水的矿区,采用反渗透技术进行深度处理生产和生活用水已得到了广泛的推广。以矿泉水为预处理剂,加入絮凝、沉淀和快速过滤,去除水中大部分SSS,反渗透进水浊度小于1 NTU。经反渗透处理后,出水浊度去除率接近100,脱盐率达96%,出水水质达到饮用水水质标准,处理费用约为5.17元/m3。 (2)冶金废水处理 钢铁工业作为高耗水量、高污染的资源型工业,占全国耗水量的14%。钢铁工业废水在冶金工业中得到了广泛的应用。废水成分复杂,各项指标波动较大,尤其是Ca2+、Mg2+、Fe2+、Mn2+、SO42-、F-及SiO2含量较高。如果不预去除反渗透膜上的高价金属萃取剂,就会产生严重的无机污染。针对太钢二次生化处理后的废水,先在曝气池中曝气将Fe2+氧化为Fe3+,同时加入NaClO,提高了Fe2+在水中的氧化能力和杀菌效果。在水中添加石灰乳调节pH值时,加入PAM和PAC进行絮凝,然后沉淀、快速过滤、活性炭吸附去除有机物、余氯、重金属离子等。经UF处理后,用还原剂处理出水。阻垢剂和酸进入RO系统。 (3)难降解有机废水处理的应用

医疗污水深度处理解决方案

医疗污水深度处理解决方案 医院污水指医院产生的含有病原体、重金属、消毒剂、有机溶剂、酸、碱以及放射性等的污水。医院污水来源及成分复杂,含有病原性微生物、有毒、有害的物理化学污染物和放射性污染等,具有空间污染、急性传染和潜伏性传染等特征,不经有效处理会成为一条疫病扩散的重要途径和严重污染环境。 根据医院各部门的功能、设施和人员组成情况不同,产生污水的主要部门和设施有:诊疗室、化验室、病房、洗衣房、X光照像洗印、动物房、同位素治疗诊断、手术室等排水;医院行政管理和医务人员排放的生活污水,食堂、单身宿舍、家属宿舍排水;;不同部门科室产生的污水成分和水量各不相同,如重金属废水、含油废水、洗印废水、放射性废水等,而且不同性质医院产生的污水也有很大不同。医院污水较一般生活污水排放情况复杂,医院污水处理后排放去向分为排入自然水体和通过市政下水道排入城市污水处理厂两类。 一、医院污水排放量 1、新建医院 新建医院污水排放量应根据《民用建筑工程设计技术措施》建质[2003]4号进行取值设计,做到清污分流,节约用水。 2、现有医院 1)污水排放量根据实测数据确定 2)无实测数据时可参考下列数据计算

(1) 设备齐全的大型医院或500床以上医院:平均日污水量为400~600L/床.d,kd=2.0~2.2,kd为污水日变化系数。 (2) 一般设备的中型医院或100~499床医院:平均污水量为300~400L/床.d,kd=2.2~2.5,kd为污水日变化系数。 (3) 小型医院(100床以下):平均污水量为250~300L/床.d,kd=2.5,kd为污水日变化系数。 3、医院污水设计水量计算公式: (1)按用水定额和小时变化系数计算: 其中: q1、q2——住院部、门诊部最高日用水定额,L/人?d。 q3——未预见水量,L/s。 N1、N2——住院部、门诊部设计人数。 Kz1、Kz2 ——小时变化系数。 (2)按参考日均污水量和日变化系数计算: 其中: q ——医院日均污水量,L/床?d。

污水深度处理常见的方法

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 污水深度处理常见的方法 深度处理常见的方法有以下几种: 1 活性炭吸附法活性炭是一种多孔性物质,而且易于自动控制,对水量、水质、水温变化适应性强,因此活性炭吸附法是一种具有广阔应用前景的污水深度处理技术。活性炭对分子量在500~3 000的有机物有十分明显的去除效果,去除率一般为70%~86.7%,可经济有效地去除嗅、色度、重金属、消毒副产物、氯化有机物、农药、放射性有机物等。常用的活性炭主要有粉末活性炭(PAC)、颗粒活性炭(GAC)和生物活性碳(BAC)三大类。 近年来,国外对PAC的研究较多,已经深入到对各种具体污染物的吸附能力的研究。淄博市引黄供水有限公司根据水污染的程度,在水处理系统中,投加粉末活性炭去除水中的COD,过滤后水的色度能降底1~2度;臭味降低到0度。GAC在国外水处理中应用较多,处理效果也较稳定,美国环保署(USEPA)饮用水标准的64项有机物指标中,有51项将GAC列为最有效技术。 GAC处理工艺的缺点是基建和运行费用较高,且容易产生亚硝酸盐等致癌物,突发性污染适应性差。如何进一步降低基建投资和运行费用,降低活性炭再生成本将成为今后的研究重点。BAC可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质。不足之处在于活性炭微孔极易被阻塞、进水水质的pH 适用范围窄、抗冲击负荷差等。 目前,欧洲应用BAC技术的水厂已发展到70个以上,应用最广泛的是对水进行深度处理。抚顺石化分公司石油三厂采用BAC技术,既节省了新鲜水的补充量,减少污水排放量,减轻水体污染,降低生产成本,还体现了经

污水处理厂提标改造过滤工艺比选

污水处理厂提标改造过滤工艺比选 摘要:针对城镇污水处理厂的提标改造工程,介绍了活性砂滤池、高效纤维滤池、纤维转盘滤池和磁混凝滤池的技术特点及其各自的优缺点,为污水处理厂提标改造提供参考。 关键词:提标改造,活性砂滤池,纤维转盘滤池,磁混凝滤池 目前,我国绝大多数污水处理厂执行的是《城镇污水处理厂污染物排放标准》(GB 18918-2002)中的一级B标准[1],而执行一级 A 标准可以较大限度的对污水进行“除磷脱氮”,减少对后续受纳水体的污染,出水可作为回用水,解决我国部分地区水资源紧缺的问题。因此,进行城镇污水处理厂提标改造是水环境保护的要求,也是国家提出的节能减排的要求。[2] 污水处理厂经过强化二级生物处理,仅需要去除SS时,可设置过滤单元。应用于污水处理厂深度处理的过滤工艺有多种形式,包括活性砂滤池、高效纤维滤池、纤维转盘滤池以及高效磁混凝工艺,下面对这四种工艺作介绍,以供参考。 1.活性砂滤池 1.1 工艺概况 活性砂过滤器是一种集絮凝、澄清、过滤为一体的连续过滤设备[3],广泛应用于饮用水、工业用水、污水深度处理及中水回用

处理领域。系统采用升流式流动床过滤原理和单一均质滤料,过滤与洗砂同时进行,能够24小时连续自动运行,巧妙的提砂和洗砂结构代替了传统大功率反冲洗系统,能耗极低,其工作原理如图1所示。 污水厂尾水通过进水管进入过滤器底部,经布水器均匀布水后自上而下通过滤料层。在此过程中,尾水被过滤,去除了水中的污染物。同时活性砂滤料中污染物的含量增加,并且下层滤料层的污染物程度比上层滤料要高。此时打开位于过滤器中央的空气提升泵,将下层的石英砂滤料提至过滤器顶部的洗沙器中进行清洗。滤砂清洗后返回滤床,同时将清洗所产生的污染物外排。 活性砂滤料在提升泵的作用下呈自上而下的运动,对尾水起搅拌作用。过滤器内滤料能够及时得到清洁,抗污染物负荷冲击能力强。活性砂过滤器特殊的内部结构及其自身运行特点,使得混凝、澄清、过滤在同一个池体内可全部完成。 1.2活性砂过滤器的技术特点 (1) 石英砂滤料层较厚,滤池较深,土建费用较高; (2) 过滤效率较高,过滤效果较好,无需停机反冲洗,运行费用低; (3) 水头损失较高,一般需要设置二次提升泵房,增加了运行费用; (4) 活性砂过滤器可根据水量变化灵活增加或减少过滤器数量,主要适应于小规模的污水处理厂。 2.高效纤维滤池

废水的深度处理

废水的深度处理 1.1研究背景 目前,XXXX有限公司生产的主要产品有麦草畏、联苯菊酯、氟啶胺等农药原药,以及甲醇、含水醋酸钠、氯化镁、氯化钾、硫酸、氢溴酸水溶液等副产品。产品在生成过程中,产生的主要污染物有:(1)酸性有机尾气、碱性有机尾气以及含甲苯、含甲醇等有机尾气;(2)低含盐废水、高含盐废水、难降解废水以及易挥发废水等等;(3)精馏残渣、釜残渣以及一些有机残渣等等。其中,农药废水具有成分复杂、浓度高、水质变化大、COD、BOD变化大等特点,被认为是最难降解废水之一。尤其随着公司进入高速发展的轨道,生产规模不断扩大,农药废水的总量也不断增大,以及随着新产品的不断研发,更是增加了工厂农药废水的处理难度。 目前,江苏省委省政府提出了“两减”、“六治”、“三提升”的行动计划,加大了对落后产能工厂的淘汰力度,停掉了污染较大的产品,倒逼江苏各类化工企业绿色转型。对公司而言,“263”计划的提出既是机遇,也是挑战,因此找到如何高效治理公司废水问题的方法显得十分重要,公司为此也进行了大量的研究工作,并取得了一些进展,然而要真正彻底地解决处理染料废水的问题,仍然需要我们长期坚持不断地奋斗。 1.2 农药废水处理技术 农药废水处理技术多种多样,各有优缺点,但由于水中有机物呈复杂多样的特点,仅采用单一的处理技术很难达到预期的目的,目前农药废水的处理技术概括可分为物化法、生化法以及化学法。 (1)物化法 物化法常作为预处理的手段,用来回收废水中的有用成分,或者多难降解的有机物进行处理,达到去除有机物,提高废水可生化型,降解生化处理的负荷,提高处理效果的目的。一般常用的物化法有萃取法、吸附法以及沉淀法等。其中,

污水深度处理工艺设计

污水深度处理:是指城市污水或工业废水经一级、二级处理后,为了达到一定的回用水标准使污水作为水资源回用于生产或生活的进一步水处理过程。针对污水(废水)的原水水质和处理后的水质要求可进一步采用三级处理或多级处理工艺。常用于去除水中的微量COD和BOD有机污染物质,SS及氮、磷高浓度营养物质及盐类。 处理方法 深度处理的方法有:絮凝沉淀法、砂滤法、活性炭法、臭氧氧化法、膜分离法、离子交换法、电解处理、湿式氧化法、蒸发浓缩法等物理化学方法与生物脱氮、脱磷法等。深度处理方法费用昂贵,管理较复杂,除了每吨水的费用约为一级处理费用的4-5倍以上。 方法简介 1、活性炭吸附法活性炭是一种多孔性物质,而且易于自动控制,对水量、水质、水温变化适应性强,因此活性炭吸附法是一种具有广阔应用前景的污水深度处理技术。活性炭对分子量在500~3 000的有机物有十分明显的去除效果,去除率一般为70%~86.7%,可经济有效地去除嗅、色度、重金属、消毒副产物、氯化有机物、农药、放射性有机物等。常用的活性炭主要有粉末活性炭(PAC)、颗粒活性炭(GAC)和生物活性碳(BAC)三大类。近年来,国外对PAC的研究较多,已经深入到对各种具体污染物的吸附能力的研究。淄博市引黄供水有限公司根据水污染的程度,在水处理系统中,投加粉末活性炭去除水中的COD,过滤后水的色度能降底1~2度;臭味降低到0度。GAC在国外水处理中应用较多,处理效果也较稳定,美国环保署(USEPA)饮用水标准的64项有机物指标中,有51项将GAC列为最有效技术。GAC处理工艺的缺点是基建和运行费用较高,且容易产生亚硝酸盐等致癌物,突发性污染适应性差。如何进一步降低基建投资和运行费用,降低活性炭再生成本将成为今后的研究重点。BAC可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质。不足之处在于活性炭微孔极易被阻塞、进水水质的pH 适用范围窄、抗冲击负荷差等。目前,欧洲应用BAC技术的水厂已发展到70个以上,应用最广泛的是对水进行深度处理。抚顺石化分公司石油三厂采用BAC技术,既节省了新鲜水的补充量,减少污水排放量,减轻水体污染,降低生产成本,还体现了经济效益和社会效益的统一。今后的研究重点是降低投资成本和增加各种预处理措施与BAC联用,提高处理效果。 2、膜分离法膜分离技术是以高分子分离膜为代表的一种新型的流体分离单元操作技术。它的最大特点是分离过程中不伴随有相的变化,仅靠一定的压力作为驱动力就能获得很高的分离效果,是一种非常节省能源的分离技术。微滤可以除去细菌、病毒和寄生生物等,还可以降低水中的磷酸盐含量。天津开发区污水处理厂采用微滤膜对SBR二级出水进行深度处理, 满足了景观、冲洗路面和冲厕等市政杂用和生活杂用的需求。超滤用于去除大分子,对二级出水的COD和BOD去除率大于50%。北京市高碑店污水处理厂采用超滤法对二级出水进行深度处理,产水水质达到生活杂用水标准,回用污水用于洗车,每年可节约用水4700 m3。反渗透用于降低矿化度和去除总溶解固体,对二级出水的脱盐率达到90%以上,COD和BOD的去除率在85%左右,细菌去除率90%以上。缅甸某电厂采用反渗透膜和电除盐联用技术,用于锅炉补给水。经反渗透处理的水,能去除绝大部分的无机盐、有机物和微生物。纳滤介于反渗透和超滤之间,其操作压力通常为0.5~1.0 MPa,纳滤膜的一个显著特点是具有离子选择性,它对二价离子的去除率高达95%以上,一价离子的去除率较低,为40%~80%。采用膜生物反应器-纳滤膜集成技术处理糖蜜制酒精废水取得了较好结果,出水COD小于100 mg/L,废水回用率大于80%。我国的膜技术在深度处理领域的应用与世界先进水平尚有较大差距。今后的研究重点是开发、制造高强度、长寿命、抗污染、高通量的膜材料,着重解决膜污染、浓差极化及清洗等关键问题。 3、高级氧化法工业生产中排放的高浓度有机污染物和有毒有害污染物,种类多、危害大,

化工废水深度处理工程设计研究

化工废水深度处理工程设计研究 摘要:化工废水的处理问题直接关系到我国水资源循环再利用事业的发展,一直以来受到了全社会的关注,但是化工废水循环利用工艺的种类较多,每种工艺对化工废水的处理效果不同,那么,如何在众多工艺中选择较为经济合理的处理方式显得尤为重要。主要针对化工废水深入处理循环利用工程设计进行了研究,对工程设计中的工艺选比环节进行重点研究,在SBR工艺、A2/O工艺、MUCT工艺三类不同的处理工艺中进行选择,最终确定最适合化工废水深度处理循环利用的工艺技术,推动我国水资源循环再利用事业的发展。 关键词:化工废水;工艺设计;循环利用 常规的一级及二级处理后的污水一般都直接排入河海中,不能很好的利用,造成了一定的资源浪费,同时部分废水未能达标排放,造成了严重的环境污染问题,倘若这些污水能再经过深度处理,除去水中残留的有机污染物,氮、磷等营养物质及盐类,不仅能够达到更好的排放效果,同时还可“变废为宝”,因此设计废水的循环利用工程是十分有必要的。本设计中需要处理的主要为化工废水及生活污水的混合污水,由于进水中难生物降解的有机物含量较高,同时含有较高含量的氮、磷等无机物质,可生化性较差,根据出水要求及设计手册的要求进行设计后,拟采用物化—生化—深度处理的工艺流程,具体步骤为气浮—水解—生化—二沉池—过滤—臭氧。在确定好整体工艺流程的基础上,根据进水水质情况,按照相对应的出水水质要求,着重对各环节工艺方案进行工艺比选。 1工艺方案选择原则 1.1工艺合理性。整个工艺方案首先要能够达到较高的污染物处理率,有较好的除油及脱氮除磷能力,出水水质达标且稳定性好。1.2经济节能。整体厂房及设备占用面积较小,总体投资及运行费用较低。1.3易于管理。主体工艺流程及运营管理较简单,设备可靠且维修简单,灵活性好,有较好的自动化控制水平。 1.4绿色环保。要考虑厂房周围的环境,避免产生的臭气扩散以及噪声影响周围生活区,同时妥善处理产生的污泥等问题。 2前处理工艺选择 2.1格栅。由于进水中必然含有一定的悬浮物及漂浮物,因此在整体系统之

相关主题