搜档网
当前位置:搜档网 › 人工波

人工波

人工波
人工波

20120704晚间关于人工波的谈话记录

7月4日晚间,我们在教研室关于人工地震波的一些问题进行了探讨,将一些内容整理如下:在科研和实际工程中会经常用到模拟生成的人工地震波,在实际工程中我们经常采用5 条天然波+2条人工波,或者2 条天然波和1 条人工波。

关于人工地震波最早的流派就是三角级数合成法,即现在我国规范推荐使用的方法。其实际上是假定地震波是一个平稳过程,也就是基于地震波是可以进行Fourier分解的基础上,然后用Fourier反变换来模拟生成。然后乘以一个包络函数来近似非平稳性。这种方法会用到反应谱和功谱的相互转换,然后通过调整功率谱来达到拟合反应谱的目的,其中涉及迭代。

基本过程如下:

我们生成了一条人工地震波如下所示:

从图片中可以看出,其与规范谱拟合的非常好。但是实际工程中反映,人工波和规范谱拟合的虽然很好,但是实际算出来的结果却不一定好,即不满足规范中所说单条地震波计算结果的平均底部剪力一般不能与振型分解反应谱法计算结果相差35%的要求。

我们分析肯能的原因如下:

因为设计反应谱可以分为3段(如下图所示)

如果某结构的主要周期点位于速度敏感段的话,那么我们就要查看人工波的速度谱与规范速度谱的差别情况,如果拟合的不好,其结果也可想而知。其中的难点是我们没有规范速度谱(这也是我们质疑的地方,其实规范给出设计加速度谱的同时,给出速度谱和位移谱也是顺手的事情,但是不知道为什么没有给出)。至少我们计算的速度谱和规范伪速度谱就差别很大,虽然这不能说明问题,但是至少直观地说明了速度谱的波动还是比较大的,下面是现场画出的图形表示(其中“规范谱”表示规范伪速度谱):

所以选波的问题还是一个很麻烦的问题。那么我们选波单纯的以加速度谱选取时不妥的,希望有科研人员通过大量的天然地震波的分析给出设计速度谱和设计位移谱来以供大家参考,哪怕就是一个地区的,比如上海,也是可以的。一般来讲通过位移谱来选波会比通过速度谱选波(日本)好,通过速度谱选波要比通过加速度谱(美国、中国等许多国家)选波要好。

在 ansys 中如何 施加 地震波

三向输入简化后的单向输入 首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据: -0.227109E-02 -0.209046E+00 0.467072E+01 -0.413893E-02 -0.168195E+00 0.261523E+01 -0.574753E-02 -0.157890E+00 0.809014E-01 -0.731227E-02 -0.152996E+00 0.119975E+01 -0.876865E-02 -0.138102E+00 0.130902E+01 -0.101067E-01 -0.131582E+00 0.143611E+00 ....................... 然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据: 0.100000E-01 0.200000E-01 0.300000E-01 0.400000E-01 0.500000E-01 0.600000E-01 ....................... 编写如下的命令流文件,并命名为acce.inp *dim,ACCEXYZ,TABLE,2000,3 !01行 *vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行 *vread,ACCEXYZ(1,0),time,txt !04行 (e16.6) !05行 ACCEXYZ(0,1)=1 !06行 ACCEXYZ(0,2)=2 !07行,同上 ACCEXYZ(0,3)=3 !08行,同上 finish /SOLU ANTYPE,trans btime=0.01 !定义计算起始时间 etime=15.00 !定义计算结束时间 dtime=0.01 !定义计算时间步长 *DO,itime,btime,etime,dtime time,itime AUTOTS,0 NSUBST,1, , ,1 KBC,1 acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度 SOLVE

地震波使用说明

地震波使用说明 此目录下提供了四类场地土的地震波时程曲线和上海人工波。 按照场地土类型(1,2,3或4),选择时程曲线。在定义时程工况时,对于多遇或罕遇地震,按比例调整时程曲线的最大值。中国抗震规范规定,作为抗震计算中底部剪力法和振型分解反应谱法的补充方法,对于特别不规则,特别重要的和较高的结构应采用时程分析法进行多遇地震下的补充计算。 可取多条时程曲线的计算结果的平均值与振型分解反应谱法计算结果的较大值。 采用时程分析法时,应咱建筑场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。 其加速度时程最大值可按规范中对于多遇和罕遇地震在不同烈度下的值。 弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计算结果的80% 。 可使用弹塑性时程分析法计算罕遇地震下结构的变形。 时程分析是一个承受随时间变化的指定荷载结构的逐步动态反应分析,可以是线性或非线性的。 此章对时程分析进行一般的描述,特别是线性时程分析。 定义时程函数 用户可使用“从文件中添加函数”,导入已定义的文本文件,即实测的时程曲线;也可使用程序内置的时程函数。

时程函数定义对话框 时程函数定义对话框中的条目解释如下: ?函数名 通过在编辑框中直接键入以指定或修改时程函数的名称。 ?函数文件 1.在函数文件域点击浏览按钮以调出一个对话框,在此可找出包含时程函数的 文本文件名。注意文件名显示在文件名框中 2.在 "要跳过的标题行" 编辑框中输入一个希望ETABS在文本文件中跳过的 行数。 3.在 "每行要跳过的前缀字符" 编辑框中输入一个希望ETABS在文本文件中 每行要跳过的字符数。 4.在 "每行的点数" 编辑框中输入一个数告诉ETABS文本文件每行的绘图点 数。

上海应用技术学院(大学)人工智能

上海应用技术学院2014 —2015学年第二学期 《人工智能》课程期末考核 课程代码:G5040009学号: 1xxxxxxxxxx 姓名:xxx 题目1:谈谈你对人工智能的认识。 答:人工智能(Artificial Intelligence)简称AI。是在1956年由麦卡锡(J.McCarthy)组织了一次达特茅斯(Dartmouth)大学聚会中提出来的,吹响了向人工智能这一新兴领域进军的号角。我于初中的时候,通过一些科幻片,了解到人工智能。人工智能就是用人工制造的方法,实现智能机器或在机器上实现智能。人工智能也是一门研究构造智能机器或实现机器智能的学科,是研究模拟、延伸和拓展人类智能的科学。用计算机来表示和执行人类的智能活动就是人工智能,没有计算机的出现,人工智能就无法得到应用。 题目2:人工智能有哪些研究的内容? 答:1.搜索技术 2.知识表示 3.规划方法 4.机器学习 5.认知科学 6.自然语言理解与机器翻译 7.专家系统与知识工程 8.定理证明 9.博弈 10.机器人 11.数据挖掘与知识发现 12.多Agent系统 13.复杂系统 14.足球机器人 15.人机交互技术 题目3:人工智能有哪些应用领域或课题? 答:1.问题求解。 能够求解难题的下棋程序是是人工智能的第一个大成就。通过对下棋程序的研究,人们发展了捜索和问题归约这样的人工智能基本技术。此外,能够把

各种数学公式符号汇集在一起的问题求解程序,使其性能水平有了一定的提高。 2.机器学习 机器获取知识的能力,一种是人类采用归纳整理,并用计算机可接受处理的方式输入到计算机中去;另一种是计算机使用一些学习算法进行自学习(如实例学习、机械学习、归纳学习 3.专家系统 专家系统是一种基于知识的计算机知识系统,它从人类领域专家那里获得知识,并用来解决只有领域专家才能解决的困难问题。目前,专家系统已经广泛应用于工业、农业、医疗诊断、地质勘探、石油化工、气象、交通、军事、文化教育空间技术、信息管理等各个方面。 4.模式识别 模式识别是指如何使机器具有感知能力,主要研究视觉模式和听觉模式的识别,例如识别物体、地形、图像、字体等。 5.自然语言理解 自然语言理解就是研究如何让计算机理解人类的自然语言,是基于让计算机能“听懂”、“看懂”人类的语言的这一思想,主要研究方面是如何回答自然语言输入的问题,摘要生成和文本释义的问题以及机器翻译的问题 6.人工神经网络 人工神经网络是研究如何试图用大量的处理单元(包括人工神经元、处理元件、电子元件等)模仿人脑神经系统工程结构和工作机理的,它是由研究人脑的奥秘中得到启发而发展起来。目前,人工神经网络已经在模式识别、图像处理、组合优化、自动控制、信息处理、机器人学等领域获得了日益广泛的应用。 7.自动定理证明 利用计算机进行自动定理证明(ATP)是人工智能研究中的一个重要方向,使很多非数学领域的任务,如信息检索、机器人规划和医疗诊断等,都可以转化为一个定理证明问题。 8.自动程序设计 自动程序设计包括程序综合(自动编程)和程序正确性验证两个方面的内容。程序综合用于实现自动编程;而程序正确性的验证就是要研究出一套理论方法,通过运用它们就可自动证明程序的正确性。 9.机器人学 机器人学是人工智能研究中日益受到重视的一个领域。这个领域的研究问题覆盖了从机器人手臂的最佳移动到实现机器人目标的动作序列的规划方法等各个方面。目前,它的研究涉及电子学、控制论、系统工程、机械、仿生、心理等多个学科。 10.智能检索 例如,基于概念的检索和基于词的检索的区别,普通DBMS中的检索和智能数据库的检索的区别(利用规则和事实推理出结果)。 11.逻辑推理 所谓逻辑推理,就是从一般性的前提出发,通过推导,得出具体陈述或个别结论的过程。逻辑推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用。

地震波的选取方法 (MIDAS内部技术资料)

地震波的选取方法(MIDAS内部技术资料) (GB50011-2001)的 5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg 值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。持续时间的概念不是指地震波数据中总的时间长度。持时Td的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*amax之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度EPA=Sa/2.5(1) 有效峰值速度EPV=Sv/2.5(2) 特征周期Tg=2*EPV/EPA(3)

1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv,加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数,将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟

时程分析中地震波输入位置的讨论

时程分析中地震波输入位置的讨论 摘要:时程分析法通过直接动力分析可得到结构相应随时间的变化关系,能真实地反应结构地震相应随时间变化的全过程,是抗震分析的一种重要方法[1]。目前有限元软件可以实现结构的时程分析,但是在不同的软件中,其实现方式不同,主要区别在地震波的输入位置不同。本文通过有限元软件ABAQUS采用不同的地震波输入位置对同一结构进行时程分析分析,对比结构相同位置的时程位移曲线,结果表明结构在采用不同地震波输入位置的时程分析中,结构的地震响应基本一致。 关键词:时程分析、有限元软件、钢筋混凝土剪力墙 Abstract: The time history analysis method to analyze the available structure through direct power to the relationship between the corresponding changes over time, truly reflect the structure of earthquake corresponding to the whole process of change over time, is an important method of seismic analysis [1]. Finite element software can be time-history analysis of the structure, but in different software in different ways, the main difference between the different positions in the seismic wave input. In this paper the finite element software ABAQUS using different seismic wave input location on the same structure, process analysis analysis, contrast structure the same location of when the process displacement curve, the results show that the structure using different seismic waves enter the position time history analysis, the seismic response basically the same. Keywords: time history analysis, finite element software, reinforced concrete shear walls 一、引言 在时程分析等动力学问题中,地震力以加速度形式从基础固定处输入。由于结构的刚度不是无限大,在结构上的加速度反应与基础输入的加速度并不相同。在很多时候,结构的加速度比基础输入的加速度更大,即对输入的加速度有一个动力放大效应。在单自由度弹性体系中,体系最大绝对加速度与地面运动最大加速度的比值,即称为动力系数[2] (1) 动力系数与结构的动力学特性和输入的地震波的频率特性有关。它与地震系数k的乘积即为单自由度体系的地震影响系数。 因此,从原理上讲,时程分析是将地震波的加速度时程曲线作用到结构的基础约束处,得到上部结构的各种地震反应。但是在不同的软件中,其实现方

上海市2020年度“科技创新行动计划”人工智能科技支撑专项项目申报指南

上海市2020年度“科技创新行动计划”人工智能科技支撑专项项目申报指南 各有关单位: 为加快建设具有全球影响力的科技创新中心,强化本市人工智能领域科技创新策源能力、创新治理能力,上海市科学技术委员会特发布2020年度“科技创新行动计划”人工智能科技支撑专项项目申报指南。 一、征集范围 专题一、人工智能基础理论与关键技术 方向1、基础交叉理论 研究目标:融合交叉数学等基础学科,深入阐释支撑人工智能技术的基础理论,推动人工智能理论技术的发展,以及人工智能新范式的变革。

研究内容:研究机器学习驱动的大规模分布式优化、非凸优化高效求解算法与理论。 执行期限:2020年10月01日到2023年09月30日。 经费额度: 1.为非定额资助。 2.限最多支持2个项目。 申报主体要求:本市独立法人单位。企业牵头申报时,企业投入研发经费与申请资助经费之比不低于1:1。 方向2、认知与融合学习 研究目标:解决常识知识缺失、知识与模型融合不足问题,提升知识与深度学习模型的融合度。 研究内容:研究复杂环境下面向常识知识的统一表征,探索常识推理、学习与基于人在回路的验证机制。

执行期限:2020年10月01日到2023年09月30日。 经费额度: 1.为非定额资助。 2.限最多支持2个项目。 申报主体要求:本市独立法人单位。企业牵头申报时,企业投入研发经费与申请资助经费之比不低于1:1。 方向3、自主与通用学习 研究目标:提出快速适应新问题能力的机器学习基础理论与算法,提高人工智能算法迁移和自我进化能力,提升人工智能算法通用性、泛化性。 研究内容:(1)分布式小样本学习及小样本生成算法与理论。(2)面向跨模态序列数据的互生成及质量评估算法与理论。 执行期限:2020年10月01日到2023年09月30日。

反应谱理论与人工模拟地震波技术简介

第33卷第26期?106?2007年9月山西建筑 SHANXIARCHITECTURE Vd33No.26 Sep.2007 文章编号:1009—6825{2007)26—0106—03 反应谱理论与人工模拟地震波技术简介 邱玉国王玉富 摘要:介绍了反应谱理论的发展历程和国内外研究现状,分析了研究问题的思路,指出了利用反应谱理论来解决实际工程时遇到的问题,并简单介绍了国外对人工模拟地震波技术的应用和研究,为抗震理论提供了参考依据。 关键词:反应谱理论,地震波,随机振动,非弹性地震波 中图分类号:TU352文献标识码:A 1概述 反应谱理论是建筑结构抗震设计的重要理论基础之一。从20世纪50年代开始,反应谱理论逐渐成为结构抗震设计的重要方法,经过50多年的发展,目前这种方法已经为世界上大多数国家的设计规范所采用。但是,由于地震产生机理和作用效果的复杂性,采用反应谱理论进行分析和设计与工程实践还存在很多与实际不相符合之处。此外,对于反应地震重要特性的时间问题,反应谱法也无能为力。 人工模拟地震波技术是近年来才发展起来的一项新的结构抗震设计的技术手段,目前主要用于计算机模拟和特别重要结构模型的振动台试验。它能够通过模拟地震波的特性来用于对结构进行时程分析,是~种新兴的、具有革命性意义的试验手段。 图2数值模拟结果2.3计算结果分析 通过数值模拟和试验得到瓦斯管承载力等数值如表2所示。 表2数值模拟和试验结果 I研究方法承载力仆但a最大应变/%最大剪应力/SPaI数值模拟7.14O.0842160室内试验6.620.0964 3结语 通过对丁集煤矿瓦斯管材质和整体抗外压的试验研究以及数值模拟分析,可以获得如下重要结论: 1)通过对管材材质的试验研究表明:工作管材质采用Q345,尺寸为柘30rfllTl×14inln,能够满足强度和稳定性要求。 2)瓦斯管整体抗外压试验结果表明:工作管抗外压承载力为6,62MPa;通过大变形有限元数值计算,采用变形稳定性控制其承载力,结果为7.14MPa,两者数值十分接近,说明用文中方法模拟大直径瓦斯管的承载力是可行的。 参考文献: [1]李正来.瓦斯抽排钻孔定向技术的改进[J].安徽科技,2006(3):49—50. [2]汪东生.瓦斯抽排技术治理本煤层采空区瓦斯涌出的实践[J].煤矿安全,2006(1):13—15. [3]张敦伍,任胜杰.瓦斯抽排钻孔防偏斜实践[J].矿业安全与环保,2005(8):67—68. [4]刘克功,范再良,赵新华.采空区瓦斯抽排法治理综放面瓦斯超限[J].煤,1998(2):48—50. Studyingonradialstabilitynumericalsimulationoflargepipeinmine TONGWen-lin Abstract:TheexperimentalandvaluesimulationmethodshavestudiedtheDingiicoalminelargediametergastubeundermechanicscharacter—istie.Resultindicated:thelargediametergastubeispresentedstabilityfailuremodelinencirclespressesshape,itssafetyfactorreaches3.0,itisdesignthelargediametergastubeandtheconstructpmvidesthereference. Keywords:largediametergastube,experimentalinlab,numericalsimulation,stabilityfailuremodel 收稿日期:2007.04.06 作者简介:邱玉国(1973。),男,工程师,辽宁工程技术大学软件学院,辽宁阜新123000 王玉富(1970.),男,工程师,中铁十九局集团第三工程有限公司,辽宁辽阳111000

上海市人民政府办公厅印发《关于本市推动新一代人工智能发展的实

上海市人民政府办公厅印发《关于本市推动新一代人工智能 发展的实施意见》的通知 【法规类别】117 【发文字号】沪府办发[2017]66号 【发布部门】上海市政府 【发布日期】2017.10.26 【实施日期】2017.10.26 【时效性】现行有效 【效力级别】地方规范性文件 上海市人民政府办公厅印发《关于本市推动新一代人工智能发展的实施意见》的通知 (沪府办发〔2017〕66号) 各区人民政府,市政府各委、办、局: 经市政府同意,现将《关于本市推动新一代人工智能发展的实施意见》印发给你们,请认真按照执行。 2017年10月26日关于本市推动新一代人工智能发展的实施意见

新一代人工智能正在深刻改变经济社会发展模式,呈现深度学习、跨界融合、人机协同、群智开放、自主操作的新特征。加快发展新一代人工智能,是顺应全球新一轮科技革命和产业变革趋势、赢得发展主动权的优先战略选择,是服务国家创新驱动发展战略、建设全球科技创新中心的优先布局方向。为贯彻落实国家《新一代人工智能发展规划》(国发〔2017〕35号),现就本市推动新一代人工智能发展提出以下实施意见: 一、明确总体要求 (一)指导思想 全面贯彻党的十八大和十八届三中、四中、五中、六中全会精神,落实创新、协调、绿色、开放、共享的发展理念,发挥上海数据资源丰富、应用领域广泛、产业门类齐全的优势,立足国际视野、加强系统布局,全面实施“智能上海(AI@SH)”行动,形成应用驱动、科技引领、产业协同、生态培育、人才集聚的新一代人工智能发展体系,推动人工智能成为上海建设“四个中心”和具有全球影响力的科技创新中心的新引擎,为上海建设卓越的全球城市注入新动能。 (二)发展目标 到2020年,人工智能对上海创新驱动发展、经济转型升级和社会精细化治理的引领带动效能显著提升,基本建成国家人工智能发展高地,成为全国领先的人工智能创新策源地、应用示范地、产业集聚地和人才高地,局部领域达到全球先进水平。 --基本形成与超大型城市运行相适应的人工智能深度应用(Application)格局。人工智能应用内涵不断深化,打造6个左右人工智能创新应用示范区,形成60个左右人工智能深度应用场景,建设100个以上人工智能应用示范项目。 --基本形成达到国际主流水平的人工智能科技创新(Innovation)能力。前沿理论和关键技术研发能力显著提升,在部分关键领域达到全球先进水平,建设10个左右人工智能创新平台。

地震波数值模拟方法研究综述.

地震波数值模拟方法研究综述 在地学领域,对于许多地球物理问题,人们已经得到了它应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件,但能用解析方法求得精确解的只是少数方程性质比较简单,且几何形状相当规则的问题。对于大多数问题,由于方程的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析解。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但这种方法只是在有限的情况下是可行的,过多的简化可能导致很大的误差甚至错误的解答。因此人们多年来寻找和发展了另一种求解方法——数值模拟方法。 地震数值模拟(SeismicNumericalModeling)是地震勘探和地震学的基础,同时也是地震反演的基础。所谓地震数值模拟,就是在假定地下介质结构模型和相应的物理参数已知的情况下,模拟研究地震波在地下各种介质中的传播规律,并计算在地面或地下各观测点所观测到的数值地震记录的一种地震模拟方法。地震波场数值模拟是研究复杂地区地震资料采集、处理和解释的有效辅助手段,这种地震数值模拟方法已经在地震勘探和天然地震领域中得到广泛应用。 地震数值模拟的发展非常迅速,现在已经有各种各样的地震数值模拟方法在地震勘探和地震学中得到广泛而有效

的应用。这些地震波场数值模拟方法可以归纳为三大类,即几何射线法、积分方程法和波动方程法。波动方程数值模拟方法实质上是求解地震波动方程,因此模拟的地震波场包含了地震波传播的所有信息,但其计算速度相对于几何射线法要慢。几何射线法也就是射线追踪法,属于几何地震学方法,由于它将地震波波动理论简化为射线理论,主要考虑的是地震波传播的运动学特征,缺少地震波的动力学信息,因此该方法计算速度快。因为波动方程模拟包含了丰富的波动信息,为研究地震波的传播机理和复杂地层的解释提供了更多的佐证,所以波动方程数值模拟方法一直在地震模拟中占有重要地位。 1地震波数值模拟的理论基础 地震波数值模拟是在已知地下介质结构的情况下,研究地震波在地下各种介质中传播规律的一种地震模拟方法,其理论基础就是表征地震波在地下各种介质中传播的地震波传播理论。上述三类地震波数值模拟方法相应的地震波传播理论的数学物理表达方式不尽相同。射线追踪法是建立在以射线理论为基础的波动方程高频近似理论基础上的,其数学表形式为程函方程和传输方程。积分方程法是建立在以惠更斯原理为基础的波叠加原理基础上的,其数学表达形式为波动方程的格林函数域积分方程表达式和边界积分方程表达式。波

0为什么能用地震波来探测地球内部的构造

为什么能用地震波来探测地球内部的构造? 地震波是地震发生时,地下岩石受到强烈冲击所产生的弹性震动传播波。地震波是弹性波,它能穿过包括地核在内,在整个地球传播。地震波可分为纵波、横波、面波和界面波四种类型。 纵波(P波),也称疏密波,通过物体时,物体质点的震动方向与地震波传播的方向一致,传播速度最快,周期短,振幅小,能通过固体、液体和气体传播。地震发生后,纵波最先到达地面,引起地面上下颠簸。 横波(S波),通过物体时,物体的质点震动方向与地震波传播方向垂直,在地壳中传播速度比纵波慢,周期较长,振幅较大,只能通过固体介质传播,比纵波到达地面晚,横波能引起地面摇晃。纵波、横波合称体波,体波在地球体内部可以向任何方向传播。 面波(L波),也称地面波,是纵波或横波到达地面后,从震中沿地面表层向四周传播的次生波。面波振幅较体波显著,波速比体波小,周期较体波长。利用面波的波散现象,可推算相应地区的地壳和上地幔的结构状况和性质。 界面波是在两个弹性层之间的平界面附近传播的地震波。由于不同的地震波,具有不同的性质和传播特点,因此可以利用地震波来探测地

球的内部构造。 目前世界上最深的钻井只有10公里多一点,能直接取样观察的最深矿井仅有3公里。目前人们还不能对地球整个内部进行直接观察研究,主要是利用地震波研究地球的内部结构。 在地球内部地震波传播曲线图上,从地球大陆的地表面往下到33公里深处,横波速度每秒约4公里,纵波速度每秒约8公里。从33公里往下到2900公里深处,横波速度由每秒4公里多增快到每秒7公里以上,纵波速度由每秒8公里左右增快到每秒13公里以上。从2900公里往下到5000公里深处,横波完全消失,纵波传播速度突然下降到每秒8~10公里左右。从5000公里往下到地心,无横波传播,纵波速度又逐渐增快到每秒约11公里左右。从地震波在地球内传播的情况表明,在大陆33公里深处以下,横波和纵波的速度明显加快,证明是密度很大的可塑性固体层,因此地下33公里深处是地震波传播的一个不连续面,这个不连续面是莫霍洛维奇发现的,所以叫莫霍面。在2900公里深处往下,横波完全消失,纵波速度突然下降,证明到了液态层,这个地震波传播的不连续面,是古登堡最早研究的,所以叫古登堡面。5000公里以下纵波速度又加快,证明是固态层。根据地震波的传播情况,说地球内部构造是不同的物质圈层组成的。据此,人们以莫霍面和古登堡面为分界面,把地球的内部构造划分为地壳、地幔和地核三个圈层,并将地下2900~5000公里深处,推测

abaqus如何施加地震波

施加地震波: 1 *amplitude,name=amp,input=seismicdata.dat 输入地震波 2 *boundary,type=acceleration,amplitude=amp施加荷载 方法:module选load,在tools-----amplitude-----creat默认的continue在Edit A mplitude里面输入时间和加速度,点OK。点creat boundary condition,涌现对 话框creat boundary condition,选择acceleration/angular acceleration,continu e---选择要施加的边界---done----涌现对话框edit bondary condition对话框,在 amplitude里选择你所定义的时间和加速度。点ok就完工了。 在网上查了些方法: module选load,在tools-----amplitude-----creat默认的continue在Edit Amplitude 里面输入时间和加速度,点OK。点creat boundary condition,出现对话框creat boundary condition,选择acceleration/angular acceleration,continue---选择要施加的边界---done----出现对话框edit bondary condition对话框,在amplitude里选择你所定义的时间和加速度。点ok就完工了。 这是在CAE里输入地震波的方式,我用的方法是直接在inp文件里加地震波的。 首先在CAE里建好模型,定义两个分析步。 第一个分析步是加自重,采用线性加载的方式。 (a) 加载方式:ABAQUS在施加Gravity时,默认为Instantaneous(瞬时加载),如果把结构自重以瞬间加载方式加到结构上,相当于对结构施加了一个脉冲荷载,会引起结构在竖向的振动,在不考虑结构阻尼的情况,这种振动会一直持续下去。如果是混凝土结构,这种竖向振动也会造成混凝土受拉损伤,所以这种加载方式不太合理。 (b)新建加载方式:创建一个新的Amplitude,Type=smooth tpye,0时刻Am=0,然后再选择一个0.5s~1s时刻,Am=1,在这个区间内线性插值,实现幅值从0到1。这种方式加载要优于上述瞬时加载,但是在起初的0.5s(或者1s,即smooth tpye中设置的终点时间)内计算结果是不准确的,所以要把这部分的计算结果剔除,剔除方法就是,创建2个step,第一个step主要分析自重作用,待自重稳定后开始第二个step地震时程反应分析。 第二个分析步就是加地震波。 输入地震波有两种方法: 1、在如下位置加入下面加黑的字体部分。格式如下:时间,地震波,时间,地震波,时间, 地震波,时间, 地震波…………每行8个数据(我下到的地震波文件是不带时间的,自己用C++处理了一下)。%%%%%%%%%%%%%%%%%%%%%% *End Assembly *Amplitude, name=Amp-1 0.005, -7.5e-08, 0.01, -3.55e-07, 0.015, -7.03e-07, 0.02, -4.53e-07 0.025, 1.82e-06, 0.03, 7.01e-06, 0.035, 1.5e-05, 0.04, 2.49e-05 0.045, 3.54e-05, 0.05, 4.5e-05, 0.055, 5.2e-05, 0.06, 5.5e-05 ………………

Midas地震波的选取方法

地震波的选取方法 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时T d的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*a max之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度 EPA=Sa/2.5 (1) 有效峰值速度 EPV=Sv/2.5 (2) 特征周期 Tg = 2π*EPV/EPA(3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv(注:生成谱的时候一定要用对数谱),加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg=Sv/Sa。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数(即放大系数),将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。所谓“在统计意义上相符”指的是,其平均影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在各周期点上相差不大于20%。 在MIDAS程序中,可选取两组实际强震记录生成两个SGS文件(调整Sa后的),然后将一组人

人工合成地震记录作业

人工合成地震记录程序设计 (一)、人工合成地震记录原理: 地震记录上看到的反射波波形是地震子波在地下各反射界面上发生反射时形成的。反射波的振幅有大有小(决定于界面反射系数的绝对值)、极性有正有负(取决于反射系数的正负)、到达时间有先有后(取决于反射界面的深度)的地震反射子波叠加的结果。 如果地震子波的波形用S (t )表示,地震剖面的反射系数为双程垂直反射时间t 的函数,用R (t )表示,那么反射波地震记录形成的物理过程在数学上就可以用S (t )的R (t )的褶积表示,即某一时刻的反射波地震记录f (t )是: )()()(t R t S t f *= 其离散形式为: ))(()()(1 t m n R t m S t n f M m ?-??=?∑= 如果大地为多层介质,在地面记录长度内可接收的反射波地震记录为: ))(()()(11t m n R t m S t n f M m N n ?-??=?∑∑== 式中,n 为合成地震记录的采样序号,n =1,2,3...N ;N 为合成一道地震记录的采样点数;m =1,2,3...M ,为离散子波的采样点数;△t 为采样间隔。 这种褶积模型将地震波的实际传播过程进行了简化: 1、在合成地震记录的过程中没有考虑大地的吸收作用,所有薄层的反射波都与地震子波的形式相同,只是振幅和符号不同。 2、假设地震波垂直入射到界面上,并原路径返回。 3、假设地层横向是均匀的,在深度(纵向)方向上假设密度为常数,只是速度发生变化。 4、不考虑地震波在传播过程中的透射损失。 (二)、人工合成地震记录的方法 1、 反射系数序列 在有速度测井资料的情况下,可以用速度曲线代替波阻抗曲线,计算反射系数序列。在没有速度资料的情况下,可根据干扰波调查剖面分析的结果设计地质模型。 如设计的地质模型如图a 所示,图中H 为层厚度,V 为层速度,根据下式计算反射系数: 1 1)(--+-=N N N N N V V V V H R 式中H 为反射界面的深度,N 为反射层序号,随深度变化的反射系数序列如图b 所示。但褶积计算中需要与时间有关的反射系数,深度与时间的转换可用下列公式计算: t V H n n R H R ?=→111112),()( 1222222),()(n t V H n n R H R +?= →

ANSYS地震波的输入

对于地震波的输入,可以把荷载记录作成文件,利用apdl的读取功能读入数据库中。下面的例子是自己编的一个小文件。修改一下可以更简洁。 Fini /config,nres,1000 *dim,aceX,TABLE,3000,1 *dim,aceY,TABLE,3000,1 *dim,aceZ,TABLE,3000,1 *creat,ff *vread,aceX(1,1),acex,txt,,1 (e16.6) *vread,aceX(1,0),acexTT,txt,,,1 (e16.6) ACEX(0,1)=1 *end /input,ff *creat,ff *vread,aceY(1,1),txt,,1 (e16.6) *vread,aceY(1,1),ACETT,,,1 (e17.6) ACEY(0,1)=1 *end /input,ff *creat,ff *vread,aceZ(1,1),txt,,1 (e16.6) *vread,aceZ(1,0),ACETT,,,1 (e17.6) ACEZ(0,1)=1 *end /input,ff !地震波时程记录分成了3个文件,每个文件是一列。分别记录x,y,z方向的加速度。Accett是时间记录。 这样就可以把加速度记录读取到ansys数据库中作为数组。 也可以把加速度记录作成一个文件,这样程序就简单多了。 下面是计算部分语句: /SOLU ANTYPE,trans !求解其自己选了 TM_START=0.01 TM_END=15.00 TM_INCR=0.01 *DO,TM,TM_START,TM_END,TM_INCR TIME,tm

反应谱生成人工地震波

反应谱生成人工地震波 一、软件SIMQKE_GR使用说明 1.先安装程序 2.使用方法 双击,打开程序,可以得到如图1界面。 图1 程序开始界面 如图1所示,由于程序本身提供的反应谱是适用于欧洲规范的,不适合于我国的规范反应谱,因此不能通过调整参数来获得符合我国规范的反应谱。可以采用导入的方法来输入反应谱。 3.点击菜单栏“file”—“Import spectra data”,出现打开对话框,如图2所示, 要求打开一个已经存在的反应谱文件(如 1.srf)。

图2 导入反应谱文件对话框 4.文件格式如下所示(红字部分不能修改,注意反应谱单位为g),下面部分 可以替换。 response spectrum time(s) acc(g) 0 0.1215 0.01 0.13635 0.02 0.1512 0.03 0.16605 0.04 0.1809 0.05 0.19575 0.06 0.2106 0.07 0.22545 0.08 0.2403 0.09 0.25515 0.1 0.27 0.15 0.27 0.2 0.27 0.25 0.27 0.3 0.27 0.35 0.27 0.4 0.27 0.45 0.27

0.5 0.243 0.6 0.2025 0.7 0.173571429 0.8 0.151875 0.9 0.135 1 0.1215 1.1 0.110454545 1.2 0.10125 1.3 0.093461538 1.4 0.086785714 1.5 0.081 1.6 0.0759375 1.7 0.071470588 1.8 0.0675 1.9 0.063947368 2 0.06075 2.1 0.057857143 2.2 0.055227273 2.3 0.052826087 2.4 0.050625 2.5 0.0486 2.6 0.046730769 2.7 0.045 2.8 0.043392857 2.9 0.041896552 3 0.0405 3.1 0.039193548 3.2 0.03796875 3.3 0.036818182 3.4 0.035735294 3.5 0.034714286 3.6 0.03375 3.7 0.032837838 3.8 0.031973684 3.9 0.031153846 4 0.030375 4.1 0.029634146 4.2 0.028928571 4.3 0.028255814 4.4 0.027613636 4.5 0.027 4.6 0.026413043 4.7 0.025851064 4.8 0.0253125

复杂介质下地震波数值模拟方法研究及其应用

北京航空航天大学计算机学院 硕士学位论文开题报告 论文题目:复杂介质下地震波数值模拟方法研究及应用专业:计算机科学与技术 研究方向:计算机图形学 研究生:梁堰波 学号:SY0906430 指导教师:杨钦(教授) 北京航空航天大学计算机学院 2010年11月19日

目录 1 选题依据 (2) 1.1 选题意义 (2) 1.2 国内外研究现状分析 (3) 2 论文研究方案 (4) 2.1 研究目标 (4) 2.2 研究内容与方法 (5) 2.3 技术路线 (5) 2.4 关键技术与难点 (6) 3 预期目标与研究成果 (6) 4 工作计划 (7) 5 参考文献 (7)

复杂介质下地震波数值 模拟方法研究及其应用 1 选题依据 1.1 选题意义 本课题来源于实验室课题。 地震数值模拟(Seismic Numerical Simulation)是地震勘探方法研究的前提和基础,对地震数据处理及解释起着重要的作用。地震数值模拟是首先给出地下介质结构模型,并已知相应的物理参数,进而通过给定的物理方程模拟地震波在地下各种介质中传播时的规律,并计算出各个观测点所观测到的数值而形成地震记录的地震模拟方法。地震数值模拟在地震勘探和地震学的各项研究及生产工作中都扮演着重要的角色。在野外地震观测系统的设计和评估以及地震观测系统的优化中,地震数值模拟都得到广泛应用;此外地震数值模拟还可以用来检验地震数据处理中的各种反演方法的正确性,并且可以对地震解释结果的正确性进行检验。目前,这种地震数值模拟方法不但在石油、天然气、煤、金属和非金属等矿产资源及工程和环境地球物理中得到普遍的应用,而且在地震灾害预测、地震区带划分以及地壳构造和地球内部结构研究中,也得到相当广泛的应用。地震勘探的目的则是根据各观测点所观测的地震记录来描绘地下介质结构模型,并且描述其状态或岩性;虽然说这是一个反演过程,但是它是建立在地震正演模拟的基础上的。通过地震正演模拟研究,充分了解和掌握地震波传播规律是指导地震反演的基础。随着现代计算机技术的飞速发展,地震数值模拟研究也随之得到了更深入的研究和广泛应用。到目前为止,已经发展出了许多种的地震数值模拟方法,并且都在地震勘探和地震学中得到广泛而有效的应用,地震数值模拟方法主要可以归纳为地震波方程数值解法、积分方程法和射线追踪法三大类。 地震偏移是反射地震学的一个核心内容。地震偏移就是在波动方程的基础上,通过将同相轴归位到其正确空间位置并聚焦绕射能量到其散射点来消除反射记录中的失真现象。无论是过去、现在和将来,地震偏移技术都是地震勘探的最

相关主题