搜档网
当前位置:搜档网 › 超导体及其应用

超导体及其应用

超导体及其应用
超导体及其应用

超导体及其应用

超导材料,又称为超导体(superconductor)。当某导体在一温度下,可使电阻为零而称之。零电阻和抗磁性

是超导体的两个重要特性。使超导体电阻为零的温度,叫超

导临界温度。

最初发现物体的超导现象是在1911年。某些材料在极低

的温度下,其电阻会完全消失,这令荷兰科学家卡·翁纳斯

等人惊奇不已。于是这以后,超导研究便成为一个重要课题。

关于超导体,科学家在不断的研究,因此也发现和创造出许

多的超导材料例如1911年,荷兰物理学家卡莫林.昂内斯

(H.Karmerligh-onnes)在莱顿(Leiden)实验室研究在极低温

度下各种金属电阻变化时,首先发现水银(Hg)在4.2K时电阻

突然为零的现象(称为超导电性),揭开了超导研究的序幕.昂

内斯由于1980年液化了氦和1911年超导现象的研究,获得了

1913年度诺贝尔物理学奖.此后科学家们经过七十余年的努

力,直到1986年初,已发现并制造出了解上千种超导材料,同

时把金属及其合金超导材料的临界温度Tc(出现超导现象的

温度)从4.2K提高到23.2K(1973年发现的NB3Ge化合物的

Tc=23.2k,直到1985年一直保持着最高临界温度的记录),平

均每年只获得0.253K的进展,然而在1986年却发生了突

破.1986年1月,IBM苏黎世实验室的德国人贝德诺尔兹

(J.G.Bednorz)瑞士人米勒(K.A.Muler)宣布发现可能达到Tc=35K的镧钡铜氧化物超导体。

超导体按不同条件可以分为不同种类例如.超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。由温度的不同范围可分为高温超导体和低温超导体和常温超导体低温超导材料(low temperature superconducting material)具有低临界转变温度(Tc<30K),在液氦温度条件下工作的超导材料。分为金属、合金和化合物。具有实用价值的低温超导金属是Nb( 铌 ),Tc 为9.3K已制成薄膜材料用于弱电领域。合金系低温超导材料是以Nb为基的二元或三元合金组成的β相固溶体,Tc 在 9K 以上。高温超导体是超导物质中的一种族类,具有一般的结构特征以及相对上适度间隔的铜氧化物平面。它们也被称作铜氧化物超导体。常温超导体在生活中则最多见了由物理性质可以分为第一超导体和第二超导体。第一类超导体(又称Pippard超导体或软超导体),在已发现的超导元素中只有钒、铌和锝属第二类超导体,其他元素均为第一类超导体,但大多数超导合金则属于第二类超导体。第一类超导体只存在一个临界磁场Hc,当外磁场H

铌和钽属于第二类,其他元素均属第一类。还可以由超导理论可以分为传统超导体和非传统超导体。

此外面对超导体的越演越烈的研究趋势,科学家们对低温超导体和高温超导体的研究已取得了辉煌的成就。科学家们惊讶的发现超导体主要有两个基本特性,即:①零电阻性或完全导电性;②完全抗磁性。因此,它在科研、生产的各个领域都可以有着广泛的应用。所以总体来说可分为两大类:一类是用于强电,用超导体制成大尺度的超导器件,如超导磁铁、电机、电缆等,用于发电、输电、贮能和交通运输等方面。另一类是用于弱电,用超导体制成小尺度的器件,如超导量子干涉器件(简称SQVID)和制成计算机的逻辑元件,用于精密仪器仪表、计算机等方面。

超导体对人类社会影响最大的将是提供更多的电力,超导用于发电的装置目前有磁流体发电、超导电机发电、热核聚变发电三种。

滋流体发电是一种高效、低污染、单机容量大、直接将热能转变为电能的一种新型的发电方式。普通火力发电需把热能转化为机械能再转化为电能,效率最高只有33一36%。磁流体发电是让煤(石油、天然气)加氧化剂、添加剂燃烧产生的等离子体高速通过磁场,使热能直接转化为电能,磁流体一蒸汽联合循环发电装置最高效率达到55%,而且可自动脱硫,污染小.但这种发电方式目前遇到的困难是当磁感应

强度在1.5特以上时,磁流体的铁芯逐渐处于磁饱和,磁场强度很难再提高。于是人们就想到超导体,如果利用超导磁体,那么就很容易在较大体积内产生强度为几十特的磁场,且消耗的励磁功率很小,它具有性能良好,质量小等优点。例如,磁感应强度可达4一5特的超导磁体,质量只有300一500克,而要产生同样磁场强度的磁体质量却有15一20吨。目前,美国、前苏联、日本都建有这种超导磁流体发电机。

超导发电机发电是利用超导体制造发电机磁极绕组,不仅可大大增加发电机的极限输出容量,而且效率高,体积小,质量小,可节约大量电能和金属材料。常规的两极发电机的极限输出在现今条件下只能达到1.5×109瓦,但超导发电机则可达3×1010瓦,甚至更大。一台6×106瓦的电动机,常规质量为370×103千克,采用超导体材料仅重40×103千克;又如目前已建成的一台5×106瓦超导交流发电机,其功耗比普通电机减少三分之二,体积缩小百分之八十以上。因此有人估计,超导体可以把发电成本降低60%,可以把经电缆输电的成本降低10%,这些优点使得它特别适宜于建造高效率的大型发电站、移动电源及做为太空飞船的动力设备。

超导体还可帮助科学家建立核聚变发电系统,这种发电系统是以氢做燃料的,其反应温度与太阳的温度一样高。从理论上讲这种能源是取之不尽的,在实践上,关键问题是如何生成足够强大的磁场来超导体的应用最主要的是做电磁铁

的超导线圈以产生强磁场。和传统的相比,具有体积小、设备简单、省电等优点。超导体也在高能加速器、受控热核反应实验中得到广泛的应用。在医学上超导电磁铁还用作“核磁共振波谱仪”的关键部件。利用核磁共振技术成像可早期诊断癌症,具有准确率高、无辐射伤害、诊断面广、使用方便等优点。

在电力工业中.超导电机是最感兴趣的应用之一.它具有极限功率大、重量轻、体积小等优点,是作为大功率核能发电站和潜水艇的理想发电机;超导材料还可作为远距离输送电能的传输线,由于其电阻为零,大大减小了导线上的能量损失;更重要的是,由于具有重量轻、体积小、输送功率大的超导传输线可铺设在地下管道中,可省去传统的架设铁塔。另外用超导材料输电不需要升压,可传输直流电。所以设备简单、经济,可望有较大的发展前途。除此之外超导磁悬浮的还可能应用在交通上。在列车下部装上超导线圈,当它通有电流,列车启动后可悬浮在铁轨上。这样具有减小摩擦、提高速率的功能。同时控制剧烈的热核反应,超导材料将能够解决这个问题。另外还可以制成超导体、医用射频超导量子干涉磁强计。这种分辨率高,可以给出人体心(脑、眼)等部位的精准磁图,以确定这些部位的生理和病理状态。当然,超导体的应用不止这些制作它还可以超导核磁共振层析成像仪。超导磁体能够提高精度及图像的清晰度。另外还

有超导计算机。它有很高的测量精度和稳定性。在运算速度上比现在已有的计算机提高1-2个数量极。(电路能耗显著降低,并且其中的逻辑器件开关灵敏度高)超导磁场计。高灵敏度。

超导测辐射热计。为了提高测辐射热计的灵敏度,就必须使它在低温下运行,利用超导体的某一种随温度而急剧变化的性质,那么超导体就可以成为有效的探测元件。、超导陀螺仪。高速旋转的超导球,利用磁场控制,转速更高,反应更快。、超导重力仪。可以研究地球的弹性性质,长周期地壳运动和预测地震等。

超导开关可以分为电阻开关和电感开关。电阻开关是利用超导体以下性能:若改变磁场、电流和温度三个参量的任一个,就可以使它从零电阻态转变到有阻状态,并且开关比是无限大。电感开关可用来将靠近它的超导体作正常态和超导态之间的转变,或移动电路元件附近的超导表面,使它发生相同转变,制成开关。

超导体在不知不觉中已经成为我们生活的一部分了

科学家因为超导体的优良特性,对超导体寄予了很大的期望,希望超导体在将来为社会做出更大的贡献。因为超导材料是指具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料,所以其在智能电网,城市电力扩容等方面具有广阔的应用前景。

据有关机构预测,超导市场有着千亿级的潜在规模,超导材料占比30%-40%。其中,“超导限流器潜在市场巨大,因为超导限流器是目前唯一能解决短路电流过大且保护电路的产品,现在国内超导材料主要依赖美日进口,超导材料占超导产品成本的50%左右。因此,超导材料的国产化将成为国内超导行业发展的焦点。”一位业内分析人士说。

据大家所知在全球范围内,智能电网正迎来投资热潮,而智能电网也是我国“十二五”期间发展的重点之一。据业界人士介绍,在大规模建设智能电网过程中,超导是关键技术。如果超导电缆等的价格具有足够的吸引力,就将进入智能电网的商业化应用,前景非常广阔。为此,上海市在2010年5月发布的《上海推进智能电网产业发展行动方案》中,明确提出超导限流器是上海市智能电网产业发展的重点。

除此之外,由于占地空间小、开挖铺设工作量小,高温超导电缆近期也被纳入向超大城市中心送电的考虑范围。专家告诉记者,华东、华南许多大型城市目前已面临这样的问题:城市扩容太快,用电量猛增,输电线缆严重饱和,但市区内新建高压架空线已不可能。并且我国城市建设地下管道系统规划水平落后,再铺设大容量的电缆也有很大难度。“与常规电缆相比,高温超导线缆的输电能力高出3-5倍。”

专家认为,第二代高温超导带材产业化生产以后,可有效解决人口密集的大都市圈电力扩容问题,并改善供电

系统的安全性和可靠性。目前国际上第二代高温超导带材即将进入大规模市场化应用,我国大力介入这一领域的产业化研发恰逢其时。

另外,在刚起步的高温超导产业当中,行业普遍预计限流器是超导行业实现商业化最早、市场前景最明确的超导应用。因为在各网的输配电都要用到它。

业内人士指出,超导限流器是目前唯一能解决短路电流过大,并且保护电路的产品。按照“十二五”规划中,短路电流超过100KA的变电站数量测算,到2020年,我国超导限流器潜在市场容量2000亿元。

超导材料作为一种高科技产品,我国在研发和产业化布局方面都在稳步推进,这为超导材料产业化的加速到来奠定了基础。据了解,220KV超导限流器项目自2007年启动以来,经过几年的设备研制,现已成功进入实验运行阶段。目前,参与该项目的有技术方云南英纳超导公司和设备方天津百利电气。

此外,国家电网正在筹建一条长约1公里、110kv高温超导电缆示范项目,计划2012年建成,这都对整个超导材料产业形成刺激。

目前我国正为一公里工程做一些技术储备,包括测试平台建设、相关技术研发、原理样机设计等。据中国电科院超导电力研究所所长来小康说。进行超导试验工程目的是

尽量多地应用超导技术,通过使用检测技术发现更好的技术方向。

就像电动汽车一样,虽然比燃油汽车贵,但是我们不能等待,必须逐步发展,否则技术就难以进步。虽然现在不具备产业化的条件,但这是一个发展方向,一定要通过扩大示范来刺激技术发展,从而推动整个超导产业进入良性发展循环。

发展超导材料就像长跑,必须持续跟踪国际先进水平和尽量跟上国际水平,通过不断应用激励目前我国一些高端超导材料已经进入国际市场。据悉,近期我国承担的国际热核聚变实验堆计划任务中的首个导体采购包已经完成,即将交付。

ITER耗资100多亿欧元,吸引了世界顶尖科学家参加。

中国研制的ITER超导导体、屏蔽包层等部件的性能在七个参与方中处于领先地位,部分采购包进展处于前列。

除去上述国际科研项目外,目前我国超导材料在电网领域的应用才刚刚拉开帷幕,目前主要应用在超导限流器。

超导限流器用于短路电流,后者是指电网在某一点发生短路时,有可能通过的最大电流。超导限流器可以减小短路对电网设备的损失。随着电网电压等级的提高、电网互连的程度提高,限制短路电流成为当务之急。电网短路电流

超标以珠三角和长三角地区最为严重。业内人士认为,超导限流器将最先在南方电网和华东电网得到使用。

上市公司百利电气有关人士认为,超导限流器是智能电网建设的关键设备。智能电网的稳定性是智能电网建设的重中之重,超导限流器可以有效提高智能电网的暂态稳定性。

2006 年,英纳超导和云南电力集团控股的云电英纳主持研制的三相30m、2kA/35kV 高温超导电缆在昆明220kv 普吉变电站并网运行,这也是世界上第三组并网运行的高温超导电缆系统。

2011年4月,由我国完全自主研制的世界首座超导变电站在甘肃省白银市正式投入电网运行,又为超导产业化打下非常重要的基础。中科院电工研究所所长肖立业表示,超导变电站的建成是近10年来我国在超导电力技术领域最新、最先进的研究开发成果的集中体现,在核心、关键技术上取得了一系列突破。总而言之,超导体发展将会越来越红火。从1986年4月发现钡一镧氧化物制成的陶瓷材料具有35 K的转变温度,使超导体研究取得突破性进展,紧接着:

1986年12月23日日本宣布研制出37.5 K的超导材料;

1986年12月25号美国贝尔实验室获得40 K的超导材料; 1986年12月26号中国科学院获得48.6 K的超导材料;

1987年2月16号休斯顿大学美籍华人朱经武获得98 K的超导

材料;

1987年2月14号中国物理学家赵忠贤获得110 K的超导材料; 1987年3月9号,日本宣布获得175 K的超导材料;

1987年3月,中国科技大学获得215 K的超导材料

在经历了这样一个复杂的演变过程,全世界的超导体已经达到了一种新的水平

超导的研究现状及其发展前景

题目:超导的研究现状及其发展前景 作者单位:陕西师范大学物理学与信息技术学院物理学一班 作者姓名:杜瑞,程琳,党晓菲,闫甜,王福琼,刘洁,刘园,郭丽丽 学号:40606043,40606042,40606044,40606045,40606046,40606047,40606048,40606049 指导教师:郭芳侠 交论文时间:20007-11-28

超导的研究现状及其发展前景 (陕西师范大学物理学一班第七组 710062) 摘要:本文简单介绍了一些与超导相关的概念,超导材料,超导的简史,超导的研究现状及对超导应用的前景展望。 关键字:超导,超导体,超导现象,超导材料,临界参量,研究现状,前景 Superconductivity research present situation and prospects for development (Shaanxi normal university physics one class Seventh group 710062) Abstract: This article simply introduced some and the superconductivity correlation concept, the superconductivity material, the superconductivity brief history, the superconductivity research present situation and to the superconductivity application prospect forecast.

超导材料的未来应用前景

超导材料——当代科学的明珠 超导材料的未来应用前景 超导是超导电性的简称。是一种材料,如某种金属、合金或化合物在温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。 超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。 超导体的巨大前景 ●超导材料不可思议 那么,为什么世界各国对“超导”技术的研究与开发如此重视呢?这主要是因为超导材料具有极其优越的物理特性:一是零电阻效应,二是约瑟夫逊效应,三是迈斯纳效应。超导体这些突出特性的重大意义,不亚于半导体的发现。甚至有专家预言,超导体的应用将导致一场新技术革命,特别是在军事领域的应用,将引起一系列巨大变革。 ●军事应用前景广阔 超导体在军事领域的应用将十分广泛。采用超导体材料,可使许多重要的军用装备,如C4I系统、聚能武器、舰艇、飞机、坦克、装甲车辆、导弹等武器的性能得到大幅度的改善。 超导飞机设计制造大功率、小体积的发动机,对提高飞机的作战性能至关重要。目前,飞机所采用的均是磁流体发电,但利用普通磁体,很难使磁场强度高于15高斯,而如果利用超导磁体就能产生数万至几十万高斯的磁场,从而大大提高磁体发电的输出功率。所以,超导技术的突破,为大容量、小型化磁流体发电机的研制成功提供了条件,这种超导发电机正在加速走向实用化。目前,有些国家已在研制几百至一千兆瓦的体积小、重量轻的超导发电机,预计机载大功率超导发电机将成为超导技术在军事上率先得到应用的重点项目。 超导舰船20世纪70年代以来,美、苏、英、日等国积极开展超导技术在海军舰船方面应用的研究,并不断取得成效。美国试制了7500马力的超导驱动系统;英国研制了650马力的超导电磁力推进装置;日本制成了世界上第一艘超导船。超导舰船由于取消了传统的螺旋桨推动部件,因而具有结构简单、维修方便、推力大、航速高、无震动、无噪声、无污染、造价低等诸多优点。潜艇应用超导推进系统后,能有效地消除噪音、降低红外辐射,从而不易被敌方发现,大大提高了舰船的快速机动能力和突防能力。

超导材料的发展

超导材料的发展 摘要:超导材料的发现为人类诸多梦想的实现提供了可能,新型超导材料一直是人类追求的目标。该文主要从超导材料的探索与发现、制备技术、研究面临的挑战等几个方面来探讨超导材料的发展与研究现状。 关键词:超导材料高温超导 引言:超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。正如半导体带来了资讯时代、光纤带来了传讯时代,高温超导材料将从根本上改变人类的用电方式,给电力、能源、交通以及其它与电磁有关的科技业带来革命性的发展。 1.超导材料的探索与发展 探索新型超导材料在超导材料研究中始终起着关键的作用,同时也是一项高风险、高投人的研究工作。自191 1年荷兰物理学家卡麦林·昂尼斯发现汞在4.2K 附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973年,发现了一系列A15型超导体和三元系超导体,如Nb3Sn、V3Ga、Nb3Ge,其中Nb3Ge超导体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。 1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La—BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。l987年初,中、美科学家各自发现临界温度大于90K的YBaCuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BiSrCuO,再后来又有人将Ca掺人其中,得到BiSrCaCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。

超导材料的主要应用

超导材料的主要应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。下面是有关于超导材料的主要应用的内容,欢迎阅读。 油田超导热洗技术的应用及效果分析【摘要】油井热洗清蜡是保证油井正常生产,是改善井下杆管泵工作环境的重要手段之一。常规热洗清蜡技术存在几方面的问题:1、是常规热洗含水恢复期长,对产量影响较大。2、是常规热洗容易污染地层。3、常规热洗动用车辆多,笨重,成本高。超导热洗工艺弥补了常规热洗的不足,取得了良好的效果。【关键词】油井清蜡超导热洗效果对比 1超导热洗简介 超导热洗工艺技术原理 超导加热器(俗称清蜡机)是油田抽油井洗井清蜡的专用设备。它采用超导传热技术,用油井套管气(天然气)或柴油为热源,将油井产出液(或其它井补充液或水)加热成高温蒸气(或高温液)注入套管环型空间。使油管内的产出液温度逐渐升高,管壁结蜡自上而下逐渐融化,随产出液进入输油管(或油罐)。内阻减小,以达到稳定、降耗、节约成本、不污染油层的目的。 本加热器可清洗日产液量的抽油机井。超导热洗可采用油井产出液自洗、补充水或其它井产出液方法洗井清蜡。两

种方式均采用低压力,低液量,慢升温的热洗工艺。不改变油层的油、水、气流动规律,不污染油层。 油井套压≥,自产气够用时,可用油井自产气为热源,油井有天然气管网,可用天然气做热源,无天然气可用柴油为热源。 超导热洗装置介绍 (1)产品为移动式设备。加热器安装在专用车上。 (2)本加热器按热源分为燃气型、燃油型、燃气燃油两用型三种。 ①燃气型:洗井现场有天燃气管网(压力),可配备全自动燃气燃烧器和温度自控系统。洗井现场无天然气管网、但附近油井套压≥,自产气够用时,可配备半自动燃气燃烧器和温度自控系统。 ②燃油型:无天然气或天然气不够用的油井,可用柴油为热源、配备全自动柴油燃烧器和温度自控系统。 ③燃气燃油两用型:在同一洗井区域内,有的井有天然气、有的井无天然气,可选择燃气燃油两用型。配备燃气系统、燃油系统各一套。配备温度自控系统一套,自产气够用就用自产气、自产气不够用则用柴油。 3自动控制系统和安全措施 (1)用加热器出口温控表控制燃烧器。温控装置会按照设定好的温度自动工作。温度高时自动关机停火,温度低时

超导技术在军事上的应用

超导技术在军事上的应用 无论是利用较早出现的低温超导材料还是利用新出现的高温超导材料, 超导技术在军用和民用产品上都有着广阔的应用前景, 它可以被应用到许多重要的电子装置和大功率装置上。在军事方面, 超导技术将用于弹道导弹潜艇、弹道导弹防御系统、反装甲作战武器、先进空面导弹和反潜武器等许多重要的军事系统上。下面介绍这项技术在电子技术和大功率装置领域的应用。 电子技术 军事和空间系统对电子装置、器件和系统的要求是相当高的在这样一个领域里, 超导电子技术会对传感器、信号处理及数据处理系统产生重大影响, 这是因为超导体有几个独特的特性, 从而使以下几项技术的实现有了可能: ——超低损失/耗散传输线和滤波器技术; ——高速、低噪声、低功率约瑟夫逊隧道结有源装置; ——用于磁及电磁感应的超导量子干扰器件(SQUID); ——用于模拟(微波和毫米波)和数字式器件的单片集成电路。 更为独特的是, 对于超导体来说, 超高速、低噪声和低功率可以同时实现。 1.红外传感器 超导对红外传感器技术的主要影响是降低了冷却大型焦面阵内的信号处理和数据提取器件所需的功率。这样, 灵敏度和探测范围更大的大型凝视焦面阵就可以实现。超导体还可以改善较长波长下的探测能力、空间分辨率大型焦面阵的工艺性。未来的天基红外焦面阵传感器将采用大型探测器阵、电子多路传输线路和一条连接低温恒温器和环境温度电子装置的数据线。由于对探测器的需求数量很大, 这些传感器的信号处理就成了一个关键性的技术难题。互补型金属氧化物晶体管模/数转换器要消耗几千瓦的功率。性能相同的低温超导模/数转换器在被冷却到10K的红外探测器工作温度时可把所需功率降低90%。低温超导模/数转换器可显著地降低冷却功耗, 并使系统的重量和尺寸大大减小。开发利用高温超导模/数转换器技术需要解决这种新材料系统中的有源装置的研制间题。这种装置对于在较高温度下工作的、半导体的或超导的红外探测器来说都是重要的(如对于工作温度为77K的啼锅汞探测器)。问题的关键是如何利用能在探测器工作温度下工作的低功率模/数转换器。目前人们预计超导模/数转换器芯片上的功率耗散将与温度成线性关系, 但冷却功耗的减少足以补偿信号处理所需功率的增加。一些非常大的红外成像阵也许只有使用超导模/数转换器才能行得通。 2.微波和毫米波传感器 采用超导体的低噪声、低功率单片接收器将增大探测器的探测范围和分辨率。这些改进对于空间监视和通信来说尤为重要。超导体用于地球和海洋成像不仅可以降低噪声, 而且还可以实现多波段毫米波成像阵列, 而常规探测器焦面阵则不适于工作在毫米波段。这些毫米波阵列可能会具有全天候能力以及可见光和红外系统所不具备的对云雾和烟尘的穿透能力, 还可能具有更高的空间和多普勒

超导技术及其发展历程

超导技术 超导技术的主体是超导材料。简而言之,超导材料就是没有电阻、或电阻极小的导电材料。超导材料最独特的性能是电能在输送过程中几乎不会损失。 1911年荷兰物理学家Onnes发现汞(水银)在4.2k附近电阻突然下降为零,他把这种零电阻现象称为超导电性。 海克·卡末林·昂内斯 海克·卡末林·昂内斯(Heike Onnes,1853年9月21日-1926年2月21日),荷兰物理学家,超导现象的发现者,低温物理学的奠基人。1853年出生于荷兰的格罗宁根,1894年创建了莱顿大学低温物理实验室,建立了大型液化气工厂,1904年液化了氧气,两年后又液化了氢气,并在1908年7月10日首次液化了氦气,以-269 °C(4K)刷新了人造低温的新纪录。1911年由于对物质在低温状态下性质的研究以及液化氦气,昂内斯被授予诺贝尔物理学奖。1923年,昂内斯退休,1926年在莱顿逝世。为纪念他,莱顿大学物理实验室1932年被命名为“卡末林·昂内斯实验室”。 汞的电阻突然消失时的温度称为转变温度或临界温度,常用Tc表示。在一定温度下具有超导电性的物体称为超导体。金属汞是超导体。进一步研究发现元素周期表中共有26种金属具有超导电性,它们的转变温度Tc列于表5-6。从表中可以看到,单个金属的超导转变温度都很低,没有应用价值。因此,人们逐渐转向研究金属合金的超导电性。表5-7列出一些超导合金的转变温度,其中Nb3Ge 的转变温度为23.2K,这在70年代算是最高转变温度超导体了。当超导体显示导材料都是在极低温下才能进入超导态,假如没有低温技术发展作为后盾,就发现不了超导电性,无法设想超导材料。这里又一次看到材料发展与科学技术互相促进的关系。低温超导材料要用液氦做致冷剂才能呈现超导态,因此在应用上受到很大的限制。 人们迫切希望找到高温超导体,在徘徊了几十年后,终于在1986年有了突破。(1)瑞士Bednorz和Müller发现他们研制的La-Ba-CuO混合金属氧化物具有超导电性,转变温度为35K。这是超导材料研究上的一次重大突破,打开了混合金

※超导的应用和未来

神奇的超导:超导的应用与未来 超导的应用 和已经成熟的半导体工业相比,超导的应用,特别是高温超导体的应用,很多还处于刚刚起步的阶段,但其蕴含的巨大潜力仍期待人们去开发和挖掘。超导体可以用于信息通信、强稳恒磁场、工业加工、无损耗输电、生物医学、磁悬浮运输和航空航天等领域。目前超导应用主要分强电应用和弱电应用两个方面。 强电应用超导体在低温下可以实现稳定的零电阻超导态,这意味着超导线圈可以通过较大的电流而无焦耳热的产生。一方面,我们可以采用超导输电线进行远距离输电,从而大大降低输电过程的损失。目前采用铜或铝导线的输电损耗约为15%,我国每年的输电损耗就达一千亿度左右,如果采用超导输电线就可以节省相当于数十个发电厂的电力。采用超导输电还可以简化变压器、电动机和发电机等热绝缘并保证输电的稳定性,提高输电的安全性。鉴于超导体的零电阻和高电流传输密度的特性,美国计划采用超导电缆将三大电网(东部电网,西部电网和德克萨斯电网)之间实现有效互联。另一方面,如果给闭合超导线圈通上电流,就可以维持较强的稳恒磁场,这便是超导磁体。常规稳恒磁体要实现强磁场就必须采用非常粗的铜导线,并将其泡在水中冷却,这使得磁体体积特别庞大,而且必须持续不断地通上电流,消耗更多的电能。相比之下,超导磁体具有体积小、稳定度高、耗能少等多种优势。正因如此,在生物学研究和临床医学上采用的高分辨核磁共振成像技术大都是采用超导磁体;在科学研究中一些物性测量系统的稳恒磁体也是采用超导材料制成的,一些大型粒子加速器的加速线圈也常采用超

导磁体,例如欧洲大型强子加速器LHC的加速磁体和探测器都采用了超导磁体;作为未来能源问题突破口之一的磁约束受控核聚变(人工托克马克),超导技术更将发挥不可替代的作用;跟常导磁悬浮技术相比,采用超导磁悬浮技术的磁悬浮列车将更为高速、稳定和安全。这是因为超导体内杂质和缺陷对进入体内的部分磁通线具有钉扎作用,因此它在因抗磁性而产生磁悬浮效应的同时,还能够磁约束住悬浮着的磁体,一旦磁体远离超导体,超导体还会将磁体“拉住”,因此超导磁悬浮物体运动过程是十分稳定的,一些演示用的超导磁悬浮小车甚至能够侧贴甚至倒挂在超导导轨上运动。另外,超导体一旦失去超导电性进入正常态,完全抗磁性将立刻消失,无摩擦的超导磁悬浮铁轨将恢复成有摩擦的正常铁轨,这对于紧急情况下列车制动非常有效。除了超导输电和超导磁体这两种强电应用外,利用超导转变时的电阻变化,还可以研制超导限流器,用以维护电网的安全。 超导体的各种应用

超导材料及其应用现状与发展前景培训讲学

超导材料及其应用现状与发展前景

超导材料及其应用现状与发展前景 作者:肖立业刘向宏王秋良马衍伟古宏伟 来源:《中国工业和信息化》2018年第08期 超导体不仅在临界温度下具有零电阻特性,而且在一定的条件下具有常规导体完全不具备的电磁特性,因而在电气与电子工程领域具有广泛的应用价值。我国在超导材料及其应用领域总体上处于国际先进行列,基本掌握了各种实用化超导材料的制备技术,在多个应用方面也取得了良好的发展。我国超导材料及其应用领域将不断探索更高临界温度的超导体,提升超导材料及其应用技术的发展水平。 1911年,荷兰莱登实验室的卡麦林·昂尼斯在测量低温下金属的电导率时发现,当温度下降到4.2K时,汞的电阻完全消失(如图1所示),他把具有这种现象的导体称为超导体。经过近50年的研究,科学家們陆续发现,超导体不仅在一定温度(也称为临界温度,简称Tc)之下具有零电阻特性,而且在一定的条件下具有高密度载流能力、完全抗磁性(迈斯纳效应)、约瑟夫森效应等常规导体完全不具备的电磁特性,因而在电气与电子工程领域具有广泛的应用价值(见表1)。根据应用的具体需求,工程师们可以将超导体制备成各种超导材料,如超导线材、超导带材、超导薄膜、复合超导体等。 经历了100多年的研究,人们已经发现了多达数万种超导体。按照超导体的临界温度,可以将超导体分为低温超导体和高温超导体,临界温度低于25K~30K超导体为低温超导体,临界温度高于25K~30K超导体为高温超导体。目前,基于低温超导材料的应用装置一般工作在液氦温度(4.2K及以下),基于高温超导材料的应用装置一般工作在液氢温度(约20K)至液氮温度(约77K)之间。探索出更高临界温度乃至室温的超导体是人类不断追求的梦想。 超导材料的发展现状与前景 尽管人们已经发现了数万种超导体,但真正具有实用价值的超导体并不多。目前得到应用的低温超导体主要包括NbTi、Nb3Sn、Nb3Al等,具有实用价值的高温超导体主要包括铋系(BSCCO,Tc约90K-110K,也称为第一代高温超导材料,主要包括BSCCO-2212和BSCCO-2223两种,也简称Bi-2212或Bi-2223)、钇系(Tc约90K,YBCO或ReBCO,也称为第二代高温超导材料)。进入21世纪以来,MgB2(Tc为39K)和铁基超导体(Tc最高为55K)相继被发现,成为两种新的具有实际应用潜力的超导体。 低温超导材料发展现状与前景 超导材料主要包括NbTi、Nb3Sn、Nb3Al等。自上世纪60年代以来,其制备技术与工艺已经相当成熟,并推动了如加速器磁体、核聚变工程用超导磁体、核磁共振(MRI和NMR)磁体、通用超导磁体等的发展,并由此形成了具有一定规模的超导产业。目前,美国、欧盟和日本等国家和地区已经有一大批的企业可以生产各种面向不同应用需求的低温超导材料。2006年,我国加入了国际热核聚变实验堆(ITER)计划,从而使我国低温超导材料的发展迎来了前所未有的机遇。作为国内极少的低温超导线材产业化公司,西部超导材料科技有限公司承担了174吨NbTi超导线和35吨Nb3Sn超导线的生产任务,通过自主开发,掌握了成套技术和工艺,并于2017年全部交付预订的产品,得到了国际同行的高度评价,总体上达到了国际先进水平。ITER项目极大推动了我国低温超导材料的发展,也为我国自主开发MRI、加速器和核聚变磁体提供了超导材料供应的保障。

超导材料的现状及发展趋势分析

超导材料的现状及发展方向自1911年荷兰莱顿实验室的卡末林·昂纳斯首次在4.2K时发现水银零电阻现 象即超导现象以来。人们相继在超导 材料方面取得很多突破,后来在梅斯 勒发现超导体的抗磁性之后, 1934 —1985年后超导物理学理论逐步发 展,超导材料逐步应用于实际科学技 术领域。但由于种种原因,至今超导 物理学理论也不够完善。在这一阶段 人们研究的超导材料临界转变温度 较低。 后来进入高温超导研究阶段,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。高温超导体属于非理想的第II类超导体。临界磁场和临界电流且比低温超导体更高。同时已对高温超导材料进研究开发,氧化物复合超导材料具有耐用和稳定性好的特点。通过研究浸泡实验表明,超导电性的退化主要来自于杂相及时效过程中的析出相。为了改善薄膜对环境的敏感性,美国西北大学的Mirkin建议把分子单层表面化学改性引入到高温超导铜氧化合物中。 以铋锶钙铜氧系为第一代高温超导带材,它的可加工性优良,在超导强电应用领域占据重要位置。但铋系材料的实用临界电流密度较低,并且在77 K的应用磁场也很低。然而钇钡铜氧化物材料在77 K的超导电性比铋锶钙铜氧材料好的多;但它的可加工性极差,故要做出超导性好的带材通过传统的压力加工和热处理工艺就很难。 随着材料科学工艺技术的发展,近年来一种在轧制金属基带上制造钇钡铜氧超导带材的工艺被称作“第二代”带材。欧洲国家努力开展高温超导材料工艺及应用研究。丹麦已批量制造铋系超导带材。2003年11月我国第一个10m、 10.5kV/1.5kA 三相交流高温超导电缆系统日前在中国科学院电工研究所研制成功,并于成功地进行了试验运行。2011年5月信赢和公司团队研发的世界最大功率的超导限流器刚成功。2011年9月25日,特拉维夫大学的研究小组开发出了一种超导体材料——蓝宝石单晶体纤维,可用于高压电缆输电,输电量是相同直径铜线输电量的40倍。研究人员称这种超导材料将有可能彻底改变电力输送占空间、高损耗的状况。 高温超导材料主要有:膜材(薄膜、厚膜)、块材、线材和带材等类型。薄膜最常用、最有效的两种镀膜技术是:磁控溅射和脉冲激光沉积。还有金属有机

超导材料未来应用的前景

超导材料的未来应用前景 超导是超导电性的简称。是一种材料,如某种金属、合金或化合物在温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。 超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。 超导体的巨大前景 ●超导材料不可思议 那么,为什么世界各国对“超导”技术的研究与开发如此重视呢?这主要是因为超导材料具有极其优越的物理特性:一是零电阻效应,二是约瑟夫逊效应,三是迈斯纳效应。超导体这些突出特性的重大意义,不亚于半导体的发现。甚至有专家预言,超导体的应用将导致一场新技术革命,特别是在军事领域的应用,将引起一系列巨大变革。 ●军事应用前景广阔 超导体在军事领域的应用将十分广泛。采用超导体材料,可使许多重要的军用装备,如C4I系统、聚能武器、舰艇、飞机、坦克、装甲车辆、导弹等武器的性能得到大幅度的改善。 超导飞机设计制造大功率、小体积的发动机,对提高飞机的作战性能至关重要。目前,飞机所采用的均是磁流体发电,但利用普通磁体,很难使磁场强度高于15高斯,而如果利用超导磁体就能产生数万至几十万高斯的磁场,从而大大提高磁体发电的输出功率。所以,超导技术的突破,为大容量、小型化磁流体发电机的研制成功提供了条件,这种超导发电机正在加速走向实用化。目前,有些国家已在研制几百至一千兆瓦的体积小、重量轻的超导发电机,预计机载大功率超导发电机将成为超导技术在军事上率先得到应用的重点项目。 超导舰船20世纪70年代以来,美、苏、英、日等国积极开展超导技术在海军舰船方面应用的研究,并不断取得成效。美国试制了7500马力的超导驱动系统;英国研制了650马力的超导电磁力推进装置;日本制成了世界上第一艘超导船。超导舰船由于取消了传统的螺旋桨推动部件,因而具有结构简单、维修方便、推力大、航速高、无震动、无噪声、无污染、造价低等诸多优点。潜艇应用超导推进系统后,能有效地消除噪音、降低红外辐射,从而不易被敌方发现,大大提高了舰船的快速机动能力和突防能力。 超导聚能武器聚能武器是把能量汇聚成极细的能束,沿着精确的方向,以接近或等于光速的速度发射出去,对目标进行杀伤。但目前在研制这些武器上几乎都遇到了能源问题。即如何在瞬间向聚能武器提供大量的能源,如激光武器,特别是大功率的战略激光武器耗能巨大,它要求在瞬间提供数十亿至数百亿焦耳的能量,而目前的储能装置储存的能量却非常有限,且体大笨重。而超导技术的发展,

超导材料发展状况综述

材料科学与工程进展课程论文 题目:超导材料发展状况综述 学院: 班级: 学号: 姓名:

目录 摘要 (2) 超导材料的特性 (2) 超导材料发展史 (4) 超导材料的制备 (5) 超导材料的应用 (7) 展望与建议 (9)

新能源材料——超导材料发展状况综述 摘要 随着人类社会的不断发展,人们对于自然能源的需求也与日俱增。然而自然资源是有限的,面对自然资源日渐紧缺、环境遭到破坏等状况的发生,在科学工作者的努力下,各种各样的新能源材料相继面世。本文将从特性、发展史、制备、应用这几个方面,对众多新能源材料中的一种材料——超导材料,做一个综述,以增进广大读者对超导材料的了解。 关键词:超导材料、特性、发展史、制备、应用。 超导材料的特性 超导材料是指具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。超导材料具有以下特性: 零电阻性 超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。超导现象是20世纪的重大发明之一。科学家发现某物质在温度很低时,如铅在7.20K(-265.95摄氏度)以下,电阻就变成了零。 采用“四引线电阻测量法”可测出超导体的R-T特性曲线,如图所示。

图中的R n为电阻开始急剧减小时的电阻值,对应的温度称为起始转变温度T S;当电阻减小到R n/2时的温度称为中点温度T M;当电阻减小至零时的温度为零电阻温度T0。由于超导体的转变温度还与外部环境条件有关,定义在外部环境条件(电流,磁场和应力等)维持在足够低的数值时,测得的超导转变温度称为超导临界温度。 完全抗磁性 1933年,迈斯纳(W.Meissner)发现:当置于磁场中的导体通过冷却过渡到超导态时,原来进入此导体中的磁力线会一下子被完全排斥到超导体之外(见下图),超导体内磁感应强度变为零,这表明超导体是完全抗磁体,这个现象称为迈斯纳效应。 实验表明,超导态可以被外磁场所破坏,在低于T C的任一温度T下,当外加磁场强度H小于某一临界值H C时,超导态可以保持;当H大于H C时,超导态会被突然破坏而转变成正常态。临界磁场强度H C,其值与材料组成和环境温度等有关。超导材料性能由临界温度T C和临界磁场H C两个参数决定,高于临界值时是一般导体,低于此数值时成为超导体。 约瑟夫森效应 当在两块超导体之间存在一块极薄的绝缘层时,超导电子(对)能通过极薄的绝缘层,这种现象称为约瑟夫森(Josephson)效应,相应的装置称为约瑟夫森器件。如图所示。

超导材料及应用

超导材料 摘要:简要介绍了超导材料的发展历史、现状,对未来的超导材料的发展作了展望,并对目前超导材料的主要研制方法进行了分析。 关键词:超导体研究进展高温低温应用 一前言 超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导材料的发展经历了从低温到高温的过程,经过无数科学家的努力,超导材料的研究已经取得了巨大的发展。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。高温超导材料的制备工艺也得到了长足的发展,一些制备高温超导材料的材料陆续被科学家发现。现在,超导材料的研究主要集中在超导输电线缆,超导变压器等电力系统方面,还有,利用超导材料可以形成强磁场,是超导材料在磁悬浮列车的研究上有了用武之地,另外,超导材料在医学,生物学领域也取得了很大的成就。超导材料的研究未来,超导材料的研究将会努力向实用化发展。一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。 二研究现状 1.超导材料的探索与发展 探索新型超导材料在超导材料研究中始终起着关键的作用,同时也是一项高风险、高投入的研究工作。自1911年荷兰物理学家卡麦林·昂尼斯发现汞在4.2K附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其中Nb 3 Ge超导 体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T 1 系高温超导体,将超导临界温度提高到当时公认的最高记录125K。瑞士苏黎世的希林等发现在HgBaCaCuO超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。 2.超导材料的研究 2.1低温超导阶段 在梅斯勒发现超导体的抗磁性之后(相继有荷兰物理学家埃伦弗斯特根据有关的超导体在液氦中比热不连续现象(提出热力学中二级相变的概念)柯特和卡西米尔提出超导的二流体模型)德国物理学家F·伦敦和H·伦敦兄弟提出超导电性的电动力学唯相理论(即伦敦

超导材料基础知识介绍

超导材料基础知识介绍 超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。 ①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 ②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。 ③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。 ①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。 ②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。 ③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

简析超导的应用与意义

简析超导的应用与意义 由于临界温度的不断提高,人们将这些材料称为高温超导体。高温超导体的性质由载流子浓度决定,其本征特性是相干长度很短,即不均匀性。这对探索高温超导机理是十分需要的。超导的新奇特性的发现,对人类产生了重大意义。通过一些超导现象或效应,你就会惊讶地发现超导的美。 零电阻效应具有无损耗运输电流的性质。如能实现超导化大功率发电机、电动机,例如在电力领域,利用超导线圈磁体可以将发电机的磁场强度提高到5万~6万高斯,并且几乎没有能量损失,这种发电机便是交流超导发电机。超导发电机的单机发电容量比常规发电机提高5~10倍,达1万兆瓦,而体积却减少1/2,整机重量减轻1/3,发电效率提高50%。那么其不必要的能耗将大大降低,这在国防、科研、工业上具有极大的意义。 从长远来看,高温超导电缆最终可用于长距离送电;其近期应用的一个可能是向超大城市中心送电。我国大城市发展迅速,城市需电量快速上升,但市政建设落后,向市区送电十分困难。由于国民环保意识的加强,在市区新建高压架空线已经很难;而我国城市地下管道系统规划水平落后,再铺设大容量的电缆也有很大的难度。与相同直径的常规电缆相比,高温超导电缆的输电能力要大3-5倍,并且不需要通风冷却的通道,因此占用空间小,开挖铺设的工作量少。这样,在市区铺设高温超导电缆会更加经济可行。另外,高温超导电缆由于能比相同截面的常规电缆输送大得多的电流,可实现用较低的电压来送相同的电能,也就是说可用配电线路的电压送输电线路的电能来向超大城市供电。例如在城市中心地带很难建造变电站,在这种情况下,可以将变电站建在市中心以外的地方,从变压器的次级用高温超导电缆以较低的电压向市中心送电。研究表明,使用高温超导电缆的综合经济效益也是可接受的。我国近几年来发电能力和用电量快速发展,但电网建设相对来讲还有不少的不足之处。其中电网的安全性、稳定性和供电质量还有很多可改善的余地。例如,目前一些电网的故障短路电流很大,一旦发生故障而不能及时妥善处理解决,有可能会造成大范围电网的崩溃。高温超导限流器可以起到常规器件起不到的功能,可在极短的时间内将巨大的短路电流限制在电网能承受的范围内,从而提高了电网的安全性,同时也可提高电网的效率。高温超导变压器与常规变压器相比可降低一定的损耗,不过近期在我国主要应用场合还不是以节能为主要目标,而是利用其体积小、环境友好的特点。例如大城市用变压器很多都安放在室内或地下,将来如果需要电网扩容,换一个容量大但是体积也大的变压器会遇到现有空间的限制,而在室内或地下想扩大空间是相当困难的。虽然高温超导变压器的价格较高,但是如果考虑到省下来的地皮、空间和扩建费用,其综合经济效益还是较好的。另外,我国目前水力发电工程发展很快,不少大型水力发电站都建在偏远山区,交通不便,水电站中最大的设备要数变压器,如果变压器太大了,有可能专门要为其加宽公路。如果能用体积较小的高温超导变压器,可减少水电站的综合投资。 人们提起磁悬浮列车总是想到高速长距离的轨道交通,然而城市轨道交通用高温超导低速磁悬浮列车有可能会在我国领先进入应用。我国大多数超大型城市内的交通问题都十分严重,道路建设跟不上需求,地下轨道交通不发达,加上道路、建房规划不合理,将来即使想要建更多的道路和轨道交通也会受到很多实际条件的限制。低速的高温超导磁悬浮列车在运行中可以做到无噪声、无振动,使得列车甚至可以在楼群中间穿过而不影响周围环境,这能大幅度地减少安排列车轨道线路所遇到的限

超导材料的应用与前景展望

超导材料的应用与前景展望 摘要:超导是超导电性的简称,是指某些物体当温度下降至一定温度时,电阻突然趋近于零的现象。具有这种特性的材料称为超导材料。自从超导发现至今,超导的研究和超导材料的研制已迅速发展,超导材料的物质结构及性质已逐渐研究清楚,其具有优越的物理性质和优越的性能,目前已被广泛的接受和认同,超导材料也得到了广泛的应用,特别是高温超导材料的广泛应用将会给社会带来的巨大变革。 关键字:超导材料;临界参量;超导应用 Application and Prospect of superconducting materials Abstract: Superconducting superconductivity for short, refers to some object when the temperature drops to a certain temperature, resistance suddenly approaches zero phenomenon. With the characteristics of the material called superconducting materials. Since the superconducting found so far, the research and development of superconducting superconducting materials has developed rapidly, the material structure and properties of superconducting materials has been studied clearly, which has physical properties superior and superior performance, has been widely accepted and recognized, superconducting materials have been widely used, especially the great change widely used high temperature superconducting materials will bring to the society. Key words:Superconductor;Critical parameter;Superconducting application 1 引言 1911年荷兰物理学家翁奈在研究水银低温电阻时首先发现了超导现象。后来许多科学家又陆续发现了一些金属、合金和化合物在低温时电阻也变为零,即具有超导现象。超导现象是20世纪的重大探索发现之一。物质在超低温下,失去电阻的性质称为超导电性;相应的具有这种性质的物质就称这超导体。超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。有专家预言,超导体的应用将导致一场新技术革命,尤其是高温超导材料的发现,是最近几十年来物理学及材料科学领域中的重大突破之一,已引起全世界广泛关注,各国众多科学工作者参与超导的研究与发展工作,人们将会很快感受到它给社会带来的巨大变革。目前,超导材料已被应用于很多领域,本文拟就超导材料的性质、临界参量、分类、应用及前景展望等几个方面展开论述,以帮助人们更好的认识超导材料。

超导技术应用

一、简答题 1.超导态的两个互相独立的基本属性是什么?请分别介绍能实现超导上述两种基本属性的实验方案。 零电阻效应和迈斯纳效应是超导态的两个互相独立的基本属性。零电阻效应的实验方案:低温6.7K一下获得锗的超导特性迈斯纳效应的实验方案:分别用外加磁场和不加磁场两种情况下,使样品变为超导态,分别测样品内部的磁场强度,若磁场强度都为0,则验证有迈斯纳效应。 2.什么是超导体的临界温度、临界磁场和临界电流? 由正常态转变到超导态,即电阻变为零的温度称为临界温度;能够破坏超导电性的最小磁场Bc称为临界磁场;临界磁场的存在限制了超导体中能够通过的电流。能够破坏超导电性所需要的电流Ic称为临界电流。 3.简述迈斯纳效应的意义?为什么超导体的迈斯纳效应和零电阻特性不能相互给予解释? (1)麦斯纳效应:当一个磁体和一个处于超导态的超导体相互靠近时,磁体的磁场会使超导体表面中出现超导电流。此超导电流形成的磁场,在超导体内部,恰好和磁体的磁场大小相等,方向相反。这两个磁志抵消,使超导体内部的磁感应强度为零,B=0,即超导体排斥体内的磁场。 (2)超导体的迈斯纳效应说明超导态是一个热力学平衡的状态,与怎样进入超导态的途径无关。仅从超导体的零电阻现象出发得不到迈

斯纳效应,同样用迈斯纳效应也不能描述零电阻现象,因此,迈斯纳效应和零电阻性质是超导态的两个独立的基本属性,衡量一种材料是否具有超导电性必须看是否同时具有零电阻和迈斯纳效应 4.目前为止,有几类超导体?它们的区别主要体现在哪些方面? 超导体按其磁化特性可分成两类。第Ⅰ类超导体只有一个临界磁场HC。在超导态,具有迈斯纳效应。第Ⅱ类超导体有两个临界磁场,即下临界磁场HC1和上临界磁场HC2。当外磁场H0小于HC1时,同第Ⅰ类超导体一样,磁场被完全排出体外,此时,第Ⅱ类超导体处于迈斯纳状态,体内没有磁感应线通过。当外场增加至HC1和HC2之间时,第Ⅱ类超导体处于混合态,也称涡旋态。这时体内将有部分磁感应线穿过,体内既有超导态部分,又有正常态部分,磁场只是部分地被排出。 5.请简要概述BCS理论,BCS理论是解释哪类超导体微观机制的理论?除此之外,你还知道哪些超导微观机制理论? BCS 理论是解释常规超导体的超导电性的微观理论,某些金属在极低的温度下,其电阻会完全消失,电流可以在其间无损耗的流动,这种现象称为超导。BCS理论把超导现象看作一种宏观量子效应。它提出,金属中自旋和动量相反的电子可以配对形成所谓“库珀对”,库珀对在晶格当中可以无损耗的运动,形成超导电流。 其他理论:同位素效应、超导能隙、库珀电子对、超导隧道效应、约瑟夫森效应。

超导材料的特征、发展及其应用

超导材料的特性、发展及其应用 1.超导材料简介 1.1 超导材料的三个基本参量 超导材料是指在一定的低温条件下会呈现出电阻等于零以及排斥磁力线的性质的材料,其材料具有三个基本临界参量,分别是: 1> 临界温度T c:破坏超导所需的最低温度。T c是物质常数,同一种材料在相同条件下有确定的值。T c值因材料而异,已测得超导材料T c值最低的是钨,为0.012K。当温度在T c 以上时,超导材料具有有限的电阻值,我们称其处于正常态;当温度在T c以下时,超导体进入零电阻状态,即超导态。 2> 临界电流I c和临界电流密度J c:临界电流即破坏超导所需的最小电流,I c一般随温度和外磁场的增加而减少。单位截面积上所承载的I c称为临界电流密度,用J c来表示。 3> 临界磁场H c:即破坏超导状态所需的最小磁场。 图1-1 位于球内的部分为超导状态 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以T c为例,从1911年荷兰物理学家昂纳斯发现超导电性(Hg,T c=4.2K)起,直到1986年以前,人们发现的最高的T c才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将T c提高到35K;之后仅一年时间,新材料的T c已提高到了100K左右。如今,超导材料的T c最高已超过了150K[1]。 1.2 超导体的分类 第Ⅰ类超导体:第I类超导体主要包括一些在常温下具有良好导电性的纯金属,如铝、锌、镓、镉、锡、铟等,该类超导体的溶点较低、质地较软,亦被称作“软超导体”。其特征是由正常态过渡到超导态时没有中间态,并且具有完全抗磁性。第I类超导体由于其临界电流密度和临界磁场较低,因而没有很好的实用价值[2]。 第Ⅱ类超导体:除金属元素钒、锝和铌外,第II类超导体主要包括金属化合物及其合金。第II类超导体和第I类超导体的区别主要在于: (1) 第II类超导体由正常态转变为超导态时有一个中间态(混合态); (2) 第II类超导体的混合态中有磁通线存在,而第I类超导体没有;

相关主题