搜档网
当前位置:搜档网 › 光模块眼图参数2-光模块光功率的测量

光模块眼图参数2-光模块光功率的测量

光模块眼图参数2-光模块光功率的测量
光模块眼图参数2-光模块光功率的测量

光模块眼图参数2----------光功率的测量

●光功率是光在单位时间内所做的功。

●光功率常用单位mW 、dbm

●光功率常见测量方式:光功率计,示波器,DDM读取(有误差)

整理一些关于光功率测量的经验和常见问题:

1.测量光功率的光功率计,要谨慎选择。

2.有部分功率计的测量曲线有跳变(实测中发现了多次)

3.测量光模块的光功率要严格重视光纤端面的污损情况。出现过多次情况全部是由光纤引

4.光模块光功率的测量,要注意光纤是有方向性的,尤其对于“裸模块”(无外壳模块)

的测量,光纤方向性能对测试结果造成较大影响。

5.在光模块测试中,有些模块需要输入调制信号才能有正常光功率输出,否则测得的结果

会偏低。

6.光功率计有“保质期”,确切来说是光口污损和接收器件老化造成。

7.光功率计的光口有一些型号极难清理干净,能导致功率计永久性的不准,请注意

8.示波器的光口有读出光功率的功能,但要同标准光功率计校准,否则多数不准确。

9.示波器在输入光功率较低时,不能作为读出光功率的设备,示波器接收端灵敏度有限。

10.光模块DDM 读出光功率在误差要求不高的情况下是可以信任的,尤其是正规厂商模块。

11.光模块DDM :近些年读出光功率准确度一般能做到1dbm 的误差以内。

12.有些文档提到了使用PD, 进行线性校准后测试光功率。这种方式是存在较大问题的。

个人最好谨慎适用这个方式手动搭建测试光功率的机构。(实测过有坑,需要通过其他方式来进行各种补偿,有兴趣了解的可以单独交流)。

●总结一些典型模块的典型光功率范围,方便查找和比对。

●参数参照了F厂和W厂模块的数据手册

眼图常用知识介绍

眼图常用知识介绍 关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著 以及色散对长距离传输后的眼图的影响 如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣 现在我们公司常用的测量眼图的仪器为CSA8000 1眼图与常用指标介绍 下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光 功率Rise下降时间峰值抖动 RMSJ 消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议 衡量器件是否符合要求除了满足建议要求之外 一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBμ?ê??a2¢2?òa??×???1a±è

可以无限大将导致激光器的啁啾系数太大不利于长距传 输与速率的最低要求消光比大0.5~1.5dB???ùò???3??a?′ò???êy?μê?o|????1a±èì???á? μ????ó??2úéú?òí¨μà′ú??3?±ê??óD2úéú?ó??2¢?òí¨μà′ú???ú×???±êòa?ó?à′ó???éò? óéóú′?ê?1y3ì?Dμ????óê?2àμ???2?μ??à??óú·¢?í2àé?ò?±£?¤?óê?2àμ???2?μ?±èày?ú′ó??50ê1μ??óê?2àμ?áé???è×???ò?°?·¢?í2à??2?μ?±èày?¨òé?????ú4045 Q因子综合反映眼图的质量问题表明眼图的质量越好 光功率一般来说1???????ú2??ó1a?¥??μ??é????越高越好越高越好 如果需要准确地测量光功率 信号的上升时间下降的快慢 的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升 峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718 在测量抖动的时候才能保证测量值相对准确 做为一个比较参考一般在发送侧的测量值都大于30dB

功率测量仪器项目情况说明及投资建议

功率测量仪器项目 情况说明及投资建议 情况说明及投资建议参考模板,仅供参考

摘要 该功率测量仪器项目计划总投资22227.43万元,其中:固定资产 投资15669.51万元,占项目总投资的70.50%;流动资金6557.92万元,占项目总投资的29.50%。 达产年营业收入56205.00万元,总成本费用42843.62万元,税 金及附加441.74万元,利润总额13361.38万元,利税总额15646.07 万元,税后净利润10021.03万元,达产年纳税总额5625.03万元;达 产年投资利润率60.11%,投资利税率70.39%,投资回报率45.08%,全部投资回收期3.72年,提供就业职位1049个。 充分依托项目承办单位现有的资源或社会公共设施,以降低投资,加快项目建设进度,采取切实可行的措施节约用水。贯彻主体工程与 环境保护、劳动安全和工业卫生、消防工程“同时设计、同时建设、 同时投产”的总体规划与建设要求。 本功率测量仪器项目报告所描述的投资预算及财务收益预评估基 于一个动态的环境和对未来预测的不确定性,因此,可能会因时间或 其他因素的变化而导致与未来发生的事实不完全一致。

功率测量仪器项目情况说明及投资建议目录 第一章功率测量仪器项目绪论 第二章功率测量仪器项目建设背景及必要性 第三章建设规模分析 第四章功率测量仪器项目选址科学性分析 第五章总图布置 第六章工程设计总体方案 第七章风险评估 第八章职业安全与劳动卫生 第九章项目计划安排 第十章投资估算与经济效益分析

第一章功率测量仪器项目绪论 一、项目名称及承办企业 (一)项目名称 功率测量仪器项目 (二)项目承办单位 xxx有限公司 二、功率测量仪器项目选址及用地规模控制指标 (一)功率测量仪器项目建设选址 项目选址位于某某临港经济技术开发区,地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,建设条件良好。 (二)功率测量仪器项目用地性质及规模 项目总用地面积55147.56平方米(折合约82.68亩),土地综合 利用率100.00%;项目建设遵循“合理和集约用地”的原则,按照功率测量仪器行业生产规范和要求进行科学设计、合理布局,符合规划建 设要求。 (三)用地控制指标及土建工程

眼图观测实验 光纤通信_实验5实验报告

课程名称:光纤通信 实验名称:实验5 眼图观测实验 姓名: 班级: 学号: 实验时间: 指导教师: 得分:

一、实验目的 1、了解和掌握眼图的形成过程和意义。 2、掌握光纤通信系统中的眼图观测方法。 二、实验内容 1、观测数字光纤传输系统中的眼图张开和闭合效果。 2、记录眼图波形参数,分析系统传输性能。 三、实验器材 1.主控&信号源模块 2.25号光收发模块 3.示波器 四、实验原理 1、实验原理框图

眼图测试实验系统框图 2、实验框图说明 本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道; 通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。 3、眼图基本概念及实验观察方法 所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。 ●被测系统的眼图观测方法 通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。 眼图测试方法框图 ●眼图的形成示意图

一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。 八种状态如下所示: 八种状态示意图 眼图合成示意图如下所示: 眼图合成示意图 一般在无串扰等影响情况下从示波器上观测到的眼图与理论分析得到的眼图大致接近。 ●眼图参数及系统性能 眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。眼图的张开度受噪声和码间干扰的影响,当光收端机输出端信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以估算出光

华为光模块类型功率

1、附:光功率参数 6.1华为 6.1.1千兆以太网光接口属性 NE5000E支持10/20端口千兆以太网光接口线路板(SFP光模块)。其接口属性分别如0所示。 10/20端口千兆以太网光接口线路板的接口属性 可选SFP光模块(1000Mbit/s)的属性 6.1.2 10/100/1000以太网电接口属性 NE5000E支持24/48端口10/100/1000兆以太网电接口线路板。其接口属性分别如表E-3

所示。 24/48端口10/100/1000兆以太网电接口线路板的接口属性 6.1.3万兆以太网光接口属性 NE5000E支持的万兆以太网光接口线路板有: ●1端口万兆以太网光接口LAN线路板(固定光模块) ●1端口万兆以太网光接口WAN线路板(固定光模块) ●1/2端口万兆以太网光接口LAN线路板(XFP光模块) ●1/2端口万兆以太网光接口WAN线路板(XFP光模块)固定光模块和XFP光模块的接口属性分别如表E-4、E-5、E-6所示。 1端口万兆以太网光接口LAN/WAN线路板的接口属性

1/2端口万兆以太网光接口LAN/WAN线路板(XFP)的接口属性 可选XFP光模块(10Gbit/s)的属性 6.1.4 OC-3c/STM-1 POS光接口属性

NE5000E支持8端口OC-3c/STM-1 POS光接口线路板(SFP光模块)。其接口属性分别如表E-7所示。 8端口OC-3c/STM-1 POS光接口线路板接口属性

6.1.5 OC-12c/STM-4 POS光接口属性 NE5000E支持4端口OC-12c/STM-4 POS光接口线路板(SFP光模块)。其接口属性分别如表E-9所示。 8端口OC-12c/STM-4 POS光接口线路板接口属性

不看不知道 射频功率测试,就是这么简单

不看不知道射频功率测试,就是这么简单 自从第一台无线电发射机诞生之日起,工程师们就开始关心射频功率测量问题,知道今天这依然是个热门话题。无论是在实验室,产线上还是教学中,功率测量都是必不可少的。 在无线电发展初期,测试工程师所面对的大多数是连续波、调幅、调频、调相或脉冲信号,这些信号都是有规律可循的。例如,连续波(如图1)调频或调相信号的功率测量都是很简单,只需要测量其平均功率;调幅信号(如图2)的功率与其调制深度有关,而脉冲信号的特性是以脉冲宽度和占空比来表达。对于以上这些模拟或模拟调制信号,射频功率测量所关心的基本上都是平均功率和峰值功率。 而现在,特别是20世纪90年代以后,数字通信开始快速发展,射频功率测量的重点也开始有些变化。因为数字调制信号(如图3)的包络无规律可循,其最大和最小电平会随机变化,而且变化量很大。为了描述这类信号的特征,引入了一些新的描述方法,如领道功率,突发功率,通道功率等。很多传统的功率计已经无法满足数字信号功率的测量要求,一部分功率测量的任务已经开始由频谱分析仪来完成。 下面我们介绍常见的几种射频功率测量方法,在此之前我们还需要明确一件事在频域测试测量中,为什么习惯以功率来描述信号强度,而不是像时域测试测量中常用的电压和电流?那是因为在射频电路中,由于传输线上存在驻波,电压和电流失去了唯一性,所以射频信号的大小一般用功率来表示,国际通用的功率单位为W,mW,dBm。 频谱分析仪和功率计都是可以测量射频功率的,其中功率计又分为吸收式功率计与通过式功率计两种。 同样是功率测量,不同的测试仪器和测试方法所关注的重点是不同的。 射频功率的测量方法: 频谱分析仪测量吸收式功率测量通过式功率测量

光纤通信系统测量中的眼图分析方法

实验四 光纤通信系统测量中的眼图分析方法测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验仪器 1、ZYE4301F 型光纤通信原理实验箱1台 2、20MHz 模拟双踪示波器1台 3、万用表1台 三、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测量,并且可以用示波器直观的显示出来。图1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种不同有 组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图2所示的眼图,是由3比特长8种组合码叠加而成,示波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图3所示的形状规则的眼图进行分析: 1、当眼开度 V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V V ?增加,无畸变眼图的眼皮厚度应该等于零。 图1眼图的测试系统

3、系统无畸变眼图交叉点发散角b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度- +-++-V V V V 应该等 于零。 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算: 定时抖动= %100??Tb T

谈谈华为SFP+万兆光模块

华为(Huawei)10G SFP+光模块是新一代的万兆光模块,它按照ANSI T11协议,可以满足光纤通道的8.5G和以太网10G的应用。华为(Huawei)10G SFP+光模块比早期的XFP光模块外观尺寸缩小了约30%。 一、华为SFP+万兆光模块型号 华为万兆光模块主要有以下三个型号,光模块型号:华为(Huawei)OMXD30000,华为(Huawei) OSX010000,华为(Huawei)OSX040N01 等等。 谈谈华为SFP+万兆光模块

二、兼容华为SFP+万兆光模块 飞速光纤(https://www.sodocs.net/doc/fb13062474.html,)提供华为(Huawei)兼容OSX040N01SFP+万兆光模块,华为(Huawei)

兼容LE0M0XS4FF万兆光模块,华为(Huawei)兼容OSX010000SFP+,华为(Huawei)兼容LE0M0XSM88SFP+万兆光模块万兆光模块等等。

三.华为SFP+万兆光模块测试步骤 上文介绍了几款华为光模块的型号,现在来介绍一下华为光模块的测试步骤: 1、抖动测量和眼图测量来测试发射器输入信号的质量。 2、用眼图测试、光调制振幅和消光比等光学指标来测量发射器的输出光信号。 3、通过抖动测量和光功率测试来校准接收器输出的最差信号。 4、最后测试接收器的电子输出信号,包括眼图测试、抖动测试以及抖动跟踪和容限3种。

飞速光纤(https://www.sodocs.net/doc/fb13062474.html,)提供各种兼容光模块,是专业的光通信产品供应商。相比之下,飞速的华为(Huawei)兼容10G SFP+光模块价格具有很大优势,且它们具有高密度、低功耗、低成本等显著优点,产品广泛应用万兆以太网光纤数据通信领域,是万兆光模块的主流产品。

功率测量的方法

热电偶法 热电偶是由两种小同的金属材料组成的。如果把热电偶的热节点置于微波电磁场中,使之直接吸收微波功率,热节点的温度便上升,并由热电偶检测出温度差,该温差热电势便可作为微波功率的量度。用这种原理设计成的功率计称为热电偶式功率计。又因功率测量中热电偶是做成薄膜形式的,故又叫薄膜热电偶式功率计。 热电偶式功率计由两部分组成:一个用于能量转换的薄膜热电偶座,它将微波能量转化为电动势,另一个是高灵敏度的直流放大器,用来检测热电动势。 早期的薄膜热电偶式功率计的热电偶是用铋.锑金属薄膜制成的,这种热电偶的结构示意图如图2-8所示。图中所示的结构用于同轴功率座。热电偶的节点al和a2置于同轴传输线的高频电磁场,节点b2,b1,b3分别置于同轴线的内、外导体上,它的温度保持不变。当微波功率未输入时,热电堆节点之间没有温差,因而没有输出。当微波功率输入时,通过媒质基体的电容耦合,传输到铋-锑薄膜元件,由帕尔帖效应,在a1,a2节点的温度升高,这就与节点bl,b2,b3产生温差,由温差形成热电势,即贝克塞效应。由于这里的热电堆是串联的,因此,总电势等于每对的和。由于热电偶元件可以制成极薄的片状,因此功率灵敏度较高,动态范围也很宽。 功率指示器是一个高灵敏度的直流放大器,图2-9所示为其原理图。热电偶产生的热电势经斩波器转换成交流电压,前置放大器提供了大约60dB的增益。交流信号放大后进入解调器。解调后的输出信号与功率座吸收的微波功率成正比。为了便于修正功率指示器读数,仪器的读数设有“校准系数开关”,改变其位置,就可以使直流放大器的增益随之变化,从而使指示器得到修正。 薄膜热电偶式功率计具有响应速度快,灵敏度高、动态范罔宽、噪声低和零点漂移小等突出优点,适用于多种场合下的功率测量。它的缺点是过载能力差。此外,由于它的寄 牛电抗大,要使这种同轴功率座工作到18GHz以上是很困难的。1973年出现了半导体薄膜热电偶式功率计,它的工作原理同传统的铋一锑薄膜热电偶式功率计相同,但在热偶材料和功率座的结构上做了大的改进。它是在一个0.76mm平方大小的硅片上集成了两个热电 偶。每个热电偶的电阻为100Ω,它们对高频是并联的而对直流是串联的,其等效电路如图2-10所示。 为了使0.76mm平方人小的集成式双热电偶芯片与同轴传输线的阻抗相匹配,用共面传输线将它与同轴线相连接,共面线通过一段渐变线过渡与热电偶相接。这种结构保证了热电偶与 同轴线之间的良好阻抗匹配,从而使功率座的驻波比在0.01~18GHz频率范围内小于1.4。为了不使热电偶输出的微弱信号受到干扰,直流放大器的斩波器和前置放大器置于功率座内,然后用电缆与放大器连接。这种功率指示器实现了数字化读数和自动化操作,不仅能通过指示器面板上的键盘实现人机对话式操作,还具有信息存储和数据处理能力,从而能够采取某些措施消除和修正误差,提高了测量准确度。 热敏电阻法 热敏电阻是一种具有负温度系数的电阻元件,当它的温度升高时,电阻值就变小。由于它对温度非常敏感,因此被广泛的用于微瓦和毫瓦级的功率测量中。热敏电阻大都为珠形,其直径约为0.05~0.5mm,但也有杆形的。早期使用的热敏电阻元件大多用玻璃壳封装。

(完整版)超声波声强功率测量仪

超声波声强测量仪 一、详细介绍 超声波在液体声扬中产生空化效应的超声波强度(声功率)仪、超声波声强测量仪是超声波系统一个最主要的指标。它对清洗机的清洗效果,超声波处理机的工作效率有直接的影响。超声波功率(声强)测量仪可随时随地,快速简便地测量声场强度,并直观地给出声功率数值。 根据使用场合不同,超声波功率测试仪可做便携式和在线监测式。 二、技术参数 名称先欧超声波声功率(声强)测量仪 型号X0-2008 / XO-2008D (带D型为高温型) 可测声强范围0~150Wcm2 可测频率范围10KHz~1MHz 探头长度30cm, 40cm, 50cm, 60cm, 100cm 使用温度0~90℃(普通型)/ 0~300℃(高温型带D) 使用介质液体酸碱值PH4~PH10(可选择耐强酸碱型) 响应时间小于0.1秒 使用电源220V,1A

三、基本配置 超声波声功率(声强)测量仪包括毫伏表一台,探头一根,无选配件。 四、技术参数 可测声强范围:0~150W/cm2 可测频率范围:10kHz~1MHz 探头长度:60cm 使用温度:0~90℃(普通型) 0~300℃(高温型) 使用说明书: 液体声场中的超声波强度(声功率)是超声波系统一个最主要的指标。它对清洗机的清洗效果,超声波处理机的工作效率有直接的影响。超声波功率(声强)测试仪可随时随地,快速简便地测量声场强度,并直观地给出声功率数值。 根据使用场合地不同,超声波功率测试仪可做成便携式和在线监测式。 工作原理: 测量仪运用的是压电陶瓷的正压电特性,即压电效应。当我们对压电陶瓷施加一个作用力时,它就能将该作用力转换成电信号。在同样条件下,作用力越强,电压越高。若该作用力的大小以一定的周期变化,则压电陶瓷就输出一个同频率的交流电压信号。由于空化作用和其他干扰,实际的电压波形是一个主波和许多次波的叠加。要了解声场的实际作用波形,建议用频谱分析仪或示波器观察。 连接: 探测仪的输出端请接通用的交流微伏表或交流毫伏表INPUT端,仪表量程一般可设定在300mv或3v。OUTPUT端输出超声波的实际波型状态。如有必要,可外接示波器或频谱分析仪观察。探棒头部是超声波的敏感区域。 测量: 手握探棒手柄,将探棒头部插入到待测区域,同时看探测仪的输出,此电压值V即代表了该测量区域的超声波强度。若电压表的量程不合适,请随时调整。 超声波声强测量仪实物图片

通信光模块和光纤连接器的应用指南

光模块和光纤连接器的应用指南 一、光收发一体模块定义 光收发一体模块由光电子器件、功能电路和光接口等组成,光电子器件包括发射和接收两部分。发射部分是:输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路,使输出的光信号功率保持稳定。接收部分是:一定码率的光信号输入模块后由光探测二极管转换为电信号。经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。同时在输入光功率小于一定值后会输出一个告警信号。 二、光收发一体模块分类 按照速率分:以太网应用的100Base(百兆)、1000Base(千兆)、10GE SDH应用的155M、622M、2.5G、10G 按照封装分:1×9、SFF、SFP、GBIC、XENPAK、XFP,各种封装见图1~6 1×9封装--焊接型光模块,一般速度不高于千兆,多采用SC接口 SFF封装--焊接小封装光模块,一般速度不高于千兆,多采用LC接口 GBIC封装--热插拔千兆接口光模块,采用SC接口 SFP封装--热插拔小封装模块,目前最高数率可达4G,多采用LC接口 XENPAK封装--应用在万兆以太网,采用SC接口 XFP封装--10G光模块,可用在万兆以太网,SONET等多种系统,多采用LC接口 图1、1×9封装图2、SFF封装图3、GBIC封装

图4、SFP封装图5、XENPAK封装图6、XFP封装 按照激光类型分:LED、VCSEL、FP LD、DFB LD 按照发射波长分:850nm、1310nm、1550nm等等 按照使用方式分:非热插拔(1×9、SFF),可热插拔(GBIC、SFP、XENPAK、XFP) 三、光纤连接器的分类和主要规格参数 光纤连接器是在一段光纤的两头都安装上连接头,主要作光配线使用。 按照光纤的类型分:单模光纤连接器(一般为G.652纤:光纤内径9um,外径125um),多模光纤连接器(一种是G.651纤其内径50um,外径125um;另一种是内径62.5um,外径125um); 按照光纤连接器的连接头形式分:FC,SC,ST,LC,MU,MTRJ等等,目前常用的有FC,SC,ST,LC,见图7~10。 FC型--最早由日本NTT研制。外部加强件采用金属套,紧固方式为螺丝扣。测试设备选用该种接头较多。 SC型--由日本NTT公司开发的模塑插拔耦合式连接器。其外壳采用模塑工艺,用铸模玻璃纤维塑料制成,呈矩形;插针由精密陶瓷制成,耦合套筒为金属开缝套管结构。紧固方式采用插拔销式,不需要旋转。 LC型--朗讯公司设计的。套管外径为1.25mm,是通常采用的FC-SC、ST套管外径2.5mm的一半。提高连接器的应用密度。 图7、FC光纤连接器图8、SC光纤连接器图9、LC光纤 图10、ST光纤连接器 连接器 按照光纤连接器连接头内插针端面分:PC,SPC,UPC,APC 按照光纤连接器的直径分:Φ3,Φ2, Φ0.9

光纤通信系统的眼图测试实验

太原理工大学现代科技学院 光纤通信课程实验报告 专业班级 学号 姓名 指导教师

实验名称 光纤通信系统的眼图测试实验 同组人 专业班级 学号 姓名 成绩 实验三 光纤通信系统的眼图测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验内容 1、测量数字光纤通信系统传输各种数字信号的眼图 2、观察系统眼图,并通过眼图来分析系统的性能 三、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、20MHz 双踪模拟示波器 1台 3、万用表 1台 4、FC/PC-FC/PC 单模光跳线 1根 5、850nm 光发端机和光收端机(可选) 1套 6、ST/PC-ST/PC 多模光跳线(可选) 1根 四、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测 量,并且可以用示波器直观的显示出来。图20-1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用 数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 图1、眼图测试系统框图 ……………………………………装………………………………………订…………………………………………线………………………………………

伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种 不同有组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图20-2所示的眼图,是由3比特长8种组合码叠加而成,示 波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图20-3所示的形状规则的眼图进行分析: 1、当眼开度V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、 信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V 增加,无畸变眼图的眼皮厚度应该等于零。 3、系统无畸变眼图交叉点发散角 b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲 失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算:定时抖动= …………………………………装……………………………………订………………………………………线……………………………………………

光模块基础知识大全、分类及选用

光模块基础知识大全、分类及选用 一、光模块基本知识 1、定义: 光模块:也就是光收发一体模块。 2、结构: 光收发一体模块由光电子器件、功能电路和光接口等组成,光电子器件包括发射和接收两部分。 发射部分是:输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路,使输出的光信号功率保持稳定。 接收部分是:一定码率的光信号输入模块后由光探测二极管转换为电信号。经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。同时在输入光功率小于一定值后会输出一个告警信号。 3、光模块的参数及意义 光模块有很多很重要的光电技术参数,但对于GBIC和SFP这两种热插拔光模块而言,选用时最关注的就是下面三个参数: 1)中心波长 单位纳米(nm),目前主要有3种: 850nm(MM,多模,成本低但传输距离短,一般只能传输500M); 1310nm (SM,单模,传输过程中损耗大但色散小,一般用于40KM以内的传输);

1550nm (SM,单模,传输过程中损耗小但色散大,一般用于40KM以上的长距离传输,最远可以无中继直接传输120KM); 2)传输速率 每秒钟传输数据的比特数(bit),单位bps。 目前常用的有4种: 155Mbps、1.25Gbps、2.5Gbps、10Gbps等。传输速率 一般向下兼容,因此155M 光模块也称FE(百兆)光模块,1.25G光模块也称GE (千兆)光模块,这是目前光传输设备中应用最多的模块。此外,在光纤存储系统(SAN)中它的传输速率有2Gbps、4Gbps和8Gbps。 3)传输距离 光信号无需中继放大可以直接传输的距离,单位千米(也称公里,km)。 光模块一般有以下几种规格:多模550m,单模15km、40km、80km和120km 等等。 除以上3种主要技术参数(波长,速率,距离)外,光模块还有如下几个基本概念,这些概念只需简单了解就行。 a、激光器类别 激光器是光模块中最核心的器件,将电流注入半导体材料中,通过谐振腔的光子振荡和增益射出激光。目前最常用的激光器有FP和DFB激光器,它们的差异是半导体材料和谐振腔结构不同,DFB激光器的价格比FP激光器贵很多。传 输距离在40KM以内的光模块一般使用FP激光器;传输距离≥40KM的光模块一 般使用DFB激光器。 b、损耗和色散 损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。色散的产生主要是因为不同

测量功率计仪器

单显功率计由功率传感器和功率指示器两部分组成。功率传感器也称功率计探头,它把高频电信号通过能量转换为可以直接检测的电信号。功率指示器包括信号放大、变换和显示器。显示器直接显示功率值。功率传感器和功率指示器之间用电缆连接。为了适应不同频率、不同功率电平和不同传输线结构的需要,一台功率计要配若干个不同功能的功率计探头。 本仪器专门为检测激光二极管组件质量、判断其好坏而设计的,它具有体积小、性价比高、使用方便等特点。 主要技术指标: 工作方式:电流测量和功率测量两种。 波长选择:532nm650nm635nm780nm808nm980nm 功率测量范围:0-2000mW 电流和功率通过两个3位半/4位半数字表头分别显示。 激光二极管组件供电的电压固定为DC3V和5V,输出电流能力为200mA。 输入电压及容量:220VAC±10%,容量10VA。 使用方法: 接上输入电源线和带夹输出导线,红插头对红插座,黑插头对黑插座;红线或白线对应正极,黑线对应负极,切莫混淆;将光探测器的输出插到仪器的_光输入_。 根据测试对象的工作波长,通过两位开关进行选择。 根据极性和连接方式接好激光二极管组件,开启电源,即可进行测试。仪器左边的_mA_表显示的是激光二极管组件电流,仪器右侧的_mW_表显示请打零贰玖陆捌伍捌壹柒零捌激光二极管组件的输出功率。 测量光功率时请将激光二极管组件的输出光对准探头光输入窗口找出最大值,即为输出光功率。 测试完毕请关断电源,长时间不用请将输入电源线,激光探头和直流带夹输出线拔掉。 注意事项: 输出直流电源线插头与插座及组件供电线即电源极性切莫装反。 测试过程中直流输出线切勿短路。激光二极管组件切勿触及探头以防损伤其芯片。 为防止组件在启动过程中损坏,本电源设置了?慢启动?功能。因此,每次都要重新开启电源,切莫带电接激光二极管组件。 请轻拿轻放,特别应防止探头中的毛玻璃片及硅光电池因震动而脱落或损坏。 gl

光模块测试指标

1.1.1GEPON接口测试 1.1.1.1GEPON接口测试—平均发射光功率 ONU 1.1.1.2GEPON接口测试—中心波长

1.1.1.3GEPON接口测试—发射机眼图 1.1.1.4GEPON接口测试—消光比

ONU 1.1.1.5GEPON接口测试—最小边模抑制比

测试连接图Optical Splitter Voltage Regulator OLT ONU 测试步骤1.按照上图连接测试环境; 2.设置示波器; 3.读取最小边模抑制比数值,并记录。 预期结果1000BASE-PX20-D边模抑制比>=30dB;1000BASE-PX20+-D边模抑制比>=30dB。 测试结论通过[ ];未通过[ ] ;未测[ ]结果说明 备注 测试人签名 1.1.1.6GEPON接口测试—接收灵敏度 用例编号DYTC-7 用例名称接收机灵敏度 测试目的1G OLT PON接口接收机灵敏度 测试设备 测试环境 测试步骤1.按照上图连接测试环境; 2.调整可调光衰减器增大衰减,使光模块工作正常,并用SMB6000验证无丢包;测量接收机在接收机处达到1×10-12的BER值所需要的平均接收功率的最小值; 或者ONU快要掉注册时,记录下此时的OLT的接收光功率即可; 3.读取光功率数值,并记录; 4.测试取10块光模块进行测试,并记录。 预期结果1000BASE-PX20-D接收灵敏度<= -24dBm;1000BASE-PX20+-D接收灵敏度<=-30dBm。

ONU 1.1.1.7GEPON接口测试—接收机过载光功率

测试环境 测试步骤 1. 按照上图连接测试环境; 2. 调整可调光放大器(减少衰减),使光模块工作正常,并用数据测试仪验证无丢包;测量接收机在接收机处达到1×10-12的BER 值所需要的平均 接收功率的最小值; 或者ONU 快要掉注册时,记录下此时的OLT 的接收光功率即可; 3. 读取光功率数值,并记录; 4. 测试取10块光模块进行测试,并记录。 预期结果 1000BASE-PX20-D 接收机过载光功率≥-6dBm ; 1000BASE-PX20+-D 接收机过载光功率≥-6dBm 。 测试结果 测试结论 通过[ ] 未通过[ ] 未测[ ] 版本备注 测试人员 测试日期 相关知识 1.1.1.8 GEPON 接口测试—最大-20dB 谱宽 被测设备(型号) 1600H 测试项目 1G PON 接口测试—最大-20dB 谱宽 测试目的 测量TX 的最大峰值功率跌落20dB 时的光谱全宽。 测试仪表 1. 采样示波器 泰克8000/安捷伦86100; 2. 可调光衰减器; 测试连接图 Optical Splitter Voltage Regulator OLT ONU

三种射频功率测量方法

三种射频功率测量方法 自从第一台无线电发射机诞生之日起,工程师们就开始关心射频功率测量问题,直到今天依然是个热门话题。无论是在实验室、产线,还是教学中,功率测量都是必不可少的。 在无线电发展初期,测试工程师所面对的大多数是连续波、调幅、调频、调相或脉冲信号,这些信号都是有规律可循的。例如,连续波(如图1)调频或调相信号的功率测量都是很简单,只需要测量其平均功率;调幅信号(如图2)的功率与其调制深度有关,而脉冲信号的特性是以脉冲宽度和占空比来表达。对于以上这些模拟或模拟调制信号,射频功率测量所关心的基本上都是平均功率和峰值功率。 而现在,特别是20世纪90年代以后,数字通信开始快速发展,射频功率测量的重点也开始有些变化。因为数字调制信号(如图3)的包络无规律可循,其最大和最小电平会随机变化,而且变化量很大。为了描述这类信号的特征,引入了一些新的描述方法,如领道功率、突发功率、通道功率等。很多传统的功率计已经无法满足数字信号功率的测量要求,一部分功率测量的任务已经开始由频谱分析仪来完成。

下面我们介绍常见的几种射频功率测量方法,在此之前我们还需要明确一件事——在频域测试测量中,为什么习惯以功率来描述信号强度,而不是像时域测试测量中常用的电压和电流?那是因为在射频电路中,由于传输线上存在驻波,电压和电流失去了唯一性,所以射频信号的大小一般用功率来表示,国际通用的功率单位为W、mW、dBm。 频谱分析仪和功率计都是可以测量射频功率的,其中功率计又分为吸收式功率计与通过式功率计两种。 同样是功率测量,不同的测试仪器和测试方法所关注的重点是不同的。 射频功率的测量方法有三种: 频谱分析仪测量; 吸收式功率测量; 通过式功率测量。 1. 频谱分析仪测量 频谱分析仪(以下简称频谱仪)是一种基础的频域测试测量仪器,图4为采用数字中频技术频谱仪的基本工作原理。被测信号经过低通滤波器后进入混频器,与同时进入混频器的本地振荡器信号进行混频。由于混频器是非线性器件,所以会产生互调信号,落入滤波器的信号经过ADC,再依次进入中频滤波器,包络检波器,视频滤波器,视频检波器,最后将轨迹显示在屏幕上。 在进行射频功率参数测量时,频谱仪具有以下特点:

数字光纤通信系统信号眼图测试

实验二数字光纤通信系统信号眼图测试 一.实验目的 1.了解眼图产生的基础,根据眼图测量数字通信系统性能的原理; 2.学习通过数字示波器调试、观测眼图; 3.掌握判别眼图质量的指标; 4.熟练使用数字示波器和误码仪。 二.实验原理 眼图是估计数字传输系统性能的一种十分有效的实验方法。这种方法已广泛应用于数字通信系统,在光纤数字通信中也是评价系统性能的重要实验方法。眼图是在时域进行的用示波器显示二进制数字信号波形的失真效应的测量方法。图2.1是测量眼图的装置图。由AV5233C误码仪产生一定长度的伪随机二进制数据流(AMI码、HDB3码、RZ 码、NRZ码)调制单模光产生相应的伪随机数据光脉冲并通过光纤活动连接器注入单模光纤,经过光纤传输后,再与光接收机相接。光接收机将从光纤传输的光脉冲变为电脉冲,并输入到AV4451(500MHz)示波器,示波器显示的扫描图形与人眼相似,因此称为眼图。 用眼图法测量系统时应有多种字型,可以采用各比特位上0和1出现的概率相等的随机数字信号进行测试。AV5233C误码仪用来产生伪随机数字序列信号。在这里“伪随机”的意义是伪随机码型发生器产生N比特长度的随机二进制数字信号是数字序列在N 比特后发生重复,并不是测试时间内整个数字序列都是随机的,因此称为“伪随机”。伪随机序列如果由2比特位组成,则共有四种组合,3比特数字信号有8种组合,N比特数字信号有2N个组合。伪随机数字信号的长度为2N-1,这种选择可保证字型不与数据率相关。例如N可取7、10、15、23、31等。如果只考虑3比特非归零码,应有如图2.2所示的8种组合。将这8种组合同时叠加,就可形成如图2.3所示的眼图。 图2.1 眼图测量装置

功率放大器技术参数的测量

功放技术参数的测 一.常用测试仪器 信号源:GOOD WILL INSTRUMENT公司(固伟)GFG-8015G 宁波中策电子有限公司X010A 毫伏表:GOOD WILL INSTRUMENT公司(固伟)GFG-417B 宁波中策电子有限公司DF2173B 示波器:IWATSU ELECTRIC公司(日本)SS-7802A 失真仪:宁波中策电子有限公司DF4121A 二.频率响应的测量 术语:增益限制的有效频率范围 是指在振幅允许的范围内功放系统能够重放的频率范围,以及在此范围内信号的变化量,称为频率响应。 在该频率范围内,实际频响与所要求的频响的偏差不得超过规定限度。 1.将各仪器按上图所示方法连接(可不使用示波器),功放输出端接入一额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,从毫伏表读取电压值,使功放输出为 额定输出电压。 并以此为电压参考点。

3.缓慢调节信号源上的频率旋钮,从功放规定的频率下限至频率上限,其输出电压变化范 围不得超过±3dB。 4.若连接示波器,看观测输出电压波形。 三.失真度的测量 理想的放大器应该是把输入的信号放大后,毫无改变的还原出来。但是由于各种原因经功放放大后的信号与输入信号相比较,往往产生了不同程度的畸变,这个畸变就是失真。用百分比表示,其数值越小越好。 1.将各仪器按上图所示方法连接,功放输出端接入额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,使功放输出为额定电压。 3.对失真仪进行相对电平(0 dB)校准。 4.测量失真度,读出并记录此测量值。 5.可使用示波器监测输出波形是否异常。 四.输入灵敏度的测量 输入灵敏度:功放在额定负载上,输出额定电压时的输入激励电压称为输入灵敏度。

光模块常识

光模块的一些常识知识 光纤模块的构成:有发射激(TOSA),接受(ROSSA) 线路板 IC 外部配件 光纤模块接口分为FC型、SC型、LC型、ST型和FTRJ型。RJ45 光收发一体模块分类 按照速率分:以太网应用的100Base(百兆)、1000Base(千兆)、10GE SDH 应用的155M、622M、2.5G、10G 按照封装分:1×9、SFF、SFP、GBIC SFP+ XFP X2 XENPAK 1×9封装--焊接型光模块,一般速率有52M/155M/622M/1.25G,多采用SC接口 SFF封装--焊接小封装光模块,一般速率有155M/622M/1.25G/2.25G/4.25G,多采用LC接口 GBIC封装--热插拔千兆接口光模块,采用SC接口 SFP封装--热插拔小封装模块,目前最高数率可达 155M/622M/1.25G/2.125G/4.25G/8G/10G,多采用LC接口 XENPAK封装--应用在万兆以太网,采用SC接口 XFP封装--10G光模块,可用在万兆以太网,SONET等多种系统,多采用LC接口按照激光类型分:LED、VCSEL、FP LD、DFB LD 按照发射波长分:850nm、1310nm、1550nm等等 按照使用方式分:非热插拔(1×9、SFF),可热插拔(GBIC、SFP、XENPAK、XFP)光纤模块又分单模和多模 单模光纤使用的光波长为1310nm或1550 nm。单模光纤的尺寸为 9-10/125μm 它的传输距离一般 10KM 20kM 40KM 70KM 120KM 多模光纤使用的光波长多为850 nm或1310nm.多模光纤50/125μm或 62.5/125μm两种,它的传输距离也不一样,一般千兆环境下50/125μm线可传输550M,62.5/125μm只可以传送330M。(2KM 550M)

影响光模块发射眼图的一些关键因素

影响发射眼图的一些关键因素 本文主要通过分析在实际调试过程中出现的现象及其解决方法来说明对眼图影响较大的一些主 要因素,以供在设计及调试中引起注意。 R MOD决定调制电流(I MOD)的大小, F面对调试中常见的一些波形进行分析并提出相应的解决办法。 关键词: 阈值电流(I th) 过冲(overshoot) 调制电流(I MOD) 欠冲 ( 偏置电流(I BIAS)反射(reflection)振铃(ringing) 反向不归零制(NZR) 激光驱动器和激光二极管间采用直流耦合方式,电路示意图如下 激光驱动器的输出结构如下图所示

I (H) ps div 现象:波形混杂压缩在一起,没有出现清晰可变的眼图,波形底部太低。原因:由于偏置电流(I BIAS)设得太小造成的。 解决方法:增加偏置电流,直到波形底部向上移动,此时波形会渐渐变清晰。关键因素:偏置电流(I BIAS) 2、 lOOps* div 现象:过冲,波形上升沿过冲超过i电平,。 原因:上升沿速度太快 解决方法:A、插入一个低通滤波器RC电路,截至频率位速率的75%,减缓上升和下降沿。B、调节串联阻尼电阻R D的值,使驱动器输出阻抗匹配。 关键因素:串联阻尼电阻R D和低通滤波器RC电路。 1、 ___ nr* ■丄…丄- 二 IWM2 二 3、

5 现象 :欠冲,波形上升或下降沿没有到达高或低电平位置。 原因 :过阻尼 解决方法:调节串联阻尼电阻 R D 的值,使输出阻抗匹配减小衰减。 关键因素:串联阻尼电阻 R D 。 现象 :波形上升或下降沿出现振铃现象。 原因 :阻抗不连续,电路中有过多的自感应而产生共振。 解决方法:尽可能排除阻抗不连续,尽可能减小组件引脚长度来减小寄生电感。 关键因素:阻抗不连续,寄生电感。 50 ps ;div 4 >p M 一二 = 二 2 ns(Ji\ (b)

交换机路由光模块参数

目录 第1章可插拔模块简介 1.1 H3C中端系列以太网交换机支持的可插拔模块类型1.2 光模块概念介绍 1.2.1 简介 1.2.2 传输速率(Data Rate) 1.2.3 传输距离 1.2.4 中心波长 1.2.5 光纤类型 1.2.6 接口连接器类型 1.2.7 接口指标 1.3 电口模块概念介绍 1.3.1 千兆电口模块简介 1.3.2 10G电口模块简介 第2章 SFP模块 2.1 千兆SFP光模块 2.1.1 外观图 2.1.2 具体型号及规格 2.2 百兆SFP光模块 2.2.1 外观图 2.2.2 具体型号及规格 2.3 千兆/百兆BIDI模块 2.3.1 外观图 2.3.2 具体型号及规格 2.4 BIDI GEPON OLT光模块

2.4.1 外观图 2.4.2 具体型号及规格2.5 千兆CWDM模块2.5.1 外观图 2.5.2 具体型号及规格2.6 SFP电口模块 2.6.1 外观图 2.6.2 具体型号及规格第3章 GBIC模块 3.1 GBIC光模块 3.1.1 外观图 3.1.2 具体型号及规格3.2 GBIC电口模块 3.2.1 外观图 3.2.2 具体型号及规格第4章 XFP模块 4.1 外观图 4.2 具体型号及规格第5章 XENPAK模块 5.1 XENPAK光模块 5.1.1 外观图 5.1.2 具体型号及规格5.2 XENPAK LX4光模块5.2.1 外观图 5.2.2 具体型号及规格

5.3 XENPAK CX4电口模块5.3.1 外观图 5.3.2 具体型号及规格

第1章可插拔模块简介 1.1 H3C中端系列以太网交换机支持的可插拔模块类型 H3C中端系列以太网交换机支持的可插拔模块类型如表1-1所示。 表1-1 可插拔模块类型 说明: ●H3C中端系列以太网交换机的不同产品可支持的可插拔模块类 型不同,具体请参见各产品安装手册。

相关主题