搜档网
当前位置:搜档网 › 高三数学一轮复习学案:正余弦定理的应用

高三数学一轮复习学案:正余弦定理的应用

高三数学一轮复习学案:正余弦定理的应用
高三数学一轮复习学案:正余弦定理的应用

高三数学一轮复习学案:正余弦定理的应用

一、考试要求:1、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.2..通过利用向量证明正弦定理和余弦定理,了解向量的工具性和知识间的相互联系,体会事物之间是相互联系的辩证思想;

二、知识梳理:

仰角

俯角

方位角

坡角与坡比

视角

三、基础检测:

1.在200米高的山顶上,测得山下一塔顶和塔底的俯角分别是30°、60°,则塔高为( )

A.米3400

B.米32400

C.米33200

D.米3

200 2.在相距2千米的A 、B 两点处测量目标点C ,若75,60C A B C B A ∠=∠=,则A 、C 两点之间的距离为 千米.

3.一缉私艇发现在方位角45°方向,距离12海里的海面上有一走私船正以10海里/小时的速度沿方位角为105°方向逃窜,若缉私艇的速度为14海里/小时,缉私艇沿方位角45°+α的方向追去,若要在最短的时间内追上该走私船,求追及所需时间和α角的正弦.(注:方位角是指正北方向按顺时针方向旋转形成的角).

4.如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?

5.甲船 由A 岛出发向北偏 东45°的方向作匀速直线航行,速度为152海里/小时,在甲船从A 岛出发的同时,乙船从A 岛正南40海里处的B 岛出发,朝

北偏东θ(θ=arctan 2

1)的方向作匀速直线航行,速度为105海里/小时。 ①求出发后3小时两船相距多少海里?

②求两船出发后多长时间相距最近?最近距离为多少海里?

公开课教学设计(正余弦定理及其应用)

解三角形教学设计 四川泸县二中吴超 教学目标 1.知识与技能 掌握正、余弦定理,能运用正、余弦定理解三角形,并能够解决与实际问题有关的问题。 2.过程与方法 通过小组讨论,学生展示,熟悉正、余弦定理的应用。 3.情感态度价值观 培养转化与化归的数学思想。 教学重、难点 重点:正、余弦定理的应用 难点: 正、余弦定理的实际问题应用 拟解决的主要问题 这部分的核心内容就是正余弦定理的应用。重点突出三类问题: (1)是围绕利用正、余弦定理解三角形展开的简单应用 (2)是三角函数、三角恒等变换等和解三角形的综合应用 (3)是围绕解三角形在实际问题中的应用展开 教学流程

教学过程 一、知识方法整合 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 = = = 2、三角形面积公式:C S ?AB = = = 3、余弦定理:C ?AB 中2a = 2b = 2c = 4、航海和测量中常涉及如仰角、俯角、方位角等术语 5、思想与能力:代数运算能力,分类整合,方程思想、化归与转化思想等 二、典例探究 例1 [2012·四川卷](小组讨论,熟悉定理公式的应用) 如图,正方形ABCD 的边长为1,延长BA 至E ,使AE=1,连接EC 、ED 则sin∠CED=_______(尝试多法) 解3:等面积法 解4:观察角的关系,两角和正切公式 解5:向量数量积定义 练1:在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( ) A.? ????0,π6 B.??????π6,π C.? ????0,π3 D.???? ??π3,π 解1:由正弦定理a 2≤b 2+c 2-bc ,由余弦定理可知bc ≤b 2+c 2-a 2=2bc cos A ,即1C D E C D E C D =?==1解:中,, 222210EC ED CD EC ED +-∠?∴=cos CED 10∴∠sin CED 021135CD E C E D C ==∠=解:, sin sin CD EC CED EDC =∠∴∠ sin 10CD EDC EC ?∠∴∠=sin CED

正余弦定理题型总结(全)

平面向量题型归纳(全) 题型一:共线定理应用 例一:平面向量→ →b a ,共线的充要条件是( )A.→ →b a ,方向相 同 B. → →b a ,两向量中至少有一个为零向量 C.存在 ,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→ →b a λλλλ 变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→ →b a //”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 变式二:设→ →b a ,是两个非零向量( ) A.若→→→→=+b a b a _则→→⊥b a B. 若→→⊥b a ,则→ →→→=+b a b a _ C. 若→ →→→ =+b a b a _,则存在实数λ,使得 →→ =a b λ D 若存在实数λ,使得→ →=a b λ,则 → →→→ =+b a b a _ 例二:设两个非零向量→ → 21e e 与,不共线, (1)如果三点共线;求证:D C A e e e e e e ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。 变式一:设→ → 21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。 变式二:已知向量→ →b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D 题型二:线段定比分点的向量形式在向量线性表示中的应用 例一:设P 是三角形ABC 所在平面内的一点,,2+=则( ) A. += B. += C. += D. ++= 变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且++=2,那么( )A. A =

正余弦定理学案

正弦定理 学习目标:1 理解正弦定理并能证明 2 能应用正弦定理解三角形 重点:应用正弦定理解三角形 在任意的三角形中有大边对大角,小边对小角的边角关系,我们能否得到这个边、角关系准确量化的表示呢? 学习任务:阅读课本P 2-4页,完成下列任务: 1.在直角三角形中,设a 、b 、c 为其三边,A ,B ,C 为其对应的三个角,有 B c B b A a sin sin sin ==成立。对于锐角和钝角三角形中,此关系式成立吗?试证明。 2.什么是解三角形?思考:正弦定理可以解决哪些解三角形的问题。 3.在⊿AB C 中,已知下列条件,解三角形 (1)A = 45°,C = 30°,c = 10 cm (2)A = 60°,B = 45°,c = 20 cm 4.阅读例2,已知三角形的两边和其中一对角,计算另一边的对角。需要注意什么?请完成下列两小题: 在⊿ABC 中,已知下列条件,解三角形 ①a = 20 cm ° ②c = 1 cm cm C = 60° 必做题:习题1.1 A 组 1、2. B 组 1. 选做题: 1. 在⊿ABC 中,B = 45°,C = 60°,c = 1,则最短边的边长为 . 2. 在⊿ABC 中,a =80 ,b = 100 ,A = 30°,则B 的解的个数为 . 余弦定理 学习目标:1 理解余弦定理并能证明 2 能应用余弦定理解三角形 重点:应用正弦定理解三角形 用正弦定理我们可以解决两类解三角形问题: (Ⅰ)已知三角形的任意两个角与一边,求其他两边和另一角。 (Ⅱ)已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。 对于已知两边和它们的夹角怎样计算出三角形的另一边和另两个角? 学习任务:阅读课本5-7页,完成下列问题: 1. 请用向量的数量积推导余弦定理,还有其他证明方法吗? 2. 余弦定理指出了三角形的三条边与其中一个角之间的关系,请写出余弦定理的变形 (即推论) 3. 勾股定理与余弦定理之间有何联系? 4. 阅读例3、例4,思考:余弦定理及推论,正弦定理可以解决哪些解三角形问题? 必做题: P 8页 练习 1、2. 习题1.1 A 组 3、4. B 组 2. 选做题: 1.在⊿ABC 中,B = 60°,b 2 = ac ,则⊿ABC 一定是( ) A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形 2.三角形的一边长为14,这条边所对的角为60°,另两边之比为8:5,则这个三角形的面积为 。

新课标高考数学题型全归纳正余弦定理常见解题类型典型例题

正余弦定理常见解题类型 1. 解三角形 正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角. 余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 例1 已知在ABC △中,4526A a c ∠===,,,解此三角形. 解:由余弦定理得22(6)26cos 454b b +-=, 从而有31b =±. 又222(6)222cos b b C =+-?, 得1cos 2 C =±,60C ∠=或120C ∠=. 75B ∴∠=或15B ∠=. 因此,31b =+,60C ∠=,75B ∠= 或31b =-,120C ∠=,15B ∠=. 注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做. 2. 判断三角形的形状 利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理: A B C ++=π;利用余弦定理公式222222 cos cos 22b c a a c b A B bc ac +-+-==,, 222 cos 2a b c C ab ++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题. 例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状. 解:由正弦定理2sin sin sin a b c R A B C ===,为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =, sin sin 0B C ≠∵, sin sin cos cos B C B C ∴=,即cos()0B C +=. 90B C ∴+=,即90A =,故ABC △为直角三角形. 3. 求三角形中边或角的范围 例3 在ABC △中,若3C B ∠=∠,求c b 的取值范围. 解: A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2 B <<. 又2sin sin 334sin sin sin c C B B b B B ===-∵, 2134sin 3B ∴<-<.故13c b <<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件. 4. 三角形中的恒等式证明 根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:2222cos 2222a c b bc c b c a B ac ac a b +-++====∵, 222222 22222cos 22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=?-===.

高三第一轮复习正余弦定理教案

高三新数学第一轮复习教案 ---------正、余弦定理及应用 一.课标要求: (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题; (2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。 二.命题走向 对本讲内容的考察主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题。今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用。题型一般为选择题、填空题,也可能是中、难度的解答题。 三.要点精讲 1.直角三角形中各元素间的关系: 如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 如图6-29,在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。sin()A B +=sin C ;cos()A B +=cos C - (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?????===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) (R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角 的余弦的积的两倍。 形式一:a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 (解三角形的重要工具) 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ (4)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是 ∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列。

高中数学 第一章 第8课时——正、余弦定理的应用(2)学案(教师版) 苏教版必修5

听课随笔 第2课时 【学习导航】 知识网络 ??? ??数学问题航海 测量学正、余弦定理的应用 学习要求 1.利用正弦定理和余弦定理解决有关测量问题时,要注意分清仰角、俯角、张角和方位角等概念。 2. 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过这些三角形,得出实际问题的解。 【课堂互动】 自学评价 运用正弦定理、余弦定理解决实际问题的基本步骤是: ①_______:理解题意,弄清已知与未知,画出示意图(一个或几个三角形); ②_______:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型; ③_______:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; ④_______:检验上述所求的解是否符合实际意义,从而得出实际问题的解。 【精典范例】 【例1】作用在同一点的三个力123,,F F F 平衡.已知130F N =,250F N =,1F 与2F 之间的夹角是60 ,求3F 的大小与方向(精确到0.1 ). 【解】 【例2】半圆O 的直径为2,A 为直径延长线上的一点,2OA =,B 为半圆上任意一点,以AB 为一边作等边三角形ABC .问:点B 在什么位置时,四边形OACB 面积最大? 分析:四边形的面积由点B 的位置唯一确定,而点B 由AOB ∠唯一确定,因此可设 AOB α∠=,再用α的三角函数来表示四边形OACB 的面积. 【解】 追踪训练一 1. 如图,用两根绳子牵引重为F1=100N的物体,两根绳子拉力分别为F2,F3,保持平衡.如果F2=80N,F2与F3夹角α=135°. (1)求F3的大小(精确到1N); (2)求F3与F1的夹角β的值 (精确到0.1°).

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

正余弦定理的综合应用

正余弦定理的综合应用教学设计 课题名称正余弦定理的综合应用 科目数学(高三)授课人耿向娜 一、教学内容分析 本节课为高三一轮复习中的解三角形部分的习题课。解三角形的知识在历年的高考中与三角函数向量等知识相结合,频繁出现在选择、填空和17题的位置,是学生们的重要得分点之一。本节课对2013年中出现的解三角形问题的分析解答,强化学生对解三角形的理解和巩固,同时消除他们对高考的畏惧感,提升其自信心。 二、教学目标 1、知识目标:熟练掌握正余弦定理、三角形面积公式、边角关系互化,同时熟练结合三角函数知识求相关函数的最值等。 2、能力目标:培养学生分析解决问题的能力,提高学生的化简计算能力 3、情感目标:让学生在直接面对高考真题的过程中,体会解决问题的快乐,提升他们的自信心,提高他们的备战能力! 三、学情分析 我所任课的班级是高三22班是文科普通班,他们的数学基础整体上很薄弱,计算能力有待提高。通过三个多月的一轮复习,越来越多的学生对数学产生了兴趣,同时也品尝到数学成绩提高带来的喜悦,具有了一定的函数知识和解决问题的能力。 四、教学重点难点 重点正余弦定理的应用 难点公式的转化和计算

五、教法分析 本节课我利用多媒体辅助教学,采用的是教师引导下的学生自主探究式学习法。 六、教学过程 教学环节教学内容设计意图 一、基 础 知 识 回 顾回顾正弦定理:k C c B b A a = = = sin sin sin ; C k c B k b A k a sin , sin , sin= = = 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 三角形面积公式:A bc B ac C ab S sin 2 1 sin 2 1 sin 2 1 = = = 通过对公式的 回顾,为本节 课解答问题提 供工具。 二、例 题 讲 解类型一:判定三角形形状 1、设在ABC ?中,若B b A a cos cos=,判定该三角形 的形状。 该题的设置目 的在于训练学 生对边角混合 式的转化。此 题可以边化 角,也可角化 边,让学生体 会正余弦定理 的应用和边角 转化的魅力。 形 直角三角形或等腰三角 或 法二:(角化边) 角形 为等腰三角形或直角三 , 或 ) 解析:法一:(边化角 ? = = + ? = - - + ? - = - ? - + = - + ? - + = - + ? = + = + = ? = ? = b a c b a o b a c b a c b a b a b c a b a c b a ac b c a b bc a c b a B A B A B A B A B A A 2 2 2 2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ) )( ( ) ( ) ( ) ( 2 2 . 2 2 2 2 sin 2 1 2 sin 2 1 sinBcos cos sin π π

第8课时——正、余弦定理的应用(2)(教、学案)

第8课时正、余弦定理的应用(2) 【学习导航】 知识网络 ?? ???数学问题航海 测量学正、余弦定理的应用 学习要求 1.利用正弦定理和余弦定理解决有关测量问题时,要注意分清仰角、俯角、张角和方位角等概念。 2. 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过这些三角形,得出实际问题的解。 【课堂互动】 自学评价 运用正弦定理、余弦定理解决实际问题的基本步骤是: ①分析:理解题意,弄清清与未知,画出示意图(一个或几个三角形); ②建模:根据书籍条件与求解目标,把书籍量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型; ③求解:利用正弦定理、余弦定理理解这些三角形,求得数学模型的解; ④检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解。 【精典范例】 【例1】作用在同一点的三个力123,,F F F 平衡.已知130F N =,250F N =,1F 与2F 之间的夹角是60,求3F 的大小与方向(精确到0.1). 【解】3F 应和12,F F 合力F 平衡,所以3F 和F 在同一直线上, 并且大小相等,方向相反. 如图1-3-3,在1OF F ?中,由余弦定理,得 ()70F N ==再由正弦定理,得 1 50sin1205sin 70FOF ∠==, 所以138.2FOF ∠≈,从而13141.8FOF ∠≈. 答 3F 为70N ,3F 与1F 之间的夹角是141.8. 【例2】半圆O 的直径为2,A 为直径延长线上的一点,2OA =,B 为半圆上任意一点,以AB 为一边作等边三角形ABC .问:点B 在什么位置时,四边形OACB 面积最大? 分析:四边形的面积由点B 的位置唯一确定,而点B 由AOB ∠唯一确定,因此可设AOB α∠=,再用α的三角函数来表示四边形OACB 的面积. 【解】设AOB α∠=.在AOB ?中,由余弦定理,得22212212cos 54cos AB αα=+-??=-.

最全正余弦定理题型归纳.

正弦定理和余弦定理 一、题型归纳 〈一>利用正余弦定理解三角形 【例1】在△ABC中,已知a=3,b=2,B=45°,求A、C和c。【例2】设ABC ?的内角A、B、C的对边长分别为a、b、c,且32b+32c-32a2b c. (Ⅰ)求sinA的值;(Ⅱ)求2sin()sin() 44 1cos2 A B C A ππ +++ - 的值。 【练习1】 (2011·北京)在△ABC中,若b=5,∠B=错误!,tan A=2,则sin A=________;a=________. 【练习2】在△ABC中,a、b、c分别是角A、B、C的对边,且\f(cos B,cosC)=-错误!. (1)求角B的大小;

(2)若b =错误!,a +c =4,求△AB C的面积. 〈二〉利用正余弦定理判断三角形的形状 【例3】1、在△ABC 中,若(a2+b 2)sin (A -B )=(a 2-b2)sin C ,试判断△AB C的形状. 2、在△AB C中,在ABC ?中,a,b,c 分别是角A 、B 、C 所对的边,bcosA=a c os B,则ABC ?三角形的形状为__________________ 3、在△ABC 中,在ABC ?中,a,b,c 分别是角A 、B、C 所对的边,若c os AcosB =\f(b,a ) , 则ABC ?三角形的形状为___________________ 【练习】1、在△ABC 中,2cos 22A b c c +=(,,a b c 分别为角,,A B C 的对边),则△AB C的形状为( ) A 、正三角形 B 、直角三角形 C 、等腰三角形或直角三角形 D、等腰直角三角形 2、已知关于x 的方程22cos cos 2sin 02 C x x A B -?+=的两根之和等于两根之积的一半,则ABC ?一定是() A、直角三角形B、钝角三角形C 、等腰三角形D 、等边三角形 3、在△ABC 中,2222()sin()()sin()a b A B a b A B +-=-+,则△ABC 的

2021届高三高考数学文科一轮复习知识点专题4-6 正弦定理和余弦定理【含答案】

2021届高三高考数学文科一轮复习知识点 专题4.6 正弦定理和余弦定理【考情分析】 1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 【重点知识梳理】 知识点一正弦定理和余弦定理 1.在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则 定理正弦定理余弦定理 公式 a sin A= b sin B= c sin C=2R a2=b2+c2-2bc cos A;b2=c2 +a2-2ca cos B; c2=a2+b2-2ab cos C 常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C; (2)sin A= a 2R,sin B= b 2R,sin C= c 2R; (3)a∶b∶c=sin A∶sin B∶sin C; (4)a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A= b2+c2-a2 2bc; cos B= c2+a2-b2 2ac; cos C= a2+b2-c2 2ab 2.S△ABC=1 2ab sin C= 1 2bc sin A= 1 2ac sin B= abc 4R= 1 2(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R, r. 3.在△ABC中,已知a,b和A时,解的情况如下: A为锐角A为钝角或直角图形 关系式a=b sin A b sin Ab a≤b 解的个数一解两解一解一解无解知识点二三角函数关系和射影定理 1.三角形中的三角函数关系 (1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;

高中数学最新学案第1章第8课时正、余弦定理的应用(2)(教师版)新人教A版必修5

听课随笔 第8课时正、余弦定理的应用(2) 【学习导航】 知识网络 ?? ???数学问题航海 测量学正、余弦定理的应用 学习要求 1.利用正弦定理和余弦定理解决有关测量问题时,要注意分清仰角、俯角、张角和方位角等概念。 2. 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过这些三角形,得出实际问题的解。 【课堂互动】 自学评价 运用正弦定理、余弦定理解决实际问题的基本步骤是: ①分析:理解题意,弄清清与未知,画出示意图(一个或几个三角形); ②建模:根据书籍条件与求解目标,把书籍量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型; ③求解:利用正弦定理、余弦定理理解这些三角形,求得数学模型的解; ④检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解。 【精典范例】 【例1】作用在同一点的三个力123,,F F F 平衡.已知130F N =,250F N =,1F 与2F 之间的夹角是60,求3F 的大小与方向(精确到0.1). 【解】3F 应和12,F F 合力F 平衡,所以3F 和F 在同一直线上, 并且大小相等,方向相反. 如图1-3-3,在1OF F ?中,由余弦定理,得 ()70F N =再由正弦定理,得 1 50sin1205sin 70FOF ∠==, 所以138.2FOF ∠≈,从而13141.8FOF ∠≈. 答 3F 为70N ,3F 与1F 之间的夹角是141.8. 【例2】半圆O 的直径为2,A 为直径延长线上的一点,2OA =,B 为半圆上任意一点,以AB 为一边作等边三角形 ABC .问:点B 在什么位置时,四边形OACB 面积最大? 分析:四边形的面积由点B 的位置唯一确定,而点B 由AOB ∠唯一确定,因此可设AOB α∠=,再用α的三角函数来表示四边形OACB 的面积. 【解】设AOB α∠=.在AOB ?中,由余弦定理,得

正余弦定理题型归类

高二数学《正余弦定理》知识与题型总结 1、 正弦定理:_________=_________=_________=2R (R 为____________) 变形:________a =;________b =;________c = sinA :sinB:sinC ______________ = 2、 余弦定理:2 ______________a =;2 ______________b =;2 ______________c = 变形:cos ________________A =;cosB ________________=;cosC ________________= 3、 三角形面积公式: (1)12S a h =g (2)1 sin _________________________2S ab C === (3)1 ()2 S r a b c =++(r 为内切圆半径) 4、常用公式及结论: (1)倍角公式:sin 2__________α=; cos 2_______________________________________α=== tan 2____________α= 降幂公式:2 sin ____________α=;2 cos ____________α= (2)在ABC ?中,sin()sinC A B +=;cos()cosC A B +=-;tan()tanC A B +=-; (3)在ABC ?中,最小角的范围为0, 3π?? ?? ? ;最大角的范围为,3ππ???? ?? ; (4)在ABC ?中,A B C sinA sinB sinC >>?>>; (5)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b c b a c A B C A B C B A C a b c A B C +++===== +++++= ++。 类型一:正余弦定理的综合应用 1.在△ABC 中,4a b =,= 30A ?=,则角B 等于( ). A .30° B .30°或150° C .60° D .60°或120° 2.在△ABC 中,三内角A ,B ,C 成等差数列,b =6,则△ABC 的外接圆半径为( ) 3.在ABC ?中,角,,A B C 的对边分别为,,a b c ,向量,(cos ,sin )n A A =v , 若m n ⊥u v v ,且cos cos sin a B b A c C +=,则角A ,B 的大小为( ). 4.在ABC ?中,角C B A ,,所对应的边分别为c b a ,,,B B A C 2sin 3)sin(sin =-+. ) 5.ABC ?各角的对应边分别为c b a ,,,满足 ,则角A 的范围是( ) A 6.在△ABC 中,内角A,B,C ,C B sin 3sin 2=, =( ) A 7.在△ABC 中,内角A , B , C 的对边分别为a ,b ,c.,且b a >,则∠B =( ) A 8.在△ABC 中,根据下列条件解三角形,则其中有两个解的是 A .0 75,45,10===C A b B .0 80,5,7===A b a C .0 60 ,48,60===C b a D . 45,16,14===A b a 9.已知ABC ?中,a b 、分别是角A B 、所对的边,且()0,2,a x x b A =>==60°,若三角形有两解,则 x 的取值范围是( ) A 、02x << C

(新)高中数学高考一轮复习:正弦定理和余弦定理复习课教学设计

《正弦定理和余弦定理》复习课教学设计

设计意图: 学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。 数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数 学知识的理解和掌握。虽然是复习课,但我们不能一味的讲题,在教学中应体现 以下教学思想: ⑴重视教学各环节的合理安排: 设疑探究拓展实践循环此流程

在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。 ⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。 ⑶重视提出问题、解决问题策略的指导。 ⑷重视加强前后知识的密切联系。对于新知识的探究,必须增加足够的预备知识,做好衔接。要对学生已有的知识进行分析、整理和筛选,把对学生后继学习中有需要的知识选择出来,在新知识介绍之前进行复习。 ⑸注意避免过于繁琐的形式化训练。从数学教学的传统上看解三角形内容有不少高度技巧化、形式化的问题,我们在教学过程中应该注意尽量避免这一类问题的出现。 二、实施教学过程

评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解. 思考讨论:该题若用余弦定理如何解决? 【例2】已知a、b、c分别是△ABC的三个内角A、B、C所对的边, (1)若△ABC的面积为,c=2,A=600,求边a,b的值; (2)若a=ccosB,且b=csinA,试判断△ABC的形状。 (五)变式训练、归纳整理 【例3】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若 b cosC=(2a-c)cosB (1)求角B (2)设,求a+c的值。 剖析:同样知道三角形中边角关系,利用正余弦定理边化角或角化边,从而解决问题,此题所变化的是与向量相结合,利用向量的模与数量积反映三角形的边角关系,把本质看清了,问题与例2类似解决。 此题分析后由学生自己作答,利用实物投影集体评价,再做归纳整理。 (解答略) 课时小结(由学生归纳总结,教师补充) 1.解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系 常用正弦定理 2.根据所给条件确定三角形的形状,主要有两种途径:①化边为角;②化角为 边.并常用正余弦定理实施边角转化。 3.用正余弦定理解三角形问题可适当应用向量的数量积求三角形内角与应用 向量的模求三角形的边长。 4.应用问题可利用图形将题意理解清楚,然后用数学模型解决问题。 5.正余弦定理与三角函数、向量、不等式等知识相结合,综合运用解决实际问 题。 课后作业: 材料三级跳

正余弦定理学案

1.1 .1 正弦定理 1.初中我们学过解直角三角形,回忆一下直角三角形中的边角关系 边: ; 角: 边角关系: 即: 2.正弦定理: 在一个三角形中,各边和它所对角的 的比 ,即 3.正弦定理的变形: (1) (2) (3) 4.正弦定理的作用: ① ; ② 。 5.解三角形:一般地,已知三角形的某些边和角,求其他的 的过程叫作解三角形。 6.三角形面积公式为: 课堂互动 一、已知两角及一边解三角形 例1:已知⊿ABC 中,c=10,A=45°C=30°求b,?S ; 二、已知两边及一边的对角解三角形 例2:C B b a A c ABC ,,2,45,60和求中,===? 探究:解的情况 (1)⊿ABC 中,∵π<

(1)a=5,b=4,A=120°,求B ( 解);(2)a=5,b=4,A=90°,求B ( 解) (3)a=5,b= 3 3 10,A=60°,求B ( );(4)a=20,b=28,A=40°,求B ( 解) 学后反思: 课堂检测 1.已知⊿ABC 中,a=100,c=350,A=45°,求C 2.⊿ABC 中, 已知a=4,b=24,B=45°,求A 3.⊿ABC 中,() 132,60,45+=?=?=a C B ,求⊿ABC 的面积S 及边b (不要近似计算) 4.求边长为a 的等边三角形的面积。 5.已知b=12,A=30°B=120°,求?S 6.已知?ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c 7.(2010湖北理)在中,a=15,b=10,A=60°,则为 A - B C - D 8.已知?ABC 中,一定成立的等式是( ) 1.1 .2 余弦定理 1.正余弦定理: 2.正弦定理的变形: (1) (2) (3) 3.三角形面积公式为: 4.余弦定理 : ? ? ? 5.对公式的认识: (1) 是余弦定理的特例 (2)余弦定理主要作用:(1) ;(2) 6.三角形形状的判定: (1)若A 为直角,则 (2)若A 为锐角,则 (3)若A 为钝角,则 课堂互动 一、已知两边及夹角解三角形 ABC ?cos B 3 3 33B b A a A sin sin .= B b A a B cos cos .= A b B a C sin sin .= A b B a D cos cos .=

高三第一轮复习正弦定理、余弦定理与三角形面积公式

解斜三角形 正弦定理、余弦定理与三角形面积公式 【提纲挈领】 主干知识归纳 ABC 的6个基本元素: a,b,c,A,B,C .其中三内角 A,B,C 所对边边长分别为 a,b,c . 1.正弦定理 变式: a 2Rsin A,b 2Rsin B,c 2RsinC 2.余弦定理 3. 三角形面积公式 1 2 ac sin B 2R sin A sin B sinC. 2 ( 2 )秦九韶 —海伦公式: S ABC 方法规律总结 1. 基本量观念: ABC 的 6个基本元素: a,b,c,A,B,C .已知三个基本量(至少一个为边)确定一个 三 角形,正余弦定理是“量化”依据,是初中全等三角形判定定理由定性向定量的转换 . 2. 方程观念: 正余弦定理和面积公式是方程的粗坯, 是解三角形的依据, 从三角形 6 个基本元素来说是 “知 三求三” .有两条主线:一是统一为边(消角)的关系,归结为边为元的代数方程;二是统一为角(消边) 的关系,归结为三角方程 . 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理 更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的 正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. 3. 转化思想:利用正余弦定理实现边角间的相互转化 . 4. 利用正弦定理解三角形主要是以下两类: (1)已知两边和一对角; (2)已知两角和一边 . 利用余弦定 理解三角形主要是以下两类: (1)已知三边;( 2)已知两边及其夹角 . 对于复杂问题需综合利用正余弦定理实现边角关系向统一转化 . 【指点迷津】 【类型一】定理的推导与证明 【例 1】(2011 陕西理 18)叙述并证明余弦定理 . 【解析】 : 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦之积 的两 abc sin A sin B sinC 2R (其中 R 是 ABC 的外接圆的半 径) a 2 b 2 c 2 2 2bc cos A , b 2 c 2 a 2 2ca cos B , c 2 a 2 b 2 2abcosC . 变式: cosA 2 2 2 b c a ,cosB 2bc a 2 b 2 ,cosC 2ac b 2 2ab 1 ) S ABC 11 ab sin C bcsin A 22 p(p a)(p b)(p c),其中 p abc 2

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

高考数学一轮复习训练第四章正、余弦定理及解三角形

第四讲正、余弦定理及解三角形 1.[2020广东七校联考]在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=√3+1,b=2,A=π 3 ,则B= () A.3π 4B.π 6 C.π 4 D.π 4 或3π 4 2.[2020湖北部分重点中学高三测试]在△ABC中,角A,B,C所对的边分别是a,b,c,且cosA a +cosB b = sinC c ,若b2+c2 - a2=8 5 bc,则tan B的值为() A.-1 3B.1 3 C.-3 D.3 3.[2019湖北部分重点中学高三测试]已知△ABC的内角A,B,C的对边分别是a,b,c,且 sin2A+sin2B-sin2C c =sinAsinB acosB+bcosA ,若a+b=4,则c的取值范围为() A.(0,4) B.[2,4) C.[1,4) D.(2,4] 4.[2020大同市高三调研]在△ABC中,B=π 4,BC边上的高等于1 3 BC,则sin∠BAC=. 5.[2019安徽示范高中高三测试]在△ABC中,∠ABC=90°,延长AC到D,使得CD=AB=1,若∠CBD=30°,则AC=. 6.[2020长春市第一次质量监测]△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,a>b. (1)求证:△ABC是直角三角形; (2)若c=10,求△ABC的周长的取值范围. 7.[2020惠州市一调]已知△ABC的内角A,B,C满足sinA-sinB+sinC sinC =sinB sinA+sinB-sinC . (1)求角A; (2)若△ABC的外接圆的半径为1,求△ABC的面积S的最大值.

相关主题